
SLA

Simple Lie Algebras

Version 1.2

November 2016

Willem de Graaf

Willem de Graaf Email: degraaf@science.unitn.it
Homepage: http://www.science.unitn.it/~degraaf/
Address: Dipartimento di Matematica

Via Sommarive 14
I-38050 Povo (Trento)
Italy

mailto://degraaf@science.unitn.it
http://www.science.unitn.it/~degraaf/

SLA 2

Abstract
This package provides functions for computing with various aspects of the theory of simple Lie algebras in
characteristic zero.

Copyright

© 2016 Willem de Graaf

Contents

1 Introduction 4

2 Auxiliary Functions 5
2.1 Root Systems . 5
2.2 Lie Algebras and Their Modules . 6

3 Nilpotent Orbits 9
3.1 The functions . 10

4 Finite Order Automorphisms and θ -Groups 14
4.1 The functions . 14

5 Semisimple Subalgebras of Semisimple Lie Algebras 20
5.1 Branching . 20
5.2 Constructing Semisimple Subalgebras . 21

References 26

Index 27

3

Chapter 1

Introduction

This package is a collection of functions that I wrote for various research projects (e.g., [Gra08],
[dG11], [GE09], [Gra11], [dGVY12]). The reason to collect them in a package is to avoid them
getting lost. Secondly, I believe that the functions may be of wider interest.

Apart from this one, this manual has four chapters. The second describes various functions that did
not fit in any of the other chapters. They vary from short utility functions to functions implementing
rather complex algorithms. The remaining three chapters are all devoted to a particular area.

The third chapter contains (descriptions of) functions for computing with the classification of the
nilpotent orbits in simple Lie algebras. There are functions for creating the orbits and for computing
representatives. We refer to [CM93] for an overview of the theory of nilpotent orbits in simple Lie
algebras.

The fourth chapter is dedicated to finite order automorphisms of the simple Lie algebras and the
corresponding θ -groups. The finite order automorphisms have been classified by Kac, up to conju-
gacy in the automorphism group. For the background on this we refer to [Hel78]. The classification
is described in terms of so-called Kac diagrams. The package contains a function for creating all
automorphisms of a given simple Lie algebra, of a given finite order.

The eigenspaces of an automorphism of finite order of a simple Lie algebra form a grading of that
Lie algebra. Moreover, the 0-component is a reductive subalgebra, acting on the 1-component. The
0-component corresponds to a reductive reductive group, also acting on the 1-component. This group
(with its action) is called a θ -group. It was introduced and studied in the 70-s by Vinberg ([Vin75] ,
[Vin76], [Vin79]) The package has a function for listing the nilpotent orbits of this group.

The fifth chapter has functions for working with semisimple subalgebras of semisimple Lie alge-
bras. The package contains a database of semisimple subalgebras of the simple subalgebras of ranks
up to 8. Moreover, there are functions for computing the semisimple subalgebras of semisimple Lie
algebras on the fly. Finally, there are some functions for computing branching rules.

We remark that the package needs the package QuaGroup.

4

Chapter 2

Auxiliary Functions

This chapter contains the description of some functions that do not fit in any other chapter.

2.1 Root Systems

2.1.1 ExtendedCartanMatrix

. ExtendedCartanMatrix(R) (operation)

Here R is a root system. This function returns the extended Cartan matrix of R . That is the Cartan
matrix correponding to the lowest root (coming first), and the simple roots of R .

The output is a record with components ECM (the extended Cartan matrix) and labels (the labels
of the corresponding Dynkin diagram; they are the integer coefficients of a linear dependency of the
roots corresponding to the nodes).

Example
gap> R:= RootSystem("F",4);;
gap> ExtendedCartanMatrix(R);
rec(ECM := [[2, -1, 0, 0, 0], [-1, 2, -1, 0, 0], [0, -1, 2, -2, 0],

[0, 0, -1, 2, -1], [0, 0, 0, -1, 2]], labels := [1, 2, 3, 4, 2])

2.1.2 CartanType

. CartanType(C) (operation)

Here C is a Cartan matrix (i.e., an integer matrix with 2-s on the diagonal, non-positive entries
otherwise, and there exists a diagonal integer matrix D such that CD is a positive definite symmetric
matrix). This function returns a record with two components: types , a list containing the types of
the simple components of the corresponding root system, and enumeration , a standard enumeration
of the vertices of the Dynkin diagram of C . So this can be used to construct isomorphisms of root
systems.

Example
gap> C:= [[2,0,-3,0],[0,2,0,-1],[-1,0,2,0],[0,-1,0,2]];
[[2, 0, -3, 0], [0, 2, 0, -1], [-1, 0, 2, 0], [0, -1, 0, 2]]
gap> CartanType(C);
rec(types := [["G", 2], ["A", 2]],

enumeration := [[3, 1], [2, 4]])

5

SLA 6

2.1.3 WeylTransversal

. WeylTransversal(R, inds) (operation)

. WeylTransversal(R, roots) (operation)

Here R is a root system, and inds a list of indices of positive roots of R that form a set of simple
roots of a root subsystem of R (the system does not check this). Here an index of a positive root is its
position in the list PositiveRootsNF(R) .

This function returns a list of shortest representatives of the right cosets of the corresponding Weyl
subgroup of the Weyl group of R . The elements of the Weyl group are given as reduced expressions.

In the second form rts is a list of roots of R , that form a set of simple roots of a root subsystem
of R (again, this is not checked). In this form the roots so not have to be positive. They have to be
represented with respect to the basis of simple roots, i.e., they are elements of PositiveRootsNF(R)
or of NegativeRootsNF(R) .

Example
gap> R:= RootSystem("A",3);;
gap> WeylTransversal(R, [2,6]);
[[], [1], [3], [1, 2], [1, 3], [3, 2]]
gap> R:= RootSystem("E",8);;
gap> p:= PositiveRootsNF(R);;
gap> a:= WeylTransversal(R, [p[1],p[3],p[4],p[5],p[6],p[7],p[8],-p[120]]);;
gap> Length(a);
1920

2.1.4 SizeOfWeylGroup

. SizeOfWeylGroup(R) (operation)

. SizeOfWeylGroup(type) (operation)

. SizeOfWeylGroup(X, n) (operation)

In the first from R is a root system. In the second form type is a list of lists describing the type
of a root system. For example: [["A",3],["B",5],["G",2]] . In the third form X is a letter (i.e.,
a string) and n a positive integer, so that Xn is the type of a root system. In all cases the number of
elements of the Weyl group is returned.

Example
gap> R:= RootSystem(SimpleLieAlgebra("E",6,Rationals));;
gap> SizeOfWeylGroup(R);
51840
gap> SizeOfWeylGroup([["E",6]]);
51840
gap> SizeOfWeylGroup("E", 6);
51840

2.2 Lie Algebras and Their Modules

2.2.1 IsomorphismOfSemisimpleLieAlgebras

. IsomorphismOfSemisimpleLieAlgebras(L1, L2) (operation)

SLA 7

Here L1 and L2 are two semisimple Lie algebras that are known to be isomorphic (i.e., they have
the same type). This function returns an isomorphism.

2.2.2 AdmissibleLattice

. AdmissibleLattice(V) (operation)

Here V is a simple module over a semisimple Lie algebra. This function returns a basis of V that
spans an admissible lattice in V . This means that for a root vector x of the acting Lie algebra the
matrix exp(mx) is integral, where mx denotes the matrix of x relative to the admissible lattice.

Example
gap> L:= SimpleLieAlgebra("G",2,Rationals);;
gap> V:= HighestWeightModule(L, [2,0]);
<27-dimensional left-module over <Lie algebra of dimension 14 over Rationals>>
gap> B:=AdmissibleLattice(V);;
gap> x:= L.1;
v.1
gap> mx:= MatrixOfAction(B, x);;
gap> IsZero(mx^4); IsZero(mx^5);
false
true
gap> exp:=Sum(List([0..4], i -> mx^i/Factorial(i)));;
gap> ForAll(Flat(exp), IsInt);
true

2.2.3 DirectSumDecomposition

. DirectSumDecomposition(V) (operation)

Here V is a module over a semisimple Lie algebra; this function computes a list of sub-modules
such that V is their direct sum.

Example
gap> L:= SimpleLieAlgebra("G",2,Rationals);;
gap> V:= HighestWeightModule(L, [1,0]);;
gap> W:= TensorProductOfAlgebraModules(V, V);
<49-dimensional left-module over <Lie algebra of dimension 14 over Rationals>>
gap> DirectSumDecomposition(W);
[<left-module over <Lie algebra of dimension 14 over Rationals>>,

<left-module over <Lie algebra of dimension 14 over Rationals>>,
<left-module over <Lie algebra of dimension 14 over Rationals>>,
<left-module over <Lie algebra of dimension 14 over Rationals>>]

gap> List(last, Dimension);
[14, 7, 1, 27]

2.2.4 CharacteristicsOfStrata

. CharacteristicsOfStrata(L, hw) (operation)

Here L is a semisimple Lie algebra over a field of characteristic 0. Secondly, hw is a dominant
weight, represented as a list of non-negative integers (where the ordering of the fundamantal weights

SLA 8

is given by the Cartan matrix of the root system of L). Let G denote the semisimple algebraic group
acting on the irreducible representation with highest weight hw . Hesselink ([Hes79]) defined a strat-
ification of the nullcone relative to the action of G. Popov and Vinberg ([VP89]) have described this
stratification in terms of characteristics, which are elements of a Cartan subalgebra of L . To each
characteristic there corresponds a stratum. This function is an implementation of an algorithm due to
Popov ([Pop03]), for computing the characteristics of the strata. It returns a list of two lists. The first
list contains the characteristics. The second list contains the dimensions of the corresponding strata.
If the highest weight hw defines the adjoint representation, then the characteristics of the strata are
exactly the characteristics of the nilpotent orbits in L . This means the following: let h be a character-
istic, then there are e, f in L such that the triple h,e, f satisfies the commutation relations of sl2, and
the elements e thus obtained are the representatives of the nilpotent G-orbits in L .

Example
gap> L:= SimpleLieAlgebra("G",2,Rationals);;
gap> L:= SimpleLieAlgebra("G",2,Rationals);;
gap> CharacteristicsOfStrata(L, [0,1]);
[[v.13+(2)*v.14, (2)*v.13+(3)*v.14, (2)*v.13+(4)*v.14, (6)*v.13+(10)*v.14],

[6, 8, 10, 12]]

Chapter 3

Nilpotent Orbits

This chapter contains functions for dealing with the nilpotent orbits of a semisimple Lie algebra
K under its adjoint group G. We refer to the book by Collingwood and McGovern, [CM93] (and
the references therein) for an account of the theory of nilpotent orbits. A nilpotent orbit has two
important attributes: the weighted Dynkin diagram, and an sl2-triple. The weighted Dynkin diagram
is represented by a list of integers in {0,1,2} of length equal to the rank of the Lie algebra. The i-th
position in this list correponds to the i-th node of the Dynkin diagram of the root system. The Dynkin
diagram of the root system is described by the Cartan matrix of the root system. Now in GAP this
Cartan matrix can be somewhat different from the more usual forms. This holds most particularly for
type F4, where the enumeration of the simple roots is rather different from the one usually found. So
when using the functions in this chapter one should keep this in mind.

Every nilpotent orbit has an sl2-triple, that is a triple (y,h,x) of elements of the simple Lie algebra
with [x,y] = h, [h,x] = 2x, [h,y] = −2y. The nilpotent orbit corresponding to this is the orbit of the
element x under the action of the adjoint group.

Let P be a parabolic subalgebra of K (i.e., generated by the Cartan subalgebra of K, all positive
root vectors, along with the negative simple root vectors corresponding to a given subset of the basis of
simple roots), L the corresponding Levi subalgebra (i.e., the reductive part of P), and N the nilradical
of P. Let OL be a nilpotent orbit in L. There exists a unique nilpotent orbit OK in K such that the
intersection of OK and OL +N is dense in the latter. In this situation OK is said to be induced from
OL. Nilpotent orbits in K which are not induced are said to be rigid.

Now consider the variety of all G-orbits in K of a given dimension d. The irreducible components
of this variety are called the sheets of K. Every sheet has a unique nilpotent orbit. Moreover this
nilpotent orbit is induced from an orbit OL, and OL is rigid in L. So the sheets are parametrised
by pairs (L,OL), where L is a Levi subalgebra, and OL a rigid nilpotent orbit in it. This data can
conveniently be given by a sheet diagram: this is the Dynkin diagram of K, were the nodes that do
not correspond to simple roots of L have label 2. So, leaving out the nodes with label 2, one obtains
the Dynkin diagram of L. The remaining labels in the sheet diagram then correspond to the weighted
Dynkin diagram of the nilpotent orbit OL. Since this orbit is rigid, its weighted Dynki diagram has
labels 0 or 1. From that it follows that one can recover L and OL from the sheet diagram. The rank of
a sheet is defined as the dimension of the centre of L, obviously that is equal to the number of 2’s in
the sheet diagram.

9

SLA 10

3.1 The functions

3.1.1 NilpotentOrbit

. NilpotentOrbit(L, wd) (operation)

Here L is a simple Lie algebra and wd a weighted Dynkin diagram (i.e., a list containing the
weights of the weighted Dynkin diagram, in the same order as the nodes of the Dynkin diagram of
the root system of L ; that order can be deduced from the Cartan matrix of the same root system).
The corresponding nilpotent orbit is returned. It is the responsibility of the user to make sure that the
weighted Dynkin diagram corresponds to a nilpotent orbit.

Example
gap> L:= SimpleLieAlgebra("E",6,Rationals);;
gap> o:= NilpotentOrbit(L, [1,2,0,0,0,1]);
<nilpotent orbit in Lie algebra of type E6>

3.1.2 NilpotentOrbits

. NilpotentOrbits(L) (attribute)

Here L is a semisimple Lie algebra. This function returns the list of all nilpotent orbits of L . If
L is simple of classical type, then the nilpotent orbits correpond to partitions (of n+ 1 for type An,
of 2n+ 1 for type Bn, of 2n for type Cn and of 2n for type Dn, see [CM93]). If L is of one of these
types then the orbits returned by this function have the attribute OrbitPartition set, which returns
the corresponding partition.

Example
gap> L:= SimpleLieAlgebra("E",6,Rationals);;
gap> orbs:= NilpotentOrbits(L);;
gap> orbs[10];
<nilpotent orbit in Lie algebra of type E6>
gap> Length(orbs);
20
gap> L:= SimpleLieAlgebra("B",4,Rationals);;
gap> orbs:= NilpotentOrbits(L);;
gap> OrbitPartition(orbs[10]);
[5, 2, 2]

3.1.3 WeightedDynkinDiagram

. WeightedDynkinDiagram(o) (attribute)

Here o is a nilpotent orbit; this function returns its weighted Dynkin diagram.

3.1.4 WeightedDynkinDiagram

. WeightedDynkinDiagram(L, x) (method)

Here L is a semisimple Lie algebra, and x a nilpotent element. This function returns the weighted
Dynkin diagram of the orbit containing x .

SLA 11

Example
gap> L:= SimpleLieAlgebra("B",3,Rationals);;
gap> WeightedDynkinDiagram(L, L.1+L.9);
[2, 0, 0]
gap> L:= SimpleLieAlgebra("E",6,Rationals);;
gap> WeightedDynkinDiagram(L, L.1+L.6+L.20+2*L.32 : table:= true);
[0, 0, 0, 1, 0, 0]
gap> time;
2048
gap> WeightedDynkinDiagram(L, L.1+L.6+L.20+2*L.32 : table:= true);
[0, 0, 0, 1, 0, 0]
gap> time;
64

3.1.5 AmbientLieAlgebra

. AmbientLieAlgebra(o) (attribute)

Here o is a nilpotent orbit; this function returns the Lie algebra it lives in.

3.1.6 SemiSimpleType

. SemiSimpleType(o) (attribute)

Here o is a nilpotent orbit; this function returns the type of the Lie algebra it lives in.

3.1.7 SL2Triple

. SL2Triple(o) (attribute)

Here o is a nilpotent orbit; this function returns an sl_2-triple (y,h,x) corresponding to o . For the
exceptional types the x is as in the paper [Gra08]. For the classical types the x is computed on the fly.

Example
gap> L:= SimpleLieAlgebra("E",6,Rationals);;
gap> orbs:= NilpotentOrbits(L);;
gap> SL2Triple(orbs[10]);
[(4)*v.51+(3)*v.53+(3)*v.56+v.59, (4)*v.73+(6)*v.74+(8)*v.75+(11)*v.76+(

8)*v.77+(4)*v.78, v.15+v.17+v.20+v.23]

3.1.8 RandomSL2Triple

. RandomSL2Triple(o) (operation)

Here o is a nilpotent orbit; this function returns a random sl_2-triple (x,h,y) corresponding to o .
This means that every call (potentially) returns a different sl_2-triple.

Example
gap> L:= SimpleLieAlgebra("E",6,Rationals);;
gap> orbs:= NilpotentOrbits(L);;
gap> RandomSL2Triple(orbs[10]);
[(3)*v.49+(3)*v.50+v.51+(4)*v.59, (4)*v.73+(6)*v.74+(8)*v.75+(11)*v.76+(

SLA 12

8)*v.77+(4)*v.78, v.13+v.14+v.15+v.23]
gap> RandomSL2Triple(orbs[10]);
[(3)*v.50+(3)*v.53+v.54+(4)*v.57, (4)*v.73+(6)*v.74+(8)*v.75+(11)*v.76+(

8)*v.77+(4)*v.78, v.14+v.17+v.18+v.21]

3.1.9 SL2Grading

. SL2Grading(L, h) (operation)

Here L is a Lie algebra, and h is an element of it, such that there is an sl_2 triple of which
it is the Cartan element (the system does not check that). This function returns the grading of L in
eigenspaces of h . A list containing three lists is returned: the first list contains bases of the components
with degrees 1,2,3,... the second list has bases of the components with degrees -1,-2,-3,..., the last list
contains a basis of the zero component.

Example
gap> L:= SimpleLieAlgebra("F",4,Rationals);;
gap> orbs:= NilpotentOrbits(L);;
gap> sl2:= RandomSL2Triple(orbs[6]);
[v.36+(2)*v.40+(2)*v.42, (3)*v.49+(4)*v.50+(6)*v.51+(8)*v.52, v.12+v.16+v.18
]

gap> SL2Grading(L, sl2[2]);
[[[v.3, v.5, v.7, v.8, v.9, v.11],

[v.10, v.12, v.13, v.14, v.15, v.16, v.17, v.18, v.20],
[v.19, v.21], [v.22, v.23, v.24]],

[[v.27, v.29, v.31, v.32, v.33, v.35],
[v.34, v.36, v.37, v.38, v.39, v.40, v.41, v.42, v.44],
[v.43, v.45], [v.46, v.47, v.48]],

[v.1, v.2, v.4, v.6, v.25, v.26, v.28, v.30, v.49, v.50, v.51, v.52]]

3.1.10 SL2Triple

. SL2Triple(L, x) (operation)

Here L is a simple Lie algebra, and x is a nilpotent element of it. A list of three elements is
returned, forming an sl_2-triple, the last of which is equal to x .

Example
gap> L:= SimpleLieAlgebra("F",4,Rationals);;
gap> SL2Triple(L, L.1+L.20);
[v.16+v.25, v.49, v.1+v.20]

3.1.11 InducedNilpotentOrbits

. InducedNilpotentOrbits(L) (attribute)

Here L is a simple Lie algebra. This function returns the list of all induced nilpotent orbits of L . An
induced orbit is given by a record containing two fields: sheetdiag , which is a diagram describing
the Levi subalgebra and the rigid nilpotent orbit in it from which the nilpotent orbit is induced, and
norbit , which is the induced nilpotent orbit in L . The sheet diagram is a labeled Dynkin diagram,
and the labels are 0, 1 or 2. If we take the Dynkin diagram and erase the nodes which have label

SLA 13

2 then we obtain the Dynkin diagram of the Levi subalgebra. Moreover, the labels 0 and 1 on that
diagram give the rigid nilpotent orbit in the Levi subalgebra. From this pair the nilpotent orbit norbit
is induced. It may happen that the same nilpotent orbit is induced from more pairs consisting of a Levi
subalgebra and a rigid nilpotent orbit in it. In that case the same nilpotent orbit appears more than
once in the list, each time with a different sheet diagram attached. This function works for the Lie
algebras of exceptional type and for the Lie algebras of type A regardless of the rank. It works for the
Lie algebras of the other types up to rank 10.

Example
gap> L:= SimpleLieAlgebra("E",6,Rationals);;
gap> s:= InducedNilpotentOrbits(L);;
gap> s[19];
rec(norbit := <nilpotent orbit in Lie algebra of type E6>,
sheetdiag := [2, 0, 0, 1, 0, 2])
gap> WeightedDynkinDiagram(s[19].norbit);
[0, 0, 0, 2, 0, 0]

3.1.12 RigidNilpotentOrbits

. RigidNilpotentOrbits(L) (attribute)

Here L is a simple Lie algebra. This function returns the list of all rigid nilpotent orbits of L ,
except the zero orbit (which is always rigid).

Example
gap> L:= SimpleLieAlgebra("E",6,Rationals);;
gap> RigidNilpotentOrbits(L);
[<nilpotent orbit in Lie algebra of type E6>,

<nilpotent orbit in Lie algebra of type E6>,
<nilpotent orbit in Lie algebra of type E6>]

gap> List(last, WeightedDynkinDiagram);
[[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 1]]

Chapter 4

Finite Order Automorphisms and
θ -Groups

This chapter contains functions for creating and working with finite order automorphisms of simple
Lie algebras (or, more precisely, representatives of the conjugacy classes of such automorphisms).

NB: such automorphisms are not created for a given Lie algebra, but the Lie algebra is constructed
at the same time as the automorphism. This because the base field may need extending (it needs
enough roots of unity).

As noted above the functions give representatives of the conjugacy classes, in the automorphism
group of the underlying Lie algebra, of finite order automorphisms. Such conjugacy classes are clas-
sified in terms of Kac diagrams. Roughly, this works as follows. A finite order automorphism f
corresponds to a diagram automorphism of order d = 1,2,3. The inner automorphisms correspond to
a diagram automorphism of order 1, the outer automorphisms to a diagram automorphism of order 2
or 3. Let L0,L1 denote the eigenspaces of the underlying Lie algebra L, with respect to the diagram
automorphism, respectively corresponding to the eigenvalues 1 and w (where w is a primitive d-th
root of unity). (In case of d = 1, we have L0 = L, L1 = 0.) Then L0 is semisimple and we choose a
set of canonical generators of L0, denoted xi, yi, hi, for i = 1, . . . ,s. Moreover, L1 is an L0-module.
Let x0 be the lowest weight vector in L1. (If d = 1 then x0 will be the lowest (negative) root vector.)
Let αi for i = 0, . . . ,s be the roots corresponding to xi, with respect to the subalgebra spanned by the
hi. Let C be the Cartan matrix of these roots. The rows of C are linearly dependent. The Dynkin
diagram of C is labeled with integers ai with greatest common divisor 1, that form the coefficients
of a linear dependency of the rows of C. Furthermore, the xi generate L and the automorphism f is
described by f (xi) = vsixi, where the non-negative integers si have greatest common divisor 1, and are
such that m = d ∑aisi is the order of f , and where v is a primitive m-th order root of unity. Now the
Kac diagram of the automorphism f is the Dynkin diagram of C, labelled with the labels si.

4.1 The functions

4.1.1 FiniteOrderInnerAutomorphisms

. FiniteOrderInnerAutomorphisms(type, rank, m) (operation)

Let L be the simple Lie algebra of type type and rank rank . The function returns representatives
of the conjugacy classes of inner automorphisms of L of order m . As noted also in the introduction to

14

SLA 15

this chapter, this function constructs the Lie algebra as well as the automorphisms (and the Lie algebra
is accessible through the source of these automorphisms). The reason for this is that depending on the
order of the automorphisms, the base field needs certain roots of unity.

Example
gap> f:= FiniteOrderInnerAutomorphisms("E",6,3);
[[v.72, v.1, v.2, v.3, v.4, v.5, v.6] -> [(E(3))*v.72, (E(3)^2)*v.1, v.2,

v.3, v.4, v.5, v.6], [v.72, v.1, v.2, v.3, v.4, v.5, v.6] ->
[v.72, (E(3))*v.1, (E(3))*v.2, v.3, v.4, v.5, v.6],

[v.72, v.1, v.2, v.3, v.4, v.5, v.6] -> [(E(3))*v.72, v.1, (E(3))*v.2,
v.3, v.4, v.5, v.6], [v.72, v.1, v.2, v.3, v.4, v.5, v.6] ->

[v.72, v.1, v.2, v.3, (E(3))*v.4, v.5, v.6],
[v.72, v.1, v.2, v.3, v.4, v.5, v.6] -> [(E(3))*v.72, (E(3))*v.1, v.2,

v.3, v.4, v.5, (E(3))*v.6]]
gap> Source(f[1]);
<Lie algebra of dimension 78 over CF(3)>

4.1.2 FiniteOrderOuterAutomorphisms

. FiniteOrderOuterAutomorphisms(type, rank, m, d) (operation)

Let L be the simple Lie algebra of type type and rank rank . The function returns representa-
tives of the conjugacy classes of outer automorphisms of L of order m , corresponding to a diagram
automorphism of order d .

4.1.3 Order

. Order(f) (attribute)

Here f is a finite order automorphism. This returns its order.

4.1.4 KacDiagram

. KacDiagram(f) (attribute)

Here f is a finite order automorphism. This returns its Kac diagram. This is a record with three
components: CM , which is the Cartan matrix of the Dynkin diagram, labels the integers with gcd
equal to 1 that are the coefficients of a linear dependency of the rows of CM , and weights that are the
integers si that define the automorphism.

Example
gap> f:= FiniteOrderOuterAutomorphisms("A", 5, 4, 2);;
gap> r:= KacDiagram(f[1]);
rec(

CM := [[2, 0, -1, 0], [0, 2, -1, 0], [-1, -1, 2, -1], [0, 0, -2, 2
]], labels := [1, 1, 2, 1], weights := [1, 1, 0, 0])

gap> r.labels*r.CM;
[0, 0, 0, 0]

SLA 16

4.1.5 Grading

. Grading(f) (attribute)

Here f is a finite order automorphism of order m. This returns a list of length m. The i-th element
contains a basis of the eigenspace of f with eigenvalue vi, where v is a primitive m-th root of unity
(i.e., v=E(m)).

4.1.6 NilpotentOrbitsOfThetaRepresentation

. NilpotentOrbitsOfThetaRepresentation(f) (operation)

. NilpotentOrbitsOfThetaRepresentation(L, d) (operation)

Here f is an automorphism of a simple Lie algebra L of order m. Then f defines a grading on
L. Let the homogeneous components of this grading be denoted Li for i = 0, ...,m−1. Let G0 be the
group corresponding to L0 (i.e., the connected subgroup of the adjoint group of L with Lie algebra
L0). This function computes representatives for the nilpotent orbits of G0 acting on L1. The output is
a list of triples. Each triple is an sl2-triple (y,h,x), with h ∈ L0, x ∈ L1 (the representative of the orbit),
and y ∈ Lm−1. The element h also lies in the dominant Weyl chamber of a Cartan subalgebra of L0.
Finally we note that all elements lie in Source(f) .

It is possible to add an extra optional argument: method:= "Carrier" , or
method:= "WeylOrbit" . Then a method based on finding carrier algebras (respectively, computing
orbits under the Weyl group) is chosen. If no optional argument is chosen, then the system will make
its own choice. (In the case of outer automorphisms, currently the only available method is the one
based on orbits of the Weyl group.) The method based on carrier algebras tends to work better for the
higher order automorphisms.

This function prints some information on what it is doing to the info class InfoSLA . In order to
suppress these messages one can do SetInfoLevel(InfoSLA, 1); .

In the two-argument version, the first argument L has to be a semisimple Lie algebra, and the
second argument d a list of non-negative integers. Then L is Z-graded by giving the root space
corresponding to the i-th simple root the degree d[i] . Apart from this the function works the same
in this case as in the one-argument version.

Example
gap> f:= FiniteOrderInnerAutomorphisms("D", 5, 3);;
gap> s:= NilpotentOrbitsOfThetaRepresentation(f[2] : method:= "Carrier");; time;
#I Selected carrier algebra method.
#I Constructed 123 root bases of possible flat subalgebras, now checking them...
#I Obtained 30 Cartan elements, weeding out equivalent copies...
776
gap> Length(s);
10
gap> s[4];
[v.14+v.15+v.38, (-2)*v.41+(-1)*v.42, v.18+v.34+v.35]
gap> L:= SimpleLieAlgebra("E",6,Rationals);;
gap> NilpotentOrbitsOfThetaRepresentation(L, [0,1,0,0,0,0]);
#I Selected Weyl orbit method.
#I Constructed a Weyl transversal of 72 elements.
#I Obtained 5 Cartan elements, weeding out equivalent copies...
[[v.65+v.66+v.67, (2)*v.73+(3)*v.74+(4)*v.75+(6)*v.76+(4)*v.77+(2)*v.78,

v.29+v.30+v.31],

SLA 17

[(2)*v.55+(2)*v.66, (2)*v.73+(4)*v.74+(4)*v.75+(6)*v.76+(4)*v.77+(2)*v.78,
v.19+v.30],

[v.63+v.71, (2)*v.73+(2)*v.74+(3)*v.75+(4)*v.76+(3)*v.77+(2)*v.78,
v.27+v.35], [v.71, v.73+v.74+(2)*v.75+(3)*v.76+(2)*v.77+v.78, v.35]]

4.1.7 ClosureDiagram

. ClosureDiagram(L, f, s) (operation)

. ClosureDiagram(L, d, s) (operation)

Here f is an automorphism of a simple Lie algebra L of order m, and s a list of sl2-triples (y,h,x),
with h ∈ L0, x ∈ L1 (for instance as computed by the previous function), corresponding to nilpotent
orbits in L1.

This function computes the Hasse diagram of the closures of the nilpotent orbits. The output is
a record with two components: diag (which is a list of 2-tuples; a tuple [i, j] means that orbit
number i is contained in the closure of orbit number j), and sl2 (the same list of sl2-triples, but sorted
according to decreasing dimension, i.e., the highest dimensional orbit comes first). The numbering
used in the tuples in diag corresponds to the order in which the orbits appear in the component sl2 .

During the execution of the program a message is printed. This message either states that all in-
clusions have been proved, or lists a number of possible inclusions, for which it could not be proved
with absolute certainty that these do not occur. This is due to the randomised nature of the algorithm:
if the algorithm finds an inclusion, then this inclusion is certain. However, sometimes a non-inclusion
can only be estabished by random methods, which means that it is possible that there is an inclu-
sion without the program finding it. (This however, is very unlikely, and in practice almost never
happens.) Now showing that a non-inclusion really is a non-inclusion can be done by computing
the ranks of certain matrices with polynomial entries. In principle GAP can do this; however, the
system certainly is not very strong at it. Therefore, as optional argument a filename can be given, by
filenm:= "file.m" . If this argument is present the program prints a Magma script in the file, which
can be loaded directly into the computer algebra system Magma. If the output is always true, then all
non-inclusions are proved. If there are non non-inclusions to be proved, then the file is not written.

In the second version, the second argument d is a list of non-negative integers. Then L is Z-graded
by giving the root space corresponding to the i-th simple root the degree d[i] . Apart from this the
function works in the same way.

We note that the adjoint representation can be obtained by giving a d that eintirely consists of
zeros.

Example
gap> f:= FiniteOrderInnerAutomorphisms("E", 8, 8);;
gap> h:= f[8];;
gap> sl2:= NilpotentOrbitsOfThetaRepresentation(h);;
#I Selected carrier algebra method.
#I Constructed 2782 root bases of possible flat subalgebras, now checking them...
#I Obtained 58 Cartan elements, weeding out equivalent copies...
gap> time;
117792
gap> Length(sl2);
27
gap> L:= Source(h);;
gap> r:= ClosureDiagram(L, h, sl2);;
#I All (non-) inclusions proved!

SLA 18

gap> time;
329248
gap> r.diag;
[[2, 1], [3, 1], [4, 2], [4, 3], [5, 1], [6, 5], [7, 2], [7, 5],
[8, 4], [9, 3], [9, 6], [10, 6], [10, 7], [11, 4], [11, 7], [12, 7],
[13, 9], [13, 10], [13, 11], [14, 11], [14, 12], [15, 6], [16, 8],
[16, 11], [17, 13], [17, 16], [18, 13], [18, 15], [19, 10], [19, 12],
[19, 15], [20, 14], [20, 16], [21, 9], [21, 15], [22, 14], [22, 18],
[22, 19], [23, 18], [23, 21], [24, 17], [24, 18], [25, 20], [25, 22],
[25, 24], [26, 22], [26, 23], [27, 23], [27, 24]]
Now we do the adjoint representation of the Lie algebra of type F4:
gap> L:= SimpleLieAlgebra("F",4,Rationals);;
gap> o:= NilpotentOrbits(L);;
gap> sl2:= List(o, SL2Triple);;
gap> r:= ClosureDiagram(L, [0,0,0,0], sl2);;
#I All (non-) inclusions proved!
gap> r.diag;
[[2, 1], [3, 2], [4, 3], [5, 3], [6, 5], [6, 4], [7, 6], [8, 7],

[9, 7], [10, 9], [10, 8], [11, 8], [12, 10], [13, 12], [13, 11],
[14, 13], [15, 14]]

4.1.8 CarrierAlgebra

. CarrierAlgebra(L, f, e) (operation)

. CarrierAlgebra(L, d, e) (operation)

Here f is an automorphism of a simple Lie algebra L of order m, and e a nilpotent element of L1.
This function returns the carrier algebra of e . This is a Z-graded semisimple subalgebra K of L, such
that e lies in K1. For the precise definition we refer to [Vin79], [Vin75]. The output is given in the
form of a record, with three components: g0 , a basis of K0, gp a list containing bases of K1, K2 and
so on, and gn a list containing bases of K−1, K−2 and so on.

In the second version, the second argument d is a list of non-negative integers. Then L is Z-graded
by giving the root space corresponding to the i-th simple root the degree d[i] . Apart from this the
function works in the same way.

Example
gap> f:= FiniteOrderInnerAutomorphisms("F", 4, 5);;
gap> h:= f[4];;
gap> sl2:= NilpotentOrbitsOfThetaRepresentation(h);;
#I Selected Weyl orbit method.
#I Constructed a Weyl transversal of 144 elements.
#I Constructed 621 Cartan elements to be checked.
gap> L:= Source(h);
<Lie algebra of dimension 52 over CF(5)>
gap> r:=CarrierAlgebra(L, h, sl2[1][3]);
rec(g0 := [v.49+(2)*v.50+(2)*v.51+(3)*v.52, v.50+(1/2)*v.51+v.52],
gp := [[v.9, v.48], [v.45], [v.39]],
gn := [[v.24, v.33], [v.21], [v.15]])
gap> K:= Subalgebra(L, Concatenation(r.g0, Flat(r.gp), Flat(r.gn)));
<Lie algebra over CF(5), with 10 generators>
gap> SemiSimpleType(K);

SLA 19

"B2"

4.1.9 CartanSubspace

. CartanSubspace(f) (operation)

Here f is an automorphism of a simple Lie algebra L of order m. Then f defines a grading on
L. Let the homogeneous components of this grading be denoted Li for i = 0, ...,m−1. Let G0 be the
group corresponding to L0 (i.e., the connected subgroup of the adjoint group of L with Lie algebra
L0). This function computes a maximal subspace of L1 consisting of commuting semisimple elements.
(Such a subspace is called a Cartan subspace.)

Every semisimple orbit of G0 in L1 contains an element of a fixed Cartan subspace.
Example

gap> f:= FiniteOrderInnerAutomorphisms("A", 3, 3);;
gap> c:= CartanSubspace(f[3]);
<vector space of dimension 1 over CF(3)>
gap> BasisVectors(Basis(c));
[v.1+v.5+v.12]

Chapter 5

Semisimple Subalgebras of Semisimple
Lie Algebras

This chapter contains functions for dealing with semisimple subalgebras of semisimple Lie algebras.
There are functions for computing branching rules, for computing the regular subalgebras, and for
working with the database of semisimple subalgebras of the simple Lie algebras. This last database
contains the semisimple subalgebras of the simple Lie algebras of ranks up to 8. The semisimple
subalgebras are classified up to linear equivalence. (Two subalgebras are called linearly equivalent if
for every representation of the big algebra in the space V the images of the subalgebras are conjugate
under GL(V).)

5.1 Branching

5.1.1 ProjectionMatrix

. ProjectionMatrix(L, K) (operation)

Here L and K are semisimple Lie algebras with the following properties: K is contained in L ,
the Cartan subalgebra of L , as returned by CartanSubalgebra(L) is split (this is automatic if L
is created by the built in GAP function) and K has a Cartan subalgebra that is a subalgebra of the
Cartan subalgebra of L . We note that the function checks only the last property. The function returns
a matrix P such that if u is a weight of a L -module V , then P*u is a weight of V , when considered as
a K -module.

Example
gap> L:= SimpleLieAlgebra("E",7,Rationals);;
gap> K:= Subalgebra(L, [L.1,L.3,L.4,L.5,L.6,L.7,L.63,
> L.64,L.66,L.67,L.68,L.69,L.70,L.126]);;
gap> Dimension(K);
63
gap> SemiSimpleType(K);
"A7"
gap> ProjectionMatrix(L, K);
[[2, 2, 3, 4, 3, 2, 1], [0, 0, -1, 0, 0, 0, 0], [0, 0, 0, -1, 0, 0, 0],

[0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 0, -1, 0],
[0, 0, 0, 0, 0, 0, -1], [-1, -2, -2, -3, -2, -1, 0]]

20

SLA 21

5.1.2 Branching

. Branching(L, K, hw) (operation)

Here L and K are as in the previous function, and hw is the highest weight of an irreducible L -
module. This function computes the splitting of the module when seen as a K -module. Returned is
a list of two lists: the first list contains the highest weights of the modules involved, the second list
contains their multiplicities.

Example
gap> L:= SimpleLieAlgebra("E",7,Rationals);;
gap> K:= Subalgebra(L, [L.1,L.3,L.4,L.5,L.6,L.7,L.63,
> L.64,L.66,L.67,L.68,L.69,L.70,L.126]);;
gap> Branching(L, K, [1,0,0,0,0,0,1]);
[[[1, 1, 0, 0, 0, 0, 1], [1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 1],

[0, 0, 1, 0, 1, 0, 0], [1, 0, 0, 1, 0, 0, 0],
[0, 1, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1],
[0, 0, 1, 0, 0, 0, 0]], [1, 1, 1, 1, 1, 1, 1, 1]]

5.2 Constructing Semisimple Subalgebras

5.2.1 RegularSemisimpleSubalgebras

. RegularSemisimpleSubalgebras(L) (attribute)

Here L is a simple Lie algebra. This function returns a list of its conjugacy classes of semisimple
subalgebras (conjugacy under the adjoint group).

Example
gap> L:= SimpleLieAlgebra("E",6,Rationals);;
gap> K:= RegularSemisimpleSubalgebras(L);; time;
1664
gap> Length(K);
19
gap> K[5];
<Lie algebra of dimension 45 over Rationals>
gap> SemiSimpleType(K[5]);
"D5"
gap> Branching(L, K[5], [1,0,0,0,0,1]);
[[[1, 0, 0, 0, 0], [0, 0, 0, 1, 1], [1, 0, 0, 1, 0],

[1, 0, 0, 0, 1], [2, 0, 0, 0, 0], [0, 0, 0, 1, 0],
[0, 0, 0, 0, 1], [0, 1, 0, 0, 0], [0, 0, 0, 0, 0]],

[2, 1, 1, 1, 1, 1, 1, 1, 1]]

5.2.2 SSSTypes

. SSSTypes() (function)

This returns a list of the types of the semisimple Lie algebras of which the database contains the
classification of the semisimple subalgebras, up to linear equivalence. (The three letters S stand for
SemiSimple Subalgebras.)

SLA 22

5.2.3 LieAlgebraAndSubalgebras

. LieAlgebraAndSubalgebras(type) (operation)

Here type is a string describing the type of a semisimple Lie algebra. A simple type is a capital
letter (A, B, C, D, E, F, or G) followed by a positive integer. Example: "D5" . In general a type is a
sequence of simple types separated by spaces. Example: "A2 C3 E6" . This function is appliccable if
each simple type that occurs in type has rank less than or equal to 8. In that case a record is returned
with two components: liealg , which is a semisimple Lie algebra of type type , and subalgs which
is the list of its semisimple subalgebras up to linear equivalence. If type is a simple type then the list
will be simply fetched from the database. Otherwise a computation will be triggered, and afterwards
the database will be bigger. (One can check this with a call to SSSTypes()). Also we remark that for
non-simple types of not so small rank this computation can be difficult.

5.2.4 InclusionsGraph

. InclusionsGraph(type) (operation)

Here type is a string describing the type of a semisimple Lie algebra. This is the same as in
the previous function. This function returns a list containing the edges of the inclusion graph of the
semisimple subalgebras returned by the previous function. An edge is represented by a list of two
integers. If the edge [i, j] occurs, then this means that the subalgebra on position j in the list
is linearly equivalent to a subalgebra of the subalgebra in position i . Only the maximal subalgebras
are considered; so if we have edges [i, j] and [j, k] then there will be no edge [i, k] .
(Otherwise this list can become huge.) Edges of the form [0, j] express that the subalgebra on
position j is a maximal semisimple subalgebra of the Lie algebra of type type .

Example
Semisimple subalgebras of the Lie algebra of type D4:
gap> s:= LieAlgebraAndSubalgebras("D4");;
gap> L:= s.liealg;
<Lie algebra of dimension 28 over CF(3)>
gap> sub:= s.subalgs;;
gap> Length(sub);
44
gap> g:= InclusionsGraph("D4");;
gap> g[1];
[12, 1]

Find the maximal semisimple subalgebras:

gap> m:= Filtered(g, x -> x[1]=0);; i:= List(m, x -> x[2]);
[13, 35, 36, 37, 41, 42, 43, 44]
gap> List(sub{i}, SemiSimpleType);
["A2", "A1 B2", "A1 B2", "A1 B2", "B3", "B3", "B3", "A1 A1 A1 A1"]

We see that the subalgebras on positions 35 and 36 are isomorphic;
however they are not linearly equivalent:
gap> Branching(L, sub[35], [0,0,1,0]);
[[[1, 0, 1]], [1]]
gap> Branching(L, sub[36], [0,0,1,0]);

SLA 23

[[[0, 1, 0], [2, 0, 0]], [1, 1]]

5.2.5 SubalgebrasInclusion

. SubalgebrasInclusion(L, K1, K2) (operation)

Here K1 , K2 , are two subalgebras of the semisimple Lie algebra L , constructed using the database.
If K2 contains a subalgebra that is linearly equivalent to K1 then such a subalgebra is returned. Other-
wise the result is fail .

Example
gap> s:= LieAlgebraAndSubalgebras("C3");;
gap> g:= InclusionsGraph("C3");
[[10, 1], [11, 1], [12, 1], [8, 2], [10, 2], [11, 2], [11, 3],

[13, 3], [8, 4], [13, 4], [9, 5], [12, 5], [12, 6], [13, 6],
[0, 7], [0, 8], [15, 9], [9, 10], [14, 10], [14, 11],
[15, 12], [0, 13], [15, 14], [0, 15]]

there are the edges [14, 10] and [10, 2]; hence a conjugate of the
second algebra is contained in the 14-th.
gap> L:= s.liealg;
<Lie algebra of dimension 21 over Rationals>
gap> sub:= s.subalgs;;
gap> K:=SubalgebrasInclusion(L, sub[2], sub[14]);
<Lie algebra of dimension 3 over Rationals>
gap> Basis(K)[1] in sub[14];
true

5.2.6 DynkinIndex

. DynkinIndex(K, L) (operation)

Here K is a semisimple subalgebra of the simple Lie algebra L . This function returns a list of
integers, containing the Dynkin indices of the simple components of K . If the input Lie algebra L is
not simple, then still a list of rationals is returned, but they may have no meaning. The Dynkin index
is defined as follows. Consider a simple component in K and let h be the coroot of the shortest root
of K . Let k denote the Killing form of L , normalised so that the coroot of the shortest root of L has
squared length 2. Then the Dynkin index is k(h,h)/2.

Example
gap> s:= LieAlgebraAndSubalgebras("C7");;
gap> g:= InclusionsGraph("C7");;
gap> m:= Filtered(g, x -> x[1]=0);; i:= List(m, x -> x[2]);
[63, 498, 665, 804, 819, 821, 822]
gap> L:= s.liealg;
<Lie algebra of dimension 105 over Rationals>
gap> sub:= s.subalgs;;
gap> List(sub{i}, SemiSimpleType);
["A1", "C3", "A1 B3", "A6", "C3 C4", "B2 C5", "A1 C6"]
gap> DynkinIndex(sub[665], L);
[7, 4]

SLA 24

5.2.7 AreLinearlyEquivalentSubalgebras

. AreLinearlyEquivalentSubalgebras(L, K1, K2) (operation)

Here L is a semisimple Lie algebra, and K1 , K2 are subalgebras. It is assumed that the Cartan
subalgebras (as returned by CartanSubalgebra) of K1 , K2 are contained in the Cartan subalgebra of
L (otherwise fail is returned). This function returns true if K1 , K2 are linearly equivalent, false
otherwise.

Example
Lets find the subalgebras in the database for C5 that are linearly
equivalent to regular subalgebras:
gap> s:= LieAlgebraAndSubalgebras("C5");; L:= s.liealg; sub:= s.subalgs;;
<Lie algebra of dimension 55 over Rationals>
gap> reg:= RegularSemisimpleSubalgebras(L);;
gap> posn:= [];;
gap> for K in reg do
> Add(posn,PositionProperty(sub,M -> AreLinearlyEquivalentSubalgebras(L,M,K)));
> od;
gap> posn;
[2, 24, 93, 111, 105, 82, 106, 81, 41, 109, 70, 85, 29, 112, 94, 25, 1, 118,

100, 102, 64, 108, 84, 28, 117, 107, 116, 96, 101, 63, 115, 114, 95, 113]

5.2.8 MakeDatabaseEntry

. MakeDatabaseEntry(r) (operation)

. AddToDatabase(d) (operation)

These are functions that help to save a computed list of subalgebras of a semisimple Lie al-
gebra in a file, and in a new session, read it again. In the first function r is a record as pro-
duced by LieAlgebraAndSubalgebras (5.2.3). It returns a record that can be saved in a file. (It
is not advisable to print it on the screen.) In the second function d is a record that is output by
MakeDatabaseEntry. This function adds this entry to the database.

We give two examples; in the first one we create a new database entry, and save it to a file. In the
second example we read it and add it to the database.

Example
gap> r:= LieAlgebraAndSubalgebras("A2 B2");;
gap> d:= MakeDatabaseEntry(r);;
gap> PrintTo("A2B2", "d:= ",d,";\n");

Example
gap> Read("A2B2");
gap> AddToDatabase(d);
gap> SSSTypes();
["A1", "A2", "B2", "G2", "A3", "B3", "C3", "A4", "B4", "C4", "D4", "F4",

"A5", "B5", "C5", "D5", "A6", "B6", "C6", "D6", "E6", "A7", "B7", "C7",
"D7", "E7", "A8", "B8", "C8", "D8", "E8", "A2 B2"]

References

[CM93] David H. Collingwood and William M. McGovern. Nilpotent orbits in semisimple Lie
algebras. Van Nostrand Reinhold Mathematics Series. Van Nostrand Reinhold Co., New
York, 1993. 4, 9, 10

[dG11] Willem A. de Graaf. Computing representatives of nilpotent orbits of θ -groups. J. Sym-
bolic Comput., 46:438–458, 2011. 4

[dGVY12] W.A. de Graaf, E.B. Vinberg, and O.S. Yakimova. An effective method to compute closure
ordering for nilpotent orbits of θ -representations. J. Algebra, 371:38–62, 2012. 4

[GE09] Willem A. de Graaf and Alexander G. Elashvili. Induced nilpotent orbits of the simple
Lie algebras of exceptional type. Georgian Mathematical Journal, 16(2):257–278, 2009.
arXiv:0905.2743v1[math.RT]. 4

[Gra08] Willem A. de Graaf. Computing with nilpotent orbits in simple Lie algebras of exceptional
type. LMS J. Comput. Math., 11:280–297 (electronic), 2008. 4, 11

[Gra11] Willem A. de Graaf. Constructing semisimple subalgebras of semisimple Lie algebras. J.
Algebra, 325(1):416–430, 2011. 4

[Hel78] Sigurdur Helgason. Differential geometry, Lie groups, and symmetric spaces, volume 80
of Pure and Applied Mathematics. Academic Press Inc. [Harcourt Brace Jovanovich
Publishers], New York, 1978. 4

[Hes79] Wim H. Hesselink. Desingularizations of varieties of nullforms. Invent. Math., 55(2):141–
163, 1979. 8

[Pop03] V. L. Popov. The cone of Hilbert null forms. Tr. Mat. Inst. Steklova, 241(Teor. Chisel,
Algebra i Algebr. Geom.):192–209, 2003. English translation in: Proc. Steklov Inst. Math.
241 (2003), no. 1, 177–194. 8

[Vin75] E. B. Vinberg. The classification of nilpotent elements of graded Lie algebras. Dokl.
Akad. Nauk SSSR, 225(4):745–748, 1975. 4, 18

[Vin76] E. B. Vinberg. The Weyl group of a graded Lie algebra. Izv. Akad. Nauk SSSR Ser. Mat.,
40(3):488–526, 709, 1976. English translation: Math. USSR-Izv. 10, 463-495 (1976). 4

[Vin79] E. B. Vinberg. Classification of homogeneous nilpotent elements of a semisimple graded
Lie algebra. Trudy Sem. Vektor. Tenzor. Anal., (19):155–177, 1979. English translation:
Selecta Math. Sov. 6, 15-35 (1987). 4, 18

25

SLA 26

[VP89] È. B. Vinberg and V. L. Popov. Invariant theory. In Algebraic geometry, 4 (Russian), Itogi
Nauki i Tekhniki, pages 137–314. Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn.
Inform., Moscow, 1989. English translation in: V. L. Popov and È. B. Vinberg, Invariant
Theory, in: Algebraic Geometry IV, Encyclopedia of Mathematical Sciences, Vol. 55,
Springer-Verlag, Proc. Steklov Inst. Math. 264 (2009), no. 1, 146–158. 8

Index

AddToDatabase, 24
AdmissibleLattice, 7
AmbientLieAlgebra, 11
AreLinearlyEquivalentSubalgebras, 24

Branching, 21

CarrierAlgebra, 18
CartanSubspace, 19
CartanType, 5
CharacteristicsOfStrata, 7
ClosureDiagram, 17

DirectSumDecomposition, 7
DynkinIndex, 23

ExtendedCartanMatrix, 5

FiniteOrderInnerAutomorphisms, 14
FiniteOrderOuterAutomorphisms, 15

Grading, 16

InclusionsGraph, 22
InducedNilpotentOrbits, 12
IsomorphismOfSemisimpleLieAlgebras, 6

KacDiagram, 15

LieAlgebraAndSubalgebras, 22

MakeDatabaseEntry, 24

NilpotentOrbit, 10
NilpotentOrbits, 10
NilpotentOrbitsOfThetaRepresentation,

16

Order, 15

ProjectionMatrix, 20

RandomSL2Triple, 11

RegularSemisimpleSubalgebras, 21
RigidNilpotentOrbits, 13

SemiSimpleType, 11
SizeOfWeylGroup, 6
SL2Grading, 12
SL2Triple, 11, 12
SSSTypes, 21
SubalgebrasInclusion, 23

WeightedDynkinDiagram, 10
WeylTransversal, 6

27

	Introduction
	Auxiliary Functions
	 Root Systems
	 Lie Algebras and Their Modules

	Nilpotent Orbits
	 The functions

	Finite Order Automorphisms and -Groups
	 The functions

	Semisimple Subalgebras of Semisimple Lie Algebras
	 Branching
	 Constructing Semisimple Subalgebras

	References
	Index

