1 Factoring polynomials over finite fields

In this section we describe Berlekamp’s algorithm for computing the factorization of a
polynomial in F [z] into irreducible factors. First we briefly recall some facts on polynomial
rings.

In the sequel F' will be a field, and F'[z] the polynomial ring over F' in one indeterminate
x.

Lemma 1 Let f,g € Flx]. Then there are unique q,r € F|x] such that f = qg + r and
degr < degg.

There is a standard algorithm for computing the ¢, from the previous lemma, called
the diwvision algorithm.

Lemma 2 Let I C Flx] be an ideal. Then there is a g € F[z]| such that I is generated by
g.

Proof. For g choose a polynomial in [ of minimal degree. Then using Lemma 1 it is
straightforward to see that g generates I. O

Proposition 3 Let fi, fo € F[z|. Then there is a unique monic g € F|x] such that

g divides fi and fo (1)
if h divides f1, fo then h divides g. (2)

Proof. Let g be a monic generator of the ideal I of Flx] generated by fi, fo. Then
(1) is trivial, and for (2) we note that, since g € I, there are g1,go € Flz] such that
9=gq/1+ g2fe.

Now supppose that there is a monic ¢’ with (1) and (2). Then it follows that ¢’ divides
g, and ¢ divides ¢’. Hence g = ¢'. a

The polynomial g of the previous theorem is called the greatest common divisor of f;
and fo; it is denoted by ged(fi, f2). We have that ged(fi, f2) is the monic polynomial
of maximal degree that divides both f; and f;. (Indeed, consider the set D of all monic
polynomials dividing both f; and fo. Then ged(fi, f2) € D, and it is the element of
maximal degree in D by (2).)

Lemma 4 Let f,g € F[z|, and write f = qg+r. Then ged(g, f) = ged(g, 7).

Proof. Let D; be the set of all polynomials dividing both ¢, f. Let Dy be the set of all
polynomials dividing both g, r. Then it is straightforward to prove that D; = Ds. 4

By Lemma 4 we have the following algorithm for calculating ged(f, g). Set rg = f,
r1 = g. And for n > 1 let r,,41 be the unique element of F[z] such that degr, 1 < degr,
and r,_1 = ¢, + Tpe1. Since the degree of r, decreases by every step, there is a k > 0
such that rp; = 0. In that case r, = ged(f,g). (Indeed, by Lemma 4 it follows that

ng(f; g) = ng<7"0,7“1) = ng(T17T2) =...=gcd(ry, kk+1) = 7‘1@‘)



Example 5 Consider the polynomials f = 27 + 1 and g = z* + 2* + z in Fy[x]. We set
ro = f, and r; = g. Furthermore, 7o = (23 +z+ 1)r; +2®+ 2+ 1,50 o = 23+ 2+ 1. Now
ry = ary + 0, and r3 = 0. Therefore, ged(f,g) = 23 + x + 1.

An element f € F[z] is said to be irreducible if f = gh with g,h € F[z] implies that
geForhekF.
Theorem 6 Let f € Flx]. Then f can be written f = cf{*--- f¢, where c € F, the f; are
monic and irreducible, and f; # f; for i # j. Furthermore, upto rearrangement, the f;, e;
and c are unique.

Proof. First we reduce to the case where f is monic, by dividing by a nonzero element of
F. If f is not irreducible, then f = gh, where g, h € F[z]| are monic and deg g, h > 0. Now
we continue by induction.

The uniqueness of the decomposition is shown by using the following result. “Suppose
that a € F[z| is irreducible, and that a divides be, for certain b, c € Fx]. Then a divides

b, or a divides ¢.” From this it follows that if f = f& ... f&r = g% ... g% are two decom-
positions of f into a product of irreducibles, then f; must be equal to one of the g;. We
cancel these factors, and finish the proof by induction. O

Now we turn our attention to the main topic of this section: finding the factorization
promised by Theorem 6, when F' = F, is a finite field, and ¢ = p" for some prime p,
n > 1. Let f € F,[x] be a monic polynomial, and write f = f;*--- f¢, where the f; are
irreducible, monic, and f; # f; for ¢ # j. The factors f{* are called the primary factors of
f. We first describe an algorithm to find those. It is based on the following result.

Lemma 7 Let f € F,[z], and let v € Fy[z] be such that v? = v mod f. Then

f= H ged(f,v —a).

a€lFy

Proof. Note that Y7 —Y = Haqu (Y —a). So by specializing Y to v we have v? — v =
HaE]Fq (v—a). Now f divides v? — v, so that ged(f,v? —v) = f. Therefore,

f=gd(f, [[(wv—a) =] ged(f,v—a).

a€lFq a€lFq

Where the last equality follows from the following fact: “If a,b,c are polynomials with
ged(b, ¢) = 1, then ged(a, be) = ged(a, b) ged(a, ¢).” (Which can be proved using Theorem
6.) Note that ged(v —a,v —b) =1if a # b. O

By this lemma we may be able to find factors of f using the algorithm to compute
ged’s, provided we have solutions v of v? = v mod f. The next lemma helps with finding
such solutions.

Lemma 8 Let f € F x|, and let f = f{*--- fe be its decomposition into primary factors.
Let V' be the set of all v € Fylz] such that v¢ = vmod f. Then V is an r-dimensional
vector space over IFy.



Proof. For a € F,, and v,w € V we have (aw)? = a%? = avmod f, and (v + w)? =
v?i4+w? = v+ wmod f. So we see that av and v + w both belong to V. Therefore V is
a vector space over [F,. By the Chinese Remainder Theorem we have an isomorphism of
rings

o+ Ffal/(F) — EDFlal/(2).

For v € V we write p(v) = (v1,...,v,). Now v? = v mod f is equivalent to v{ = v; mod f/

for 1 <i <r. So Lemma 7 implies that f* = Haqu ged(ff', v; — a). But f; is irreducible,

and the v; — a are pairwise relatively prime. Therefore there is exactly one a € F, such

that ged(f,v; — a) # 1. This means that f* = v; — a, and v; = a mod f{*. We conclude

that ¢(V) C @_,F,. Since a? = a for all a € F, we also get the other inclusion. Hence

(V) = &, F,. .
On the basis of the previous two lemmas we formulate the following algorithm, which

is called Berlekamp’s algorithm.

Algorithm Berlekamp

Input: a monic polynomial f € F,[x].

Output: the primary factors of f.

Step 1 Compute a basis {v; = 1,vs,...,v,} of the vector space V', consisting of all v €
F,[z] such that v? = v mod f.

Step 2 Set P = {f} and for 2 < j < r do the following:

Step 2a Replace each h € P by the nontrivial elements of the set {gcd(h,v; — a) |
aclF,}.

Step 3 Return P.

Proposition 9 The algorithm Berlekamp returns the set of primary factors of f.

Proof. We note that throughout the algorithm f is equal to the product of all elements of
P; this follows immediately from Lemma 7. Also the elements of P are pairwise relatively
prime, as v; —a and v; — b are relatively prime for @ # b. So the only thing that can
be wrong with the output is that it contains an element which is divided by at least two
primary factors.

Let h be an element of the set returned by the algorithm. Then for each j with1 < 7 <r
there is an a; € F, such that v; = a; mod h. (For a fixed j, this is certainly true after the
execution of Step 2a where j is treated. Furthermore, it remains true, as in subsequent
steps a polynomial is replaced by factors of it.) Let v € V, then there are 8; € F, such
that v = 377 | Bjv;. Hence if we set a, = )77, B;a; we have that v = a, mod h. Now
suppose that h contains two primary factors of f, say f;* and f5*. Then for v € V we
have ¢(v) = (ay,ay,...), where ¢ is as in the proof of Lemma 8. But this means that
o(V) # @]_,F,, which contradicts the last statement in the proof of Lemma 8. O



The remaining problem is to find the factorization of a primary factor. Suppose that
f = g% and let f' = eg’g® ! be the derivative of f. Then there are two cases to be
considered. Firstly, supppose that f/ = 0. Then p divides e, or ¢’ = 0. In the first case we
have that f is a polynomial in z?, i.e., f = h(2P) = h(x)?P. If ¢’ = 0 then g is a polynomial
in 2P, but then the same holds for f. Tt follows that f = h(x)?. We compute h, and find
its factorization, from which the factorization of f is easily derived.

The second case occurs when f’ # 0. But then g = f/ ged(f, f'), so it is straightforward
to find g.

Example 10 Consider the polynomial f = z7 + 2z + 2% + x + 1 in Fyfz]. Set v =
aop + a1z + asx® + - - + agx®. Then v*> mod f = ag + as + ag + (as + as + ag)x + (a1 + ag +
as)2? + (ag+as+ag)r3 + asxr* + (ag+ as + ag)2° + azz®. Now the requirement v? = v mod f
leads to a set of linear equations for the a;. After some rewriting we see that they amount
to a; = as = a3 = ag = a5 = ag. S0 a basis of V' is formed by the elements v; = 1 and
vy = a8 + 2% + 2t + 2% + 2% + 2.

Now in Step 2a we replace f by the two polynomials ged(f, vy) and ged(f,ve + 1). We
have that ged(f, vo) = x+22+1, and ged(f, v2+1) = x3+z+1. Tt follows that these are the
primary factors of f. Now we look at these factors. The derivative of g; = 2*+2%+1 is zero,
which means that g; = h(2?) = h(z)?, with in this case h = 2? +x+ 1. Now ged(h, 1) =1
so that h is irreducible. Tt follows that g; = (2? + z + 1)% Setting go = 2® + x + 1,
we have ¢g) = 22 + 1, and ged(gs, g5) = 1, so that also go is irreducible. It follows that
f=(2*+x+1)*(z® + 2+ 1) is the factorization of f.



