1 Factoring polynomials over finite fields

In this section we describe Berlekamp's algorithm for computing the factorization of a polynomial in $\mathbb{F}_{q}[x]$ into irreducible factors. First we briefly recall some facts on polynomial rings.

In the sequel F will be a field, and $F[x]$ the polynomial ring over F in one indeterminate x.

Lemma 1 Let $f, g \in F[x]$. Then there are unique $q, r \in F[x]$ such that $f=q g+r$ and $\operatorname{deg} r<\operatorname{deg} g$.

There is a standard algorithm for computing the q, r from the previous lemma, called the division algorithm.

Lemma 2 Let $I \subset F[x]$ be an ideal. Then there is a $g \in F[x]$ such that I is generated by g.

Proof. For g choose a polynomial in I of minimal degree. Then using Lemma 1 it is straightforward to see that g generates I.

Proposition 3 Let $f_{1}, f_{2} \in F[x]$. Then there is a unique monic $g \in F[x]$ such that

$$
\begin{align*}
& g \text { divides } f_{1} \text { and } f_{2} \tag{1}\\
& \text { if } h \text { divides } f_{1}, f_{2} \text { then } h \text { divides } g \text {. } \tag{2}
\end{align*}
$$

Proof. Let g be a monic generator of the ideal I of $F[x]$ generated by f_{1}, f_{2}. Then (1) is trivial, and for (2) we note that, since $g \in I$, there are $g_{1}, g_{2} \in F[x]$ such that $g=g_{1} f_{1}+g_{2} f_{2}$.

Now supppose that there is a monic g^{\prime} with (1) and (2). Then it follows that g^{\prime} divides g, and g divides g^{\prime}. Hence $g=g^{\prime}$.

The polynomial g of the previous theorem is called the greatest common divisor of f_{1} and f_{2}; it is denoted by $\operatorname{gcd}\left(f_{1}, f_{2}\right)$. We have that $\operatorname{gcd}\left(f_{1}, f_{2}\right)$ is the monic polynomial of maximal degree that divides both f_{1} and f_{2}. (Indeed, consider the set D of all monic polynomials dividing both f_{1} and f_{2}. Then $\operatorname{gcd}\left(f_{1}, f_{2}\right) \in D$, and it is the element of maximal degree in D by (2).)

Lemma 4 Let $f, g \in F[x]$, and write $f=q g+r$. Then $\operatorname{gcd}(g, f)=\operatorname{gcd}(g, r)$.
Proof. Let D_{1} be the set of all polynomials dividing both g, f. Let D_{2} be the set of all polynomials dividing both g, r. Then it is straightforward to prove that $D_{1}=D_{2}$.

By Lemma 4 we have the following algorithm for calculating $\operatorname{gcd}(f, g)$. Set $r_{0}=f$, $r_{1}=g$. And for $n \geq 1$ let r_{n+1} be the unique element of $F[x]$ such that $\operatorname{deg} r_{n+1}<\operatorname{deg} r_{n}$ and $r_{n-1}=q_{n} r_{n}+r_{n+1}$. Since the degree of r_{n} decreases by every step, there is a $k>0$ such that $r_{k+1}=0$. In that case $r_{k}=\operatorname{gcd}(f, g)$. (Indeed, by Lemma 4 it follows that $\left.\operatorname{gcd}(f, g)=\operatorname{gcd}\left(r_{0}, r_{1}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right)=\ldots=\operatorname{gcd}\left(r_{k}, k_{k+1}\right)=r_{k}.\right)$

Example 5 Consider the polynomials $f=x^{7}+1$ and $g=x^{4}+x^{2}+x$ in $\mathbb{F}_{2}[x]$. We set $r_{0}=f$, and $r_{1}=g$. Furthermore, $r_{0}=\left(x^{3}+x+1\right) r_{1}+x^{3}+x+1$, so $r_{2}=x^{3}+x+1$. Now $r_{1}=x r_{2}+0$, and $r_{3}=0$. Therefore, $\operatorname{gcd}(f, g)=x^{3}+x+1$.

An element $f \in F[x]$ is said to be irreducible if $f=g h$ with $g, h \in F[x]$ implies that $g \in F$ or $h \in F$.

Theorem 6 Let $f \in F[x]$. Then f can be written $f=c f_{1}^{e_{1}} \cdots f_{r}^{e_{r}}$, where $c \in F$, the f_{i} are monic and irreducible, and $f_{i} \neq f_{j}$ for $i \neq j$. Furthermore, upto rearrangement, the f_{i}, e_{i} and c are unique.

Proof. First we reduce to the case where f is monic, by dividing by a nonzero element of F. If f is not irreducible, then $f=g h$, where $g, h \in F[x]$ are monic and $\operatorname{deg} g, h>0$. Now we continue by induction.

The uniqueness of the decomposition is shown by using the following result. "Suppose that $a \in F[x]$ is irreducible, and that a divides $b c$, for certain $b, c \in F[x]$. Then a divides b, or a divides c." From this it follows that if $f=f_{1}^{e_{1}} \cdots f_{r}^{e_{r}}=g_{1}^{d_{1}} \cdots g_{t}^{d_{t}}$ are two decompositions of f into a product of irreducibles, then f_{1} must be equal to one of the g_{i}. We cancel these factors, and finish the proof by induction.

Now we turn our attention to the main topic of this section: finding the factorization promised by Theorem 6, when $F=\mathbb{F}_{q}$ is a finite field, and $q=p^{n}$ for some prime p, $n \geq 1$. Let $f \in \mathbb{F}_{q}[x]$ be a monic polynomial, and write $f=f_{1}^{e_{1}} \cdots f_{r}^{e_{r}}$, where the f_{i} are irreducible, monic, and $f_{i} \neq f_{j}$ for $i \neq j$. The factors $f_{i}^{e_{i}}$ are called the primary factors of f. We first describe an algorithm to find those. It is based on the following result.

Lemma 7 Let $f \in \mathbb{F}_{q}[x]$, and let $v \in \mathbb{F}_{q}[x]$ be such that $v^{q} \equiv v \bmod f$. Then

$$
f=\prod_{a \in \mathbb{F}_{q}} \operatorname{gcd}(f, v-a)
$$

Proof. Note that $Y^{q}-Y=\prod_{a \in \mathbb{F}_{q}}(Y-a)$. So by specializing Y to v we have $v^{q}-v=$ $\prod_{a \in \mathbb{F}_{q}}(v-a)$. Now f divides $v^{q}-v$, so that $\operatorname{gcd}\left(f, v^{q}-v\right)=f$. Therefore,

$$
f=\operatorname{gcd}\left(f, \prod_{a \in \mathbb{F}_{q}}(v-a)\right)=\prod_{a \in \mathbb{F}_{q}} \operatorname{gcd}(f, v-a)
$$

Where the last equality follows from the following fact: "If a, b, c are polynomials with $\operatorname{gcd}(b, c)=1$, then $\operatorname{gcd}(a, b c)=\operatorname{gcd}(a, b) \operatorname{gcd}(a, c) . "$ (Which can be proved using Theorem 6.) Note that $\operatorname{gcd}(v-a, v-b)=1$ if $a \neq b$.

By this lemma we may be able to find factors of f using the algorithm to compute gcd's, provided we have solutions v of $v^{q} \equiv v \bmod f$. The next lemma helps with finding such solutions.

Lemma 8 Let $f \in \mathbb{F}_{q}[x]$, and let $f=f_{1}^{e_{1}} \cdots f_{r}^{e_{r}}$ be its decomposition into primary factors. Let V be the set of all $v \in \mathbb{F}_{q}[x]$ such that $v^{q} \equiv v \bmod f$. Then V is an r-dimensional vector space over \mathbb{F}_{q}.

Proof. For $\alpha \in \mathbb{F}_{q}$, and $v, w \in V$ we have $(\alpha v)^{q}=\alpha^{q} v^{q}=\alpha v \bmod f$, and $(v+w)^{q}=$ $v^{q}+w^{q}=v+w \bmod f$. So we see that αv and $v+w$ both belong to V. Therefore V is a vector space over \mathbb{F}_{q}. By the Chinese Remainder Theorem we have an isomorphism of rings

$$
\varphi: \mathbb{F}_{q}[x] /(f) \rightarrow \bigoplus_{i=1}^{r} \mathbb{F}_{q}[x] /\left(f_{i}^{e_{i}}\right)
$$

For $v \in V$ we write $\varphi(v)=\left(v_{1}, \ldots, v_{r}\right)$. Now $v^{q} \equiv v \bmod f$ is equivalent to $v_{i}^{q} \equiv v_{i} \bmod f_{i}^{e_{i}}$ for $1 \leq i \leq r$. So Lemma 7 implies that $f_{i}^{e_{i}}=\prod_{a \in \mathbb{F}_{q}} \operatorname{gcd}\left(f_{i}^{e_{i}}, v_{i}-a\right)$. But f_{i} is irreducible, and the $v_{i}-a$ are pairwise relatively prime. Therefore there is exactly one $a \in \mathbb{F}_{q}$ such that $\operatorname{gcd}\left(f_{i}^{e_{i}}, v_{i}-a\right) \neq 1$. This means that $f_{i}^{e_{i}}=v_{i}-a$, and $v_{i} \equiv a \bmod f_{i}^{e_{i}}$. We conclude that $\varphi(V) \subset \oplus_{i=1}^{r} \mathbb{F}_{q}$. Since $a^{q}=a$ for all $a \in \mathbb{F}_{q}$ we also get the other inclusion. Hence $\varphi(V)=\oplus_{i=1}^{r} \mathbb{F}_{q}$.

On the basis of the previous two lemmas we formulate the following algorithm, which is called Berlekamp's algorithm.

Algorithm Berlekamp

Input: a monic polynomial $f \in \mathbb{F}_{q}[x]$.
Output: the primary factors of f.
Step 1 Compute a basis $\left\{v_{1}=1, v_{2}, \ldots, v_{r}\right\}$ of the vector space V, consisting of all $v \in$ $\mathbb{F}_{q}[x]$ such that $v^{q} \equiv v \bmod f$.

Step 2 Set $P=\{f\}$ and for $2 \leq j \leq r$ do the following:
Step 2a Replace each $h \in P$ by the nontrivial elements of the set $\left\{\operatorname{gcd}\left(h, v_{j}-a\right) \mid\right.$ $\left.a \in \mathbb{F}_{q}\right\}$.

Step 3 Return P.
Proposition 9 The algorithm Berlekamp returns the set of primary factors of f.
Proof. We note that throughout the algorithm f is equal to the product of all elements of P; this follows immediately from Lemma 7. Also the elements of P are pairwise relatively prime, as $v_{j}-a$ and $v_{j}-b$ are relatively prime for $a \neq b$. So the only thing that can be wrong with the output is that it contains an element which is divided by at least two primary factors.

Let h be an element of the set returned by the algorithm. Then for each j with $1 \leq j \leq r$ there is an $a_{j} \in \mathbb{F}_{q}$ such that $v_{j} \equiv a_{j} \bmod h$. (For a fixed j, this is certainly true after the execution of Step 2a where j is treated. Furthermore, it remains true, as in subsequent steps a polynomial is replaced by factors of it.) Let $v \in V$, then there are $\beta_{j} \in \mathbb{F}_{q}$ such that $v=\sum_{j=1}^{r} \beta_{j} v_{j}$. Hence if we set $a_{v}=\sum_{j=1}^{r} \beta_{j} a_{j}$ we have that $v \equiv a_{v} \bmod h$. Now suppose that h contains two primary factors of f, say $f_{1}^{e_{1}}$ and $f_{2}^{e_{2}}$. Then for $v \in V$ we have $\varphi(v)=\left(a_{v}, a_{v}, \ldots\right)$, where φ is as in the proof of Lemma 8. But this means that $\varphi(V) \neq \oplus_{i=1}^{r} \mathbb{F}_{q}$, which contradicts the last statement in the proof of Lemma 8.

The remaining problem is to find the factorization of a primary factor. Suppose that $f=g^{e}$, and let $f^{\prime}=e g^{\prime} g^{e-1}$ be the derivative of f. Then there are two cases to be considered. Firstly, supppose that $f^{\prime}=0$. Then p divides e, or $g^{\prime}=0$. In the first case we have that f is a polynomial in x^{p}, i.e., $f=h\left(x^{p}\right)=h(x)^{p}$. If $g^{\prime}=0$ then g is a polynomial in x^{p}, but then the same holds for f. It follows that $f=h(x)^{p}$. We compute h, and find its factorization, from which the factorization of f is easily derived.

The second case occurs when $f^{\prime} \neq 0$. But then $g=f / \operatorname{gcd}\left(f, f^{\prime}\right)$, so it is straightforward to find g.

Example 10 Consider the polynomial $f=x^{7}+x^{4}+x^{2}+x+1$ in $\mathbb{F}_{2}[x]$. Set $v=$ $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{6} x^{6}$. Then $v^{2} \bmod f=a_{0}+a_{5}+a_{6}+\left(a_{4}+a_{5}+a_{6}\right) x+\left(a_{1}+a_{4}+\right.$ $\left.a_{5}\right) x^{2}+\left(a_{4}+a_{5}+a_{6}\right) x^{3}+a_{2} x^{4}+\left(a_{4}+a_{5}+a_{6}\right) x^{5}+a_{3} x^{6}$. Now the requirement $v^{2} \equiv v \bmod f$ leads to a set of linear equations for the a_{i}. After some rewriting we see that they amount to $a_{1}=a_{2}=a_{3}=a_{4}=a_{5}=a_{6}$. So a basis of V is formed by the elements $v_{1}=1$ and $v_{2}=x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x$.

Now in Step 2 a we replace f by the two polynomials $\operatorname{gcd}\left(f, v_{2}\right)$ and $\operatorname{gcd}\left(f, v_{2}+1\right)$. We have that $\operatorname{gcd}\left(f, v_{2}\right)=x^{4}+x^{2}+1$, and $\operatorname{gcd}\left(f, v_{2}+1\right)=x^{3}+x+1$. It follows that these are the primary factors of f. Now we look at these factors. The derivative of $g_{1}=x^{4}+x^{2}+1$ is zero, which means that $g_{1}=h\left(x^{2}\right)=h(x)^{2}$, with in this case $h=x^{2}+x+1$. Now $\operatorname{gcd}\left(h, h^{\prime}\right)=1$ so that h is irreducible. It follows that $g_{1}=\left(x^{2}+x+1\right)^{2}$. Setting $g_{2}=x^{3}+x+1$, we have $g_{2}^{\prime}=x^{2}+1$, and $\operatorname{gcd}\left(g_{2}, g_{2}^{\prime}\right)=1$, so that also g_{2} is irreducible. It follows that $f=\left(x^{2}+x+1\right)^{2}\left(x^{3}+x+1\right)$ is the factorization of f.

