
LieRing
Lie Rings

Version 2.3

November 2016

Serena Cicalò
Willem de Graaf

Serena Cicalò Email: cicalo@science.unitn.it
Address: Dipartimento di Matematica e Informatica

Via Ospedale, 72
09124 Cagliari
Italy

Willem de Graaf Email: degraaf@science.unitn.it
Homepage: http://www.science.unitn.it/~degraaf/
Address: Dipartimento di Matematica

Via Sommarive 14
I-38050 Povo (Trento)
Italy

mailto://cicalo@science.unitn.it
mailto://degraaf@science.unitn.it
http://www.science.unitn.it/~degraaf/

LieRing 2

Abstract
This package provides functions for constructing and working with Lie rings. There are functions for dealing
with finitely-presented Lie rings, and for performing the Lazard correspondence. The package also contains a
small database of finitely-generated Lie rings satisfying an Engel condition.

Copyright

© 2016 Serena Cicalò and Willem de Graaf

Contents

1 Introduction 4
1.1 Preliminaries . 4
1.2 The free Lie ring . 5
1.3 The Lazard correspondence . 5

2 The functions 6
2.1 The free Lie ring . 6
2.2 Creating Lie rings . 7
2.3 Working with Lie rings . 8
2.4 The Lazard correspondence . 12
2.5 The database of n-Engel Lie rings . 14

References 15

Index 16

3

Chapter 1

Introduction

1.1 Preliminaries

A Lie ring L is a Z-module equipped with a multiplication, denoted by a bracket [,] with

• [x,x] = 0 for all x in L,

• [x, [y,z]]+ [z, [x,y]]+ [y, [z,x]] = 0 for all x,y,z in L.

Contrary to Lie algebras (which are defined over a field), Lie rings may have torsion elements, i.e.,
elements x 6= 0 such that mx = 0 for some m ∈ Z.

We say that a Lie ring is finite-dimensional if it is finitely-generated as abelian group. All functions
of this package deal with finite-dimensional Lie rings.

Here is an example of a Lie ring L of order 56. As abelian group L is generated by x1,x2,x3,x4,x5.
We have 5xi = 0 for i = 1, . . . ,4, and 25x5 = 0. Furthermore,

[x1,x4] = 4x2 +5x5, [x3,x4] = 4x1, [x3,x5] = 4x2, [x4,x5] = 4x3.

One of the main functions of this package constructs a Lie ring given by a multiplication table (as
above) from a finite presentation. The Lie ring above can be obtained as follows.

Example
gap> L:= FreeLieRing(Integers, ["a","b"]);
<Free algebra over Integers generators: a, b >
gap> a:= L.1; b:= L.2;
a
b
gap> S:= [5*a-(b*a)*a-((b*a)*b)*b,5*b];
[(5)*a+(-1)*(a,(a,b))+(b,(b,(a,b))), (5)*b]
gap> K:= FpLieRing(L, S : maxdeg:= 4);
<Lie ring with 5 generators>
gap> v:=BasisVectors(Basis(K));
[v_1, v_2, v_3, v_4, v_5]
gap> v[1]*v[4];
4*v_2+5*v_5
gap> Torsion(Basis(K));
[5, 5, 5, 5, 25]

4

LieRing 5

1.2 The free Lie ring

Let X be a set of letters, which we denote by x1, . . . ,xn. Then the free magma M(X) on X is defined to
be the set of all bracketed expressions in the elements of X . More precisely, we have that X is a subset
of M(X) and if a,b ∈M(X), then also (a,b) ∈M(X). The free magma has a natural binary operation
m with m(a,b) = (a,b).

The elements of the free magma have a degree which is defined as deg(a,b) = deg(a)+ deg(b).
The degree of the elements of X can be set to be any positive integer. (Usually this is 1, but it is
possible to use different degrees for the elements of X .)

Let R be a ring; then the free algebra AR(X) on X over R is the R-span of M(X). The product on
AR(X) is obtained by bilinearly extending the map m.

The elements of M(X) are called monomials of AR(X). We use the following ordering on them.
The elements of X are ordered arbitrarily. Then (a,b) < (c,d) if deg(a,b) < deg(c,d). If these two
numbers are equal, then (a,b) < (c,d) if a < c, and in case a = c, if b < d. Using this ordering we
can speak of leading monomial, and leading coefficient of an element of AR(X). Using these notions
one can develop a Groebner basis theory for ideals in AR(X) (see [CdG07] and [CdG09]).

Let J be the ideal of AR(X) generated by all elements

• (a,a),

• (a,b)+(b,a),

• (a,(b,c))+(c,(a,b))+(b,(c,a)),

for a,b,c ∈M(X). Set LR(X) = AR(X)/J, which is called the free Lie ring over R generated by X .
The free Lie ring is one of the central objects of this package. It can be defined over the integers,

or over a field. The free Lie rings that can be constructed using this package rewrite their elements
using anticommutativity. The Jacobi identity is not used for rewriting; this is because that would lead
to expression swell, and sometimes tedious rewriting of elements to a form in which that can no longer
be recognised. So, strictly speaking, we work with the free anticommutative algebra.

1.3 The Lazard correspondence

Using the Baker-Campbell-Hausdorff (or BCH) formula one can define an associative multiplication
on a nilpotent Lie ring of order pn and nilpotency class < p. This makes the Lie ring into a p-group of
the same order and nilpotency class. The BCH-formula also has inverses, which can be used to define
an addition and a Lie bracket on a p-group of class < p. These make the group into a Lie ring of the
same order and nilpotency class.

These two operations are mutually inverse, and so define an equivalence of the categories of p-
groups of class < p and nilpotent Lie rings of the same order and nilpotency class. This equivalence
is known as the Lazard correspondence (see [Khu98]). This package has functions for performing
this correspondence, i.e., to make a p-group into a Lie ring and vice versa. For the algorithms used
we refer to [CdGVL11].

Chapter 2

The functions

2.1 The free Lie ring

2.1.1 FreeLieRing

. FreeLieRing(R, names) (method)

. FreeLieRing(R, names, deg) (method)

. FreeLieRing(R, k) (method)

. FreeLieRing(R, k, deg) (method)

Here R is a ring, which has to be either the integers, or a field. names is a list of strings, which
will be the names of the generators. This function returns the free Lie ring over R , with generators
named as in names . If L denotes the output, then L.i will be the i-th generator. If a third argument
deg is given then this must be a list of positive integers. Then each generator will have a degree equal
to the corresponding element of the list deg .

Monomials in the free Lie ring of the form (a,b) with a > b are automatically rewritten as−(b,a).
Monomials of the form (a,a) are rewritten as zero. There is no other rewriting done. Therefore, the
object returned by this function is strictly speaking not the same as the free Lie ring, it rather is the
free anticommutative algebra.

Monomials in the free Lie ring are printed as bracketed expressions. In a printed element the
monomials appear in increasing order; in particular the last monomial is the leading monomial.

If instead of the list names a positive integer k is given, then the free Lie ring on that number of
generators is returned. Again we can give each generator a degree different from 1 by adding a third
argument deg .

Example
gap> L:= FreeLieRing(Integers, ["a","b"]);
<Free algebra over Integers generators: a, b >
gap> a:= L.1; b:= L.2;
a
b
gap> (a*b)*b+2*a*b;
(2)*(a,b)+(-1)*(b,(a,b))

6

LieRing 7

2.1.2 Degree

. Degree(f) (operation)

Here f is an element of a free Lie ring. Its degree is returned.
Example

gap> L:= FreeLieRing(Integers, ["a","b"]);;
gap> a:= L.1;; b:= L.2;;
gap> f:=(a*b)*b+2*a*b;
(2)*(a,b)+(-1)*(b,(a,b))
gap> Degree(f);
3

2.2 Creating Lie rings

The package can deal with finite-dimensional Lie rings given by a multiplication table (which follow
the format for multiplication tables in the GAP library), and a list of moduli. This list has to have the
same length as the number of basis elements of the Lie ring. If the i-th element of this list is m then
the additive order of the i-th basis edlement if m. If m = 0 then the additive order is infinite.

2.2.1 IsLieRing

. IsLieRing (filter)

This is the category of finite-dimensional Lie rings.

2.2.2 LieRingByStructureConstants

. LieRingByStructureConstants(tor, T) (operation)

Here T is a multiplication table, and tor is a list of moduli. This function returns the correspond-
ing Lie ring. In the example below we create the Lie ring with basis elements x,y,z, with [x,y] = z,
3x = 6y = 3z = 0.

The multiplication table has to be created using the GAP functions for constructing multiplica-
tion tables of Lie algebras. In particular, we refer to the GAP reference manual for descriptions of
the functions EmptySCTable (Reference: EmptySCTable) SetEntrySCTable (Reference: SetEn-
trySCTable)

Example
gap> T:= EmptySCTable(3, 0, "antisymmetric");;
gap> SetEntrySCTable(T, 1, 2, [1,3]);
gap> LieRingByStructureConstants([3,6,3], T);
<Lie ring with 3 generators>

2.2.3 FpLieRing

. FpLieRing(L, R) (function)

LieRing 8

Here L is a free Lie ring defined over the integers, and R is a set of elements of L . This function
returns the Lie ring given by structure constants, that is isomorphic to L modulo the ideal generated
by R .

It is possible to set the option maxdeg to a positive value d . Then a nilpotent quotient is computed,
i.e., all elements of L of degree strictly greater than d will be treated as relations.

The algebra that is output by this function has an attribute, CanonicalProjection , which is a
function mapping elements of the free Lie ring L to their projections in the output algebra.

The algorithm behind this function has been described in [CdG07] and [CdG09].
Example

gap> L:= FreeLieRing(Integers, ["x","y"], [1,2]);
<Free algebra over Integers generators: x, y >
gap> x:= L.1;; y:= L.2;;
gap> R:= [((y*x)*x)*x-6*(y*x)*y, 3*((((y*x)*x)*x)*x)*x-20*(((y*x)*x)*x)*y];
[(-1)*(x,(x,(x,y)))+(-6)*(y,(x,y)),

(-3)*(x,(x,(x,(x,(x,y)))))+(-20)*(y,(x,(x,(x,y))))]
gap> K:= FpLieRing(L, R : maxdeg:= 15); time;
<Lie ring with 75 generators>
944
gap> f:=CanonicalProjection(K);
function(elm) ... end
gap> f(R[1]);
0
gap> f(x);
v_1

2.2.4 FpLieAlgebra

. FpLieAlgebra(L, R) (function)

This is similar to FpLieRing , with the difference that the free Lie ring L must be defined over a
field. Then the algorithms become a lot faster (in most cases). The result however is a Lie algebra,
and not a Lie ring.

2.3 Working with Lie rings

2.3.1 Basis

. Basis(L) (operation)

Here L a Lie ring. Its basis is returned.
We note that in LieRing Lie rings have one basis that is computed by the system; one should not

try to set a basis.
Example

gap> T:= EmptySCTable(3, 0, "antisymmetric");;
gap> SetEntrySCTable(T, 1, 2, [1,3]);
gap> K:= LieRingByStructureConstants([3,6,3], T);
<Lie ring with 3 generators>
gap> Basis(K);
Basis(<Lie ring with 3 generators>, [v_1, v_2, v_3])

LieRing 9

gap> BasisVectors(Basis(K));
[v_1, v_2, v_3]

2.3.2 StructureConstantsTable

. StructureConstantsTable(B) (operation)

Here B is the basis of a Lie ring. Its structure constants table is returned.
Example

gap> T:= EmptySCTable(3, 0, "antisymmetric");;
gap> SetEntrySCTable(T, 1, 2, [1,3]);
gap> K:= LieRingByStructureConstants([3,6,3], T);
<Lie ring with 3 generators>
gap> StructureConstantsTable(Basis(K));
[[[[], []], [[3], [1]], [[], []]],

[[[3], [-1]], [[], []], [[], []]],
[[[], []], [[], []], [[], []]], -1, 0]

2.3.3 Torsion

. Torsion(B) (operation)

Here B is the basis of a Lie ring. The list of torsion moduli of its basis elements is returned.
Example

gap> T:= EmptySCTable(3, 0, "antisymmetric");;
gap> SetEntrySCTable(T, 1, 2, [1,3]);
gap> K:= LieRingByStructureConstants([3,6,3], T);
<Lie ring with 3 generators>
gap> Torsion(Basis(K));
[3, 6, 3]

2.3.4 Coefficients

. Coefficients(B, elm) (operation)

Here B is the basis of a Lie ring, and elm is an element of the same Lie ring. The coefficients of
elm with respect to B are returned.

Example
gap> L:= FreeLieRing(Integers, ["x","y"]);; x:= L.1;; y:= L.2;;
gap> rr:=[((y*x)*x)*x-6*(y*x)*y, 3*((((y*x)*x)*x)*x)*x-20*(((y*x)*x)*x)*y];;
gap> K:= FpLieRing(L, rr : maxdeg:= 6);;
gap> C:=LieCentre(K);
<Lie ring with 9 generators>
gap> Coefficients(Basis(K), Basis(C)[6]);
[5, 5, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0]
gap> Coefficients(Basis(C), Basis(C)[6]);
[0, 0, 0, 0, 0, 1, 0, 0, 0]

LieRing 10

2.3.5 SubLieRing

. SubLieRing(L, gens[, string]) (operation)

Here L is a Lie ring, and gens a list of elements of L . This function constructs the subring
generated by the elements in gens . If these elements are known to form a basis of the subalgebra,
then as a third argument the string "basis" can be added. That makes the execution of the function
a lot faster.

This function depends on hermite and Smith normal form computations. Therefore in practice,
for bigger inputs, it can be slow.

Example
gap> L:= FreeLieRing(Integers, ["x","y"]);;
gap> x:= L.1;; y:= L.2;;
gap> rr:=[((y*x)*x)*x-6*(y*x)*y, 3*((((y*x)*x)*x)*x)*x-20*(((y*x)*x)*x)*y];;
gap> K:= FpLieRing(L, rr : maxdeg:= 8);
<Lie ring with 41 generators>
gap> b:= Basis(K);;
gap> M:= SubLieRing(K, [b[30], b[40]]);
<Lie ring with 6 generators>
gap> Torsion(Basis(M));
[3, 6, 6, 12, 360, 0]
gap> Basis(M)[2];
3*v_2+2*v_3+2*v_10+4*v_12+4*v_13+5*v_14+v_15+3*v_17+3*v_18+6*v_20+10*v_22+6*v_
24+6*v_25+10*v_26+4*v_27+18*v_28+30*v_29+60*v_30+360*v_31+5040*v_32

2.3.6 LieRingIdeal

. LieRingIdeal(L, gens[, string]) (operation)

This is the same as SubLieRing except that the output is an ideal (on the level of data structures
that is the same as a Lie subring).

2.3.7 NaturalHomomorphismByIdeal

. NaturalHomomorphismByIdeal(L, I) (operation)

Here L is a Lie ring, and I an ideal of L . This function constructs the canonical projection of L
on the quotient of L by I .

We remark that it is not checked whether I is an ideal or not. if I is just a subalgebra, then nothing
is guaranteed about the result of this function.

Also this function depends on Smith normal form computations; therefore it can be slow on bigger
inputs.

Example
gap> L:= FreeLieRing(Integers, ["x","y"]);;
gap> x:= L.1;; y:= L.2;;
gap> rr:=[((y*x)*x)*x-6*(y*x)*y, 3*((((y*x)*x)*x)*x)*x-20*(((y*x)*x)*x)*y];;
gap> K:= FpLieRing(L, rr : maxdeg:= 8);;
gap> b:= Basis(K);;
gap> I:= LieRingIdeal(K, [b[29]]);
<Lie ring with 23 generators>

LieRing 11

gap> f:= NaturalHomomorphismByIdeal(K, I);;
gap> M:= Range(f);
<Lie ring with 27 generators>
gap> Torsion(Basis(M));
[2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6, 6, 12, 12, 12, 120, 720, 10080, 0, 0, 0,

0, 0, 0, 0, 0, 0]
gap> Image(f, b[30]);
v_16+716*v_17
gap> PreImagesRepresentative(f, Basis(M)[10]);
4*v_2+4*v_3+4*v_4+4*v_5+5*v_6+v_7+5*v_8+v_9+5*v_10+v_11+5*v_12+v_13+5*v_14+v_
24+v_25+11*v_26+v_29+10*v_30+100*v_31

2.3.8 LieLowerCentralSeries

. LieLowerCentralSeries(L) (operation)

Here L is a Lie ring. Its lower central series is returned.
This repeatedly constructs ideals of L ; therefore also this function can be rather slow on bigger

inputs.
Example

gap> L:= FreeLieRing(Integers, ["x","y"]);; x:= L.1;; y:= L.2;;
gap> rr:=[((y*x)*x)*x-6*(y*x)*y, 3*((((y*x)*x)*x)*x)*x-20*(((y*x)*x)*x)*y];;
gap> K:= FpLieRing(L, rr : maxdeg:= 7);;
gap> LieLowerCentralSeries(K);
[<Lie ring with 26 generators>, <Lie ring with 24 generators>,

<Lie ring with 23 generators>, <Lie ring with 22 generators>,
<Lie ring with 21 generators>, <Lie ring with 19 generators>,
<Lie ring with 16 generators>, <Lie ring with 0 generators>]

2.3.9 LieLowerPCentralSeries

. LieLowerPCentralSeries(L, p) (operation)

Here L is a Lie ring, and p is a prime. The lower p -central series of L is returned. This is the
series where the Lk+1 is generated by [L,Lk] and pLk. Note that this may not be a finite series, if L is
not of exponent pn (as abelian group). The function does not check this; if the series is infinite, then
it will loop forever.

This repeatedly constructs ideals of L ; therefore also this function can be rather slow on bigger
inputs.

Example
gap> L:= FreeLieRing(Integers, ["x","y"]);; x:= L.1;; y:= L.2;;
gap> rr:=[((y*x)*x)*x-7*(y*x)*y, 7*((((y*x)*x)*x)*x)*x-49*(((y*x)*x)*x)*y,
> 7*x, 49*y];;
gap> K:= FpLieRing(L, rr : maxdeg:= 5);;
gap> LieLowerPCentralSeries(K,7);
[<Lie ring with 11 generators>, <Lie ring with 10 generators>,

<Lie ring with 8 generators>, <Lie ring with 6 generators>,
<Lie ring with 4 generators>, <Lie ring with 0 generators>]

LieRing 12

2.3.10 LieCentre

. LieCentre(L) (operation)

Here L is a Lie ring. Its centre is returned.
Example

gap> L:= FreeLieRing(Integers, ["x","y"]);; x:= L.1;; y:= L.2;;
gap> rr:=[((y*x)*x)*x-6*(y*x)*y, 3*((((y*x)*x)*x)*x)*x-20*(((y*x)*x)*x)*y];;
gap> K:= FpLieRing(L, rr : maxdeg:= 7);;
gap> LieCentre(K);
<Lie ring with 16 generators>
gap> Torsion(Basis(K));
[6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 12, 12, 12, 12, 360, 5040, 0, 0, 0, 0,

0, 0, 0, 0]

2.3.11 TensorWithField

. TensorWithField(L, F) (operation)

Here L is a Lie ring, and F is a field. This function returns the Lie algebra that is obtained by
tensoring L with F .

Example
gap> T:= EmptySCTable(3, 0, "antisymmetric");;
gap> SetEntrySCTable(T, 1, 2, [1,3]);
gap> K:= LieRingByStructureConstants([3,6,3], T);;
gap> TensorWithField(K, GF(3));
<Lie algebra of dimension 3 over GF(3)>
gap> TensorWithField(K, GF(2));
<Lie algebra of dimension 1 over GF(2)>
gap> TensorWithField(K, GF(5));
<Lie algebra over GF(5), with 0 generators>

2.4 The Lazard correspondence

By the Lazard correspondence we can put a Lie ring structure on a p-group of class < p. Conversely,
we can define a group structure on a nilpotent Lie ring of order pn and class < p. The package contains
functions for doing this effectively. However, we do not work with a single object having both the
structure of a p-group and a Lie ring. Rather we define two objects, a p-group and a Lie ring, along
with bijections between the two. Our programs use the BCH-formula and its inverses, that have been
stored in a file, truncated at weight 14. This means that currently the package is able to deal with
groups and algebras up to class 14. The underlying algorithms have been described in [CdGVL11]

2.4.1 PGroupToLieRing

. PGroupToLieRing(G) (attribute)

Here G is a p-group of class < p. This function returns a record with four components: pgroup
(the group G), liering (the corresponding Lie ring), GtoL (a function mapping elements of the group

LieRing 13

to elements of the Lie ring), LtoG (a function mapping elements of the Lie ring to elements of the
group).

Example
gap> F := FreeGroup(IsSyllableWordsFamily,"a","b","c","d", "e", "f", "g");;
gap> a := F.1;; b := F.2;; c := F.3;; d := F.4;; e := F.5;; f := F.6;; g:=F.7;;
gap> rels := [a^13, b^13/g, c^13, d^13, e^13, f^13, g^13,
> Comm(b,a)/c, Comm(c,a)/d, Comm(d,a)/e, Comm(e,a)/f, Comm(f,a), Comm(g,a),
> Comm(c,b)/(g^11), Comm(d,b)/g, Comm(e,b)/g, Comm(g,b), Comm(d,c)/(g^12),
> Comm(e,c), Comm(f,c), Comm(g,c), Comm(e,d), Comm(f,d), Comm(g,d), Comm(f,e),
> Comm(g,e), Comm(g,f)];;
gap> G := PcGroupFpGroup(F/rels);
<pc group of size 62748517 with 7 generators>
gap> r:= PGroupToLieRing(G);
rec(pgroup := <pc group of size 62748517 with 7 generators>,
liering := <Lie ring with 6 generators>,
GtoL := function(g0) ... end, LtoG := function(x0) ... end)
gap> f:= r.GtoL; h:= r.LtoG;
function(g0) ... end
function(x0) ... end
gap> L:= r.liering;
<Lie ring with 6 generators>
gap> b:= Basis(L);
Basis(<Lie ring with 6 generators>, [v_1, v_2, v_3, v_4, v_5, v_6])
gap> h(b[1]);
a^12*c*d^5*e^3*f^8*g^7
gap> f(h(b[1]));
v_1

2.4.2 LieRingToPGroup

. LieRingToPGroup(L) (attribute)

Here L is a nilpotent Lie ring of class < p and order pn. This function returns a record with four
components: pgroup (the p-group corresponding to L), liering (the Lie ring L), GtoL (a function
mapping elements of the group to elements of the Lie ring), LtoG (a function mapping elements of
the Lie ring to elements of the group).

Example
gap> L:= FreeLieRing(Integers, ["a","b","c"]);;
gap> a:= L.1;; b:= L.2;; c:= L.3;;
gap> rels:= [(b*a)*b, c*a, c*b-(b*a)*a, 7^2*a, 7*b-((b*a)*a)*a,
> 7*c-((b*a)*a)*a];;
gap> K:= FpLieRing(L, rels);
<Lie ring with 5 generators>
gap> r:= LieRingToPGroup(K);
rec(pgroup := <pc group of size 823543 with 7 generators>,
liering := <Lie ring with 5 generators>,
LtoG := function(x0) ... end, GtoL := function(g0) ... end)
gap> G:= r.pgroup;; f:= r.LtoG;; h:= r.GtoL;;
gap> u:= 5*Basis(K)[2]+9*Basis(K)[5];
5*v_2+9*v_5
gap> f(u);
f3^2*f4^2*f5^6*f7^3

LieRing 14

gap> h(f(u));
5*v_2+9*v_5

2.5 The database of n-Engel Lie rings

A Lie ring L is said to satisfy the n-Engel condition if for all x,y ∈ L we have (adx)n(y) = 0. The
package LieRing contains a small database of Lie rings that satisfy an n-Engel condition. They have
been computed with the algorithms described in [CdG07] and [CdG09].

Currently the database contains the "freeest" (or "largest") n-Engel Lie rings with k generators for
(n,k) = (3,2),(3,3),(3,4),(4,2),(4,3).

2.5.1 SmallNEngelLieRing

. SmallNEngelLieRing(n, k) (operation)

This returns the biggest n -Engel Lie ring with k generators, for the values of n,k indicated above.
For other values an error is raised.

Example
gap> L:= SmallNEngelLieRing(4, 3);
<Lie ring with 133 generators>
gap> x:= 10*Basis(L)[1]+7*Basis(L)[10]+19*Basis(L)[89];
7*v_10+19*v_89
gap> ForAll(Basis(L), y -> IsZero(x*(x*(x*(x*y)))));
true
gap> K:= TensorWithField(L, GF(3));
<Lie algebra of dimension 83 over GF(3)>
gap> x:= Random(K);;
gap> ForAll(Basis(K), y -> IsZero(x*(x*(x*(x*y)))));
true

References

[CdG07] Serena Cicalò and Willem de Graaf. Non-associative Gröbner bases, finitely-presented
Lie rings and the Engel condition. In ISSAC 2007, pages 100–107. ACM, New York,
2007. 5, 8, 14

[CdG09] Serena Cicalò and Willem A. de Graaf. Non-associative Gröbner bases, finitely-
presented Lie rings and the Engel condition. II. J. Symbolic Comput., 44(7):786–800,
2009. 5, 8, 14

[CdGVL11] Serena Cicalò, Willem A. de Graaf, and Michael Vaughan-Lee. An effective version of
the Lazard correspondence. submitted, 2011. 5, 12

[Khu98] E. I. Khukhro. p-automorphisms of finite p-groups, volume 246 of London Mathemati-
cal Society Lecture Note Series. Cambridge University Press, Cambridge, 1998. 5

15

Index

Basis, 8

Coefficients, 9

Degree, 7

FpLieAlgebra, 8
FpLieRing, 7
FreeLieRing, 6

IsLieRing, 7

LieCentre, 12
LieLowerCentralSeries, 11
LieLowerPCentralSeries, 11
LieRingByStructureConstants, 7
LieRingIdeal, 10
LieRingToPGroup, 13

NaturalHomomorphismByIdeal, 10

PGroupToLieRing, 12

SmallNEngelLieRing, 14
StructureConstantsTable, 9
SubLieRing, 10

TensorWithField, 12
Torsion, 9

16

	Introduction
	Preliminaries
	The free Lie ring
	The Lazard correspondence

	The functions
	The free Lie ring
	 Creating Lie rings
	 Working with Lie rings
	The Lazard correspondence
	The database of n-Engel Lie rings

	References
	Index

