Goto Chapter: Top 1 2 3 4 5 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

References

[CM93] Collingwood, D. H. and McGovern, W. M., Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Co., Van Nostrand Reinhold Mathematics Series, New York (1993).

[dG11] de Graaf, W. A., Computing representatives of nilpotent orbits of θ-groups, J. Symbolic Comput., 46 (2011), 438--458.

[GVY12] de Graaf, W. A., Vinberg, E. B. and Yakimova, O. S., An effective method to compute closure ordering for nilpotent orbits of θ-representations, J. Algebra, 371 (2012), 38--62.

[Gra08] Graaf, W. A. d., Computing with nilpotent orbits in simple Lie algebras of exceptional type, LMS J. Comput. Math., 11 (2008), 280-297 (electronic).

[Gra11] Graaf, W. A. d., Constructing semisimple subalgebras of semisimple Lie algebras, J. Algebra, 325 (1) (2011), 416--430.

[GE09] Graaf, W. A. d. and Elashvili, A. G., Induced nilpotent orbits of the simple Lie algebras of exceptional type, Georgian Mathematical Journal, 16 (2) (2009), 257-278
({\tt arXiv:0905.2743v1}[math.RT]).

[Hel78] Helgason, S., Differential geometry, Lie groups, and symmetric spaces, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], Pure and Applied Mathematics, 80, New York (1978).

[Hes79] Hesselink, W. H., Desingularizations of varieties of nullforms, Invent. Math., 55 (2) (1979), 141--163.

[Pop03] Popov, V. L., The cone of Hilbert null forms, Tr. Mat. Inst. Steklova, 241 (Teor. Chisel, Algebra i Algebr. Geom.) (2003), 192--209
(English translation in: {\em Proc. Steklov Inst. Math.} 241 (2003), no. 1, 177--194).

[Vin75] Vinberg, E. B., The classification of nilpotent elements of graded Lie algebras, Dokl. Akad. Nauk SSSR, 225 (4) (1975), 745-748.

[Vin76] Vinberg, E. B., The Weyl group of a graded Lie algebra, Izv. Akad. Nauk SSSR Ser. Mat., 40 (3) (1976), 488-526, 709
(English translation: Math. USSR-Izv. 10, 463-495 (1976)).

[Vin79] Vinberg, E. B., Classification of homogeneous nilpotent elements of a semisimple graded Lie algebra, Trudy Sem. Vektor. Tenzor. Anal. (19) (1979), 155-177
(English translation: Selecta Math. Sov. 6, 15-35 (1987)).

[VP89] Vinberg, {. B. and Popov, V. L., Invariant theory, in Algebraic geometry, 4 (Russian), Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Itogi Nauki i Tekhniki, Moscow (1989), 137--314
(English translation in: V. L. Popov and {\`E}. B. Vinberg, {\em Invariant Theory}, in: {\em Algebraic Geometry IV}, Encyclopedia of Mathematical Sciences, Vol. 55, Springer-Verlag, {\em Proc. Steklov Inst. Math.} 264 (2009), no. 1, 146--158).

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 Bib Ind

generated by GAPDoc2HTML