NOTE DEL CORSO ANALISI MATEMATICA IV UNITÀ DIDATTICA (COMPATTA) A.A. 06/07

SILVANO DELLADIO

Lezione del 12/9/06 (2 ore)

Presentazione generale del corso. Rassegna di "situazioni problematiche" relative al calcolo di:

- (1.1) lunghezza di una curva (nel piano o nello spazio);
- (1.2) massa di un filo;
- (1.3) lavoro compiuto da un campo lungo una curva orientata;
- (2.1) area di una superficie;
- (2.2) massa di una lamina;
- (2.3) flusso di un campo attraverso una supeficie orientata;
- (3.1) volume di un sottoinsieme dello spazio;
- (3.2) massa di un corpo;
- (4.1) area di un sottoinsieme del piano;
- (4.2) volume del sottografico di una funzione $f: D \subset \mathbf{R}^2 \to \mathbf{R}$.

In tutti i casi elencati il numero da calcolare si approssima mediante somme finite del tipo

(1)
$$\sum_{i} f(P_i) m(E_i)$$

dove $\{E_i\}$ è una partizione del luogo geometrico E coinvolto nella formulazione del problema (una curva per (1.1-3), una superficie per (2.1-3), eccetera), $f: E \to \mathbf{R}$ è una funzione continua, $P_i \in E_i$ ed m è la misura naturale per gli E_i (lunghezza per 1.1-3, area per 2.1-3, eccetera). La partizione è scelta così fitta che gli insiemi E_i "si possono considerare piatti" e le funzioni $f|E_i$ "si possono considerare costanti".

In particolare:

- $f \equiv 1$ in (1.1), (2.1), (3.1) e (4.1);
- f è la densità di massa in (1.2), (2.2) e (3.2);
- $f \equiv F \bullet \tau$ in (1.3), dove F è il campo che compie lavoro mentre τ è il campo di vettori unitari tangenti che orienta la curva;

• $f \equiv F \bullet \nu$ in (2.3), dove F è il campo di cui calcolare il flusso mentre ν è il campo di vettori normali continuo che orienta la superficie.

Lezione del 15/9/06 (2 ore)

Terminologie alternative: curva come mappa e sua immagine, oppure curva e sua parametrizzazione. Orientazione indotta dalla parametrizzazione.

Una curva ammette infinite parametrizzazioni. Esempi. Ogni curva liscia ammette parametrizzazioni non liscie. Inoltre esistono curve non liscie con parametrizzazioni liscie (esempio: $\gamma(t) := (t^3, t^2), t \in [-1, 1]$).

Proposizione 1. Sia data una curva $\gamma:[a,b]\to \mathbf{R}^n$ e sia $t_0\in[a,b]$. Allora il limite

$$\lim_{h \to 0} \frac{\gamma(t_0 + h) - \gamma(t_0)}{h}$$

esiste in \mathbf{R}^n se e solo se le componenti γ_i sono derivabili in t_0 . In tal caso si ha

$$\lim_{h \to 0} \frac{\gamma(t_0 + h) - \gamma(t_0)}{h} = (\gamma'_1(t_0), \gamma'_2(t_0), \dots).$$

DIMOSTRAZIONE: Basta osservare che si ha

$$\left| \frac{\gamma_i(t) - \gamma_i(t_0)}{t - t_0} - v_i \right| \le \left\| \frac{\gamma(t) - \gamma(t_0)}{t - t_0} - v \right\| \le \sum_{i=1}^n \left| \frac{\gamma_j(t) - \gamma_j(t_0)}{t - t_0} - v_j \right|$$

per ogni $v = (v_1, \ldots, v_n) \in \mathbf{R}^n$ e per $i = 1, \ldots, n$.

Definizione 1. Sia γ come in Proposizione 1. Diremo che γ è <u>derivabile</u> in $t_0 \in [a,b]$ se esiste

$$\lim_{h\to 0} \frac{\gamma(t_0+h)-\gamma(t_0)}{h} \in \mathbf{R}^n.$$

Tale limite verrà indicato con $\gamma'(t_0)$.

Ora Proposizione 1 può essere riformulata come segue:

Proposizione 2. Sia data $\gamma : [a,b] \to \mathbb{R}^n$ e sia $t_0 \in [a,b]$. Allora γ è derivabile in t_0 se e solo se tutte le componenti γ_i sono derivabili in t_0 . In tal caso si ha

$$\gamma'(t_0) = (\gamma_1'(t_0), \gamma_2'(t_0), \dots).$$

Definizione 2. Una mappa $\gamma:[a,b]\to \mathbf{R}^n$ è detta <u>parametrizzazione regolare a tratti (di curva)</u> se essa è semplice, continua e se si può trovare una suddivisione

$$a_0 := a < a_1 < \cdots < a_N := b$$

tale che, per ogni j, la mappa $\gamma|(a_i, a_{i+1})$ sia di classe C^1 e

$$t \mapsto \gamma'(t), \qquad t \in (a_j, a_{j+1})$$

sia limitata e sempre diversa da zero. Nel caso in cui le precedenti condizioni possano essere verificate con N=1, si dice che γ è una <u>parametrizzazione regolare</u>. Una <u>curva regolare</u> (risp. curva regolare a tratti) è un sottoinsieme C di \mathbf{R}^n per cui esiste una parametrizzazione regolare (risp. regolare a tratti) $\gamma: [a,b] \to \mathbf{R}^n$ tale che $C=\gamma([a,b])$.

Proposizione 3. Se $\gamma:[a,b]\to \mathbf{R}^2$ è una parametrizzazione regolare (di curva) allora $\gamma((a,b))$ è localmente grafico di una funzione di classe C^1 .

DIMOSTRAZIONE: si veda il corso di Analisi Matematica III (Francesco Serra-Cassano).

OSSERVAZIONE: La mappa $\gamma(t) = (t^3, t^2)$, $t \in [-1, 1]$, non è una parametrizzazione regolare in quanto $\gamma'(0) = (0, 0)$. Pertanto: il fatto che $\gamma((-1, 1))$ non possa coincidere, intorno al punto $\gamma(0) = (0, 0)$, col grafico di una funzione di classe C^1 non contrasta con Proposizione 3.

Proposizione 4. Sia $\gamma:[a,b] \to \mathbb{R}^n$ una mappa derivabile in t_0 , con $\gamma'(t_0) \neq 0$, e consideriamo la seguente parametrizzazione della retta per $\gamma(t_0)$ avente direzione $v \in \mathbb{R}^n \setminus \{0\}$:

$$\lambda_v(t) := \gamma(t_0) + (t - t_0)v, \qquad t \in \mathbf{R}.$$

Si ha allora che $\gamma(t) - \lambda_v(t)$ è un infinitesimo di ordine superiore a $t - t_0$, per $t \to t_0$, se e soltanto se $v = \gamma'(t_0)$.

DIMOSTRAZIONE. Si ha infatti

$$\frac{\gamma(t) - \lambda_v(t)}{t - t_0} = \frac{\gamma(t) - \gamma(t_0)}{t - t_0} - v.$$

Ne segue che

$$\lim_{t \to t_0} \frac{\gamma(t) - \lambda_v(t)}{t - t_0} = 0$$

se e soltanto se $v = \gamma'(0)$.

La precedente proposizione ci mostra che, fra tutte le λ_v , ce n'è una (e una sola) che meglio approssima γ vicino a t_0 . Essa si ottiene prendendo $v = \gamma'(t_0)$. Risulta pertanto naturale dare la seguente definizione.

Definizione 3. Nelle ipotesi di Proposizione 3, la retta

$$t \mapsto \lambda_{\gamma'(t_0)}(t) = \gamma(t_0) + (t - t_0)\gamma'(t_0)$$

è detta retta tangente (affine) alla curva γ in t_0 .

Ulteriore commento al problema (1.2), discusso nella prima lezione. Se $\gamma : [a,b] \to \mathbf{R}^n$ (n=2,3) parametrizza il luogo C occupato dal filo ed f indica la densità di massa del filo medesimo, allora le somme finite (1) approssimano il numero

(2)
$$\int_a^b f(\gamma(t)) \|\gamma'(t)\| dt.$$

Questa espressione diviene pertanto il "naturale candidato per la definizione di $\int_C f$ ". Prima però essa andrà oppotunamente "testata": più precisamente verificheremo che la formula (2) non dipende dalla scelta della parametrizzazione e che inoltre essa produce una nozione di misura coerente, nei casi elementari (segmento, circonferenza, ...), con quella classica.

Proposizione 5. Siano $\gamma:[a,b] \to \mathbf{R}^n$ e $\lambda:[c,d] \to \mathbf{R}^n$ parametrizzazioni regolari tali che $\gamma([a,b]) = \lambda([c,d]) =: C.$

Allora, se $f: C \to \mathbf{R}$ è una funzione continua, si ha

$$\int_{a}^{b} f(\gamma(t)) \|\gamma'(t)\| dt = \int_{c}^{d} f(\lambda(s)) \|\lambda'(s)\| ds.$$

DIMOSTRAZIONE: Consideriamo la funzione

$$\sigma := \lambda^{-1} \circ \gamma : [a, b] \to [c, d].$$

Osserviamo che σ è iniettiva, oltre che (ovviamente) suriettiva. Infatti, se $t_1, t_2 \in [a, b]$ e $\sigma(t_1) = \sigma(t_2)$, allora si ha

$$\gamma(t_1) = \lambda \circ \sigma(t_1) = \lambda \circ \sigma(t_2) = \gamma(t_2)$$

e quindi $t_1 = t_2$, per l'iniettività di γ .

Verifichiamo che σ è continua. Se non lo fosse, esisterebbero $t_0 \in [a, b]$ e $\varepsilon_0 > 0$ tali che

$$(3) |\sigma(t_i) - \sigma(t_0)| \ge \varepsilon_0$$

per una certa successione di $t_i \in [a, b]$, i = 1.2, ..., con $t_i \to t_0$ $(i \to \infty)$. Poiché [c, d] è un insieme compatto e $\sigma(t_i) \in [c, d]$, potremmo trovare una sottosuccessione $\{t_{i_j}\}$ e $s_0 \in [c, d]$ tali che

(4)
$$\sigma(t_{i_j}) \to s_0 \qquad (j \to \infty).$$

Ne seguirebbe che

$$\lambda(s_0) = \lim_{i} \lambda(\sigma(t_{i_j})) = \lim_{i} \gamma(t_{i_j}) = \gamma(t_0) = \lambda(\sigma(t_0))$$

e quindi $s_0 = \sigma(t_0)$, per l'iniettività di λ . Ma questo risultato contraddice evidentemente (3) e (4) e prova pertanto la continuità di σ .

Dimostriamo ora che $\sigma \in C^1(a, b)$. Fissato arbitrariamente $t_0 \in (a, b)$ e ricordando che σ è iniettiva, si trova

(5)
$$\frac{\gamma(t_0+h)-\gamma(t_0)}{h} = \frac{\lambda(\sigma(t_0+h))-\lambda(\sigma(t_0))}{h}$$
$$= \frac{\lambda(\sigma(t_0+h))-\lambda(\sigma(t_0))}{\sigma(t_0+h)-\sigma(t_0)} \cdot \frac{\sigma(t_0+h)-\sigma(t_0)}{h}$$

per ogni $h \neq 0$ sufficientemente prossimo a zero (affinché $t_0 + h \in (a, b)$). Poiché (grazie alla continuità di σ) si ha anche

$$\lim_{h \to 0} \frac{\lambda(\sigma(t_0 + h)) - \lambda(\sigma(t_0))}{\sigma(t_0 + h) - \sigma(t_0)} = \lambda'(\sigma(t_0))$$

e inoltre

$$\gamma'(t_0) \neq 0, \qquad \lambda'(\sigma(t_0)) \neq 0$$

segue facilmente da (5) che σ è derivabile in t_0 e si ha

$$\gamma'(t_0) = \lambda'(\sigma(t_0))\sigma'(t_0)$$

da cui anche

$$\sigma'(t_0) = \frac{\gamma'(t_0) \bullet \lambda'(\sigma(t_0))}{\|\lambda'(\sigma(t_0))\|^2}.$$

Rimane così provato che $\sigma \in C^1(a,b)$.

Ora, richiamando la formula per la derivazione delle funzioni composte, otteniamo subito

$$(6) \qquad \gamma' = (\lambda \circ \sigma)' = ((\lambda_1 \circ \sigma)', (\lambda_2 \circ \sigma)', \dots) = ((\lambda_1' \circ \sigma)\sigma', (\lambda_2' \circ \sigma)\sigma', \dots) = (\lambda' \circ \sigma)\sigma'.$$

Dalla formula di integrazione per sostituzione, segue che

$$\int_{[a,b]} f(\gamma(t)) \|\gamma'(t)\| dt = \int_{[a,b]} f(\lambda(\sigma(t))) \|\lambda'(\sigma(t))\sigma'(t)\| dt$$

$$= \int_{[a,b]} f(\lambda(\sigma(t))) \|\lambda'(\sigma(t))\| |\sigma'(t)| dt$$

$$= \int_{[c,d]} f(\lambda(s)) \|\lambda'(s)\| ds.$$

OSSERVAZIONE: La formula (6) estende la formula di derivazione per le funzioni composte dimostrata nei precedenti corsi di analisi. Essa costituisce un risultato standard del calcolo differenziale che ci sarà utile anche in seguito.

OSSERVAZIONE: La proposizione precedente si generalizza immediatamente alle curve regolari a tratti (che ricorreranno molto spesso in seguito).

Lezione del 19/9/06 (2 ore)

OSSERVAZIONE: Vari test significativi eseguiti su $\int_{[a,b]} ||\gamma'||$ (i casi del segmento e della la circonferenza), l'invarianza rispetto alla traslazione e l'omogeneità rispetto all'omotetia confermano l'ipotesi intuitiva che $\int_C 1$ costituisca la giusta nozione di misura (lunghezza) della curva C.

A questo punto possiamo dare la seguente definizione.

Definizione 4. Siano C una curva regolare a tratti in \mathbb{R}^n e $f:C\to\mathbb{R}$ una funzione continua. Allora l'integrale di f lungo C è il numero

$$\int_C f := \int_{[a,b]} (f \circ \gamma) \|\gamma'\|$$

dove $\gamma:[a,b]\to \mathbf{R}^n$ è una qualsiasi parametrizzazione regolare a tratti tale che $\gamma([a,b])=C$. Per una tale curva si definisce anche la misura (lunghezza) di C, come segue:

$$m_1(C) := \int_C 1 = \int_{[a,b]} ||\gamma'||.$$

Notazione alternativa: $\int_C f ds$, $\int_C f d\mathcal{H}^1$.

Il seguente risultato, interessante di-per-sè, conferma ulteriormente l'opportunità della precedente definizione.

Proposizione 6. Sia $\gamma:[a,b]\to \mathbb{R}^n$ una parametrizzazione regolare a tratti. Allora

$$\int_{[a,b]} \|\gamma'\| = \sup_{\Delta \in \mathcal{P}([a,b])} l_{\gamma}(\Delta)$$

dove $\mathcal{P}([a,b])$ denota l'insieme delle partizioni di [a,b]

$$\Delta = (t_0, t_1, \dots, t_N), \ con \ t_0 = a < t_1 < \dots < t_N = b$$

mentre $l_{\gamma}(\Delta)$ indica la lunghezza della poligonale avente come vertici le immagini $\gamma(t_j)$ della partizione Δ , cioè

$$l_{\gamma}(\Delta) := \sum_{i=0}^{N-1} \|\gamma(t_{j+1}) - \gamma(t_j)\|.$$

DIMOSTRAZIONE: Primo passo: se γ è una parametrizzazione regolare. Posto

$$L := \sup_{\Delta \in \mathcal{P}([a,b])} l_{\gamma}(\Delta)$$

dimostriamo che

$$(7) L \le m_1(C).$$

Consideriamo $\Delta = (t_0, t_1, \dots, t_N) \in \mathcal{P}([a, b])$ e, fissato j con $0 \leq j \leq N - 1$, definiamo il vettore unitario

$$u := \frac{\gamma(t_{j+1}) - \gamma(t_j)}{\|\gamma(t_{j+1}) - \gamma(t_j)\|}.$$

Per il teorema fondamentale del calcolo, si trova che

(8)
$$\|\gamma(t_{j+1}) - \gamma(t_j)\| = u \bullet (\gamma(t_{j+1}) - \gamma(t_j)) = u \bullet \int_{t_j}^{t_{j+1}} \gamma'(t) dt$$
$$= \int_{t_j}^{t_{j+1}} u \bullet \gamma'(t) dt \le \int_{t_j}^{t_{j+1}} \|\gamma'(t)\| dt$$

e quindi, sommando

$$\sum_{j=0}^{N-1} \|\gamma(t_{j+1}) - \gamma(t_j)\| \le \int_a^b \|\gamma'(t)\| dt$$

dalla quale segue subito la disuguaglianza (7).

Per dimostrare il viceversa, scegliamo a', b' tali che

$$a < a' < b' < b$$

e osserviamo che γ' è uniformemente continua in [a',b']. Di conseguenza, fissato $\varepsilon>0$, si può trovare $\delta=\delta(\varepsilon)>0$ tale che

(9)
$$\|\gamma'(t) - \gamma'(s)\| \le \varepsilon$$

per ogni $s, t \in [a', b']$ tali che $|t - s| \le \delta$. Se ora consideriamo una partizione

$$\Delta = (t_0, t_1, \dots, t_N) \in \mathcal{P}([a', b'])$$

tale che

$$t_{j+1} - t_j < \delta, \qquad (j = 0, \dots, N - 1)$$

segue che

$$\begin{split} \int_{t_{j}}^{t_{j+1}} \|\gamma'(t)\| dt &\leq \int_{t_{j}}^{t_{j+1}} \|\gamma'(t) - \gamma'(t_{j})\| dt + \int_{t_{j}}^{t_{j+1}} \|\gamma'(t_{j})\| dt \\ &\leq \varepsilon(t_{j+1} - t_{j}) + \|\gamma'(t_{j})\| (t_{j+1} - t_{j}) \\ &\leq \varepsilon(t_{j+1} - t_{j}) + \left\|\gamma'(t_{j}) - \frac{\gamma(t_{j+1}) - \gamma(t_{j})}{t_{j+1} - t_{j}}\right\| (t_{j+1} - t_{j}) + \|\gamma(t_{j+1}) - \gamma(t_{j})\|. \end{split}$$

Poiché, come mostreremo fra breve

(10)
$$\left\| \gamma'(t_j) - \frac{\gamma(t_{j+1}) - \gamma(t_j)}{t_{j+1} - t_j} \right\| \le n\varepsilon$$

si ottiene

$$\int_{t_j}^{t_{j+1}} \|\gamma'(t)\| dt \le (n+1)(t_{j+1} - t_j)\varepsilon + \|\gamma(t_{j+1}) - \gamma(t_j)\|$$

da cui, sommando

$$\int_{a'}^{b'} \|\gamma'(t)\| dt \le (n+1)(b'-a')\varepsilon + l_{\gamma|[a',b']}(\Delta) \le (n+1)(b-a)\varepsilon + L.$$

Dall'arbitrarietà di ε , segue subito che

$$\int_{a'}^{b'} \|\gamma'\| \le L$$

e cioè

$$\int_{a}^{b} \|\gamma'\| \le L + \int_{a}^{a'} \|\gamma'\| + \int_{b'}^{b} \|\gamma'\| \le L + (a' - a + b - b') \sup_{[a,b]} \|\gamma'\|.$$

Ricordando che $\|\gamma'\|$ è limitata e che a' e b' possono essere scelti arbitrariamente vicini ad a e b, rispettivamente, se ne conclude che

$$\int_{a}^{b} \|\gamma'\| \le L.$$

Per dimostrare (10), basta applicare il teorema di Lagrange del valor medio alle componenti γ_i di γ . Esso ci garantisce l'esistenza di $s_{ij} \in (t_j, t_{j+1})$ tali che:

$$\left\| \gamma'(t_j) - \frac{\gamma(t_{j+1}) - \gamma(t_j)}{t_{j+1} - t_j} \right\| \le \sum_{i=1}^n \left| \gamma'_i(t_j) - \frac{\gamma_i(t_{j+1}) - \gamma_i(t_j)}{t_{j+1} - t_j} \right| \le \sum_{i=1}^n \left| \gamma'_i(t_j) - \gamma'_i(s_{ij}) \right|.$$

La disuguaglianza (10) segue ora subito da (9).

Secondo passo: il caso generale. Sia

$$a_0 := a < a_1 < \dots < a_N := b$$

una suddivisione di [a, b] tale che

$$\gamma|(a_i, a_{i+1}) \in C^1$$

e
$$\gamma'(t) \neq 0$$
, per ogni $t \neq a_0, a_1, a_2, \dots$

Grazie al primo passo, si ha

$$\int_{[a,b]} \|\gamma'\| = \sum_{j=0}^{N-1} \int_{[a_j,a_{j+1}]} \|\gamma'\| = \sum_{j=0}^{N-1} \sup_{\Delta \in \mathcal{P}([a_j,a_{j+1}])} l_{\gamma|[a_j,a_{j+1}]}(\Delta) =: \Sigma.$$

Rimane da verificare che

$$\Sigma = \sup_{\Delta \in \mathcal{P}([a,b])} l_{\gamma}(\Delta).$$

In effetti, se consideriamo

$$\Delta_j = \{t_{j0}, t_{j1}, \dots, t_{jN_j}\} \in \mathcal{P}([a_j, a_{j+1}]), \qquad (j = 0, \dots, N-1)$$

e osserviamo che

$$\Delta_* := \bigcup_{j=0}^{N-1} \Delta_j = \{t_{00}, \dots, t_{0N_0} = t_{10}, \dots, t_{1N_1} = t_{20}, \dots\} \in \mathcal{P}([a, b]),$$

troviamo subito che

$$\sum_{j=0}^{N-1} l_{\gamma|(a_j, a_{j+1})}(\Delta_j) = l_{\gamma}(\Delta_*) \le \sup_{\Delta \in \mathcal{P}([a, b])} l_{\gamma}(\Delta).$$

Quindi, potendo far variare arbitrariamente le Δ_j in $\mathcal{P}([a_j, a_{j+1}])$, otteniamo

$$\Sigma \le \sup_{\Delta \in \mathcal{P}([a,b])} l_{\gamma}(\Delta).$$

Per dimostrare la disuguaglianza opposta (e quindi concludere), consideriamo $\Delta \in \mathcal{P}([a,b])$ e poniamo

$$\Delta_j := \{a_j\} \cup (\Delta \cap (a_j, a_{j+1})) \cup \{a_{j+1}\} \in \mathcal{P}([a_j, a_{j+1}]), \qquad (j = 0, \dots, N-1).$$

Allora, per la disuguaglianza triangolare, segue facilmente che

$$l_{\gamma}(\Delta) \le \sum_{j=0}^{N-1} l_{\gamma}(\Delta_j) \le \Sigma.$$

La conclusione segue ora dall'arbitrarietà di $\Delta \in \mathcal{P}([a,b])$.

NOTA BENE: La definizione di integrale sottintesa (è la prima volta che la incontriamo!) nella formula (8) è la seguente:

$$\int_{t_j}^{t_{j+1}} \gamma'(t)dt := \left(\int_{t_j}^{t_{j+1}} \gamma'_1(t)dt, \int_{t_j}^{t_{j+1}} \gamma'_2(t)dt, \dots, \int_{t_j}^{t_{j+1}} \gamma'_n(t)dt \right).$$

NOTA BENE: Se disponessimo del teorema di Lagrange del valor medio per i campi di vettori, potremmo applicarlo a γ per ottenere una dimostrazione più diretta di (10). Eviteremmo così di passare alle componenti scalari γ_i . Purtroppo però un tale teorema non vale. Per esempio $\lambda(t) := (\cos t, \sin t)$, con $t \in [0, 2\pi]$, soddisfa

$$\frac{\lambda(2\pi) - \lambda(0)}{2\pi - 0} = 0$$

mentre $\lambda'(t) \neq 0$ per ogni $t \in [0, 2\pi]$.

OSSERVAZIONE: Anche alla luce di Proposizione 6, si potrebbe essere indotti a pensare che l'estremo superiore delle aree delle superfici poliedrali inscritte in una superficie "liscia" Σ possa essere assunto quale ragionevole definizione dell'area di Σ . Questo però non può essere vero! Infatti tale estremo superiore vale $+\infty$ per tutte le superfici liscie e curve. Il caso del cilindro: esempio di Schwarz.

Definizione 5. Una curva regolare a tratti orientata in \mathbb{R}^n è una coppia (C, τ) , dove

- (i) C è una curva regolare a tratti;
- (ii) $\tau: C \to \mathbf{R}^n$ è un campo di vettori per cui esiste una parametrizzazione regolare a tratti $\gamma: [a,b] \to \mathbf{R}^n$ tale che $\gamma([a,b]) = C$ e

$$\gamma'(t) = \|\gamma'(t)\|\tau(\gamma(t))$$

per ogni t in cui γ è derivabile.

Lezione del 26/9/06 (2 ore)

Le seguenti osservazioni sono preliminari essenziali alla Definizione 6.

OSSERVAZIONE: Se (C, τ) è una curva regolare a tratti orientata, allora τ è continuo sui tratti regolari della curva C.

OSSERVAZIONE: La Definizione 4 si estende in modo ovvio alle funzioni continue sui tratti regolari della curva C.

Definizione 6. Sia $\overline{C} = (C, \tau)$ una curva regolare a tratti orientata (in \mathbb{R}^n). Se $F: C \to \mathbb{R}^n$ è un campo continuo sui tratti regolari di C, definiamo l'integrale di F lungo \overline{C} come il numero

$$\int_{\overline{C}} F := \int_{C} F \bullet \tau.$$

Notazione alternativa: $\int_{\overline{C}} F \bullet ds$ (per n=2,3), $\int_{\overline{C}} F_1 dx + F_2 dy$ (se n=2), $\int_{\overline{C}} F_1 dx + F_2 dy + F_3 dz$ (se n=3).

OSSERVAZIONE: Com'è facile da verificare, la precedente definizione è ben posta, nel senso che essa non dipende dalla scelta della parametrizzazione regolare a tratti.

Esempi.

OSSERVAZIONE: Sia $\overline{C}=(C,\tau)$ una curva regolare a tratti orientata (in \mathbf{R}^n). Allora, se $\gamma:[a,b]\to\mathbf{R}^n$ è come in Definizione 5, si ha

(11)
$$\int_{\overline{C}} F = \int_{\overline{C}} F \bullet \tau = \int_{a}^{b} F(\gamma(t)) \bullet \tau(\gamma(t)) \| \gamma'(t) \| dt = \int_{a}^{b} F(\gamma(t)) \bullet \gamma'(t) dt.$$

Questa formula giustifica evidentemente l'uso delle notazioni alternative.

Esempi.

OSSERVAZIONE. Sia A un sottoinsieme aperto di \mathbf{R}^n e sia $F:A\to\mathbf{R}^n$ un campo continuo dotato di un "potenziale" $\varphi\in C^1(A)$ (cioè si abbia $\nabla\varphi\equiv F$). Inoltre sia $\overline{C}=(C,\tau)$ una curva regolare a tratti orientata (in \mathbf{R}^n), con $C\subset A$. Allora, per (11), si ha

(12)
$$\int_{\overline{C}} F = \int_{a}^{b} \nabla \varphi(\gamma(t)) \bullet \gamma'(t) dt = \int_{a}^{b} (\varphi \circ \gamma)' = \varphi(\gamma(b)) - \varphi(\gamma(a)).$$

In particolare, ne consegue che:

- (1) Curve \overline{C} distinte aventi in comune i punti iniziale e finale danno luogo allo stesso valore dell'integrale $\int_{\overline{C}} F$;
- (2) Per ogni curva regolare a tratti orientata \overline{C} tale che $C \subset A$ e C è chiusa, si ha

$$\int_{\overline{C}} F = 0.$$

Con riferimento al contesto fisico, in cui $\int_{\overline{C}} F$ può essere interpretato come energia, diremo che i campi soddisfacenti questa condizione (come F) sono "conservativi". Abbiamo così verificato che ogni campo dotato di un potenziale è conservativo. Il viceversa è vero, ma la dimostrazione (che richiede strumenti matematici non ancora disponibili) verrà data in seguito.

Vale la pena di osservare che non tutti i campi sono dotati di un potenziale. Per esempio

$$F: \mathbf{R}^2 \to \mathbf{R}^2, \qquad (x,y) \mapsto (0,x)$$

non lo è. Infatti, se F avesse un potenziale φ , questo sarebbe necessariamente di classe C^2 . Poiché $\nabla \varphi = F$, troveremmo

$$\frac{\partial \varphi}{\partial x} = 0, \qquad \frac{\partial \varphi}{\partial y} = x$$

e quindi anche

$$\frac{\partial}{\partial y}\frac{\partial \varphi}{\partial x} = 0, \qquad \frac{\partial}{\partial x}\frac{\partial \varphi}{\partial y} = 1$$

che contraddice il ben noto teorema di Schwarz. Infine, è evidente che se F ha un potenziale φ , allora ne ha infiniti altri (per esempio $\varphi + c$, con $c \in \mathbf{R} \setminus \{0\}$).

Intervalli aperti a destra in \mathbb{R}^n . Funzioni semplici in \mathbb{R}^n .

OSSERVAZIONE. Se φ è una funzione semplice in \mathbf{R}^n , esistono infinite funzioni semplici ψ in \mathbf{R}^n equivalenti a φ nel senso delle funzioni (cioè tali che $\psi(x) = \varphi(x)$ per ogni $x \in \mathbf{R}^n$). Esemplo: le funzioni semplici in \mathbf{R}^2

(13)
$$\varphi_{[0,2)\times[0,1)}, \qquad \varphi_{[0,1)\times[0,1)} + \varphi_{[1,2)\times[0,1)}$$

sono equivalenti nel senso delle funzioni.

Lezione del 29/9/06 (2 ore)

Definizione 7. Due funzioni semplici φ e ψ si dicono essere equivalenti se esse sono uguali nel senso delle funzioni, i.e. se $\varphi(x) = \psi(x)$ per ogni $x \in \mathbf{R}^n$.

OSSERVAZIONE. Il funzionale sulle funzioni semplici in \mathbb{R}^n definito da

$$I_n\left(\sum_{j=1}^N \lambda_j \varphi_{D_j}\right) := \sum_{j=1}^N \lambda_j m_n(D_j)$$

produce lo stesso risultato se applicato a funzioni semplici equivalenti. Questo non accade per tutti i funzionali. Per esempio, il funzionale

$$\sum_{j=1}^{N} \lambda_j \varphi_{D_j} \mapsto \sum_{j=1}^{N} \lambda_j m_n(D_j)^2$$

valutato sulle funzioni semplici (16), produce 4 e 2, rispettivamente. Osserviamo che $I_n(\varphi)$ si può interpretare come la misura orientata della regione compresa fra \mathbf{R}^n e il grafico di φ . Dunque, senza ambiguità, potremo chiamere tale numero integrale di φ in \mathbf{R}^n .

OSSERVAZIONE. Se φ è una qualsiasi funzione semplice, esiste una funzione semplice con intervalli disgiunti ed equivalente a φ .

OSSERVAZIONE. Date due funzioni semplici φ e ψ , si possono sempre trovare due nuove funzioni semplici φ^* e ψ^* tali che:

- (i) le due famiglie di intervalli aperti a destra che definiscono rispettivamente φ^* e ψ^* coincidono;
- (ii) φ^* equivale a φ e ψ^* equivale a ψ .

Da questo, in particolare, si ricava facilmente che:

(1) il funzionale I_n è lineare, ossia

$$I_n(\lambda \varphi + \mu \psi) = \lambda I_n(\varphi) + \mu I_n(\psi)$$

per ogni coppia di funzioni semplici φ, ψ e per ogni coppia di numeri reali λ, μ ;

(2) se φ e ψ sono funzioni semplici tali che $\varphi(x) \leq \psi(x)$ per ogni $x \in \mathbf{R}^n$, allora $I_n(\varphi) \leq I_n(\psi)$.

Sia ora $f: \mathbf{R}^n \to \mathbf{R}$ una funzione nulla nel complementare di un insieme limitato e limitata. Indichiamo con $\Sigma_{-}(f)$ l'insieme delle funzioni semplici φ in \mathbf{R}^n tali che $\varphi \leq f$. Analogamente $\Sigma_{+}(f)$ è l'insieme delle funzioni semplici φ in \mathbf{R}^n tali che $\varphi \geq f$.

OSSERVAZIONE: Grazie alle ipotesi assunte su f, gli insiemi $\Sigma_{-}(f)$ e $\Sigma_{+}(f)$ risultano essere non vuoti. Si possono dunque definire i numeri reali

$$I_n^-(f) := \sup \{I_n(\varphi) \mid \varphi \in \Sigma_-(f)\}, \qquad I_n^+(f) := \inf \{I_n(\varphi) \mid \varphi \in \Sigma_+(f)\}$$

e naturalmente si ha

$$I_n^-(f) \leq I_n^+(f)$$
.

Definizione 8. Diremo che $f: \mathbf{R}^n \to \mathbf{R}$ (nulla fuori di un insieme limitato e limitata) è integrabile secondo Riemann (o Riemann integrabile) se

$$I_n^-(f) = I_n^+(f).$$

In tal caso si pone

$$\int_{\mathbf{R}^n} f := I_n^-(f) = I_n^+(f).$$

L'insieme di tali funzioni è indicato con $\mathcal{R}(\mathbf{R}^n)$.

Notazione alternativa: $\int_{\mathbf{R}^n} f(x)dx$, $\iint \dots \int_{\mathbf{R}^n} f(x)dx_1dx_2 \dots dx_n$.

OSSERVAZIONE: Non tutte le funzioni sono Riemann integrabili. Per esempio, se n=1 e indichiamo con f la funzione caratteristica di $\mathbf{Q} \cap [0,1]$, si trova subito che $I_1^-(f)=0$ e $I_1^+(f)=1$.

OSSERVAZIONE: L'integrale su \mathbf{R}^n estende l'operatore I_n dall'insieme delle funzioni semplici in \mathbf{R}^n a tutto $\mathcal{R}(\mathbf{R}^n)$. Più precisamente: se φ è una funzione semplice in \mathbf{R}^n , allora $\varphi \in \mathcal{R}(\mathbf{R}^n)$ e si ha

$$\int_{\mathbf{R}^n} \varphi = I_n(\varphi).$$

Infatti, poich'é $\varphi \in \Sigma_{-}(\varphi)$, si ha

$$I_n^-(\varphi) = \sup \{I_n(\psi) \mid \psi \in \Sigma_-(\varphi)\} = I_n(\varphi)$$

e analogamente, poiché $\varphi \in \Sigma_{+}(\varphi)$, si ha

$$I_n^+(\varphi) = \inf \{ I_n(\psi) \mid \psi \in \Sigma_+(\varphi) \} = I_n(\varphi).$$

Proposizione 7. $\mathcal{R}(\mathbf{R}^n)$ è uno spazio vettoriale e la mappa

$$\mathcal{R}(\mathbf{R}^n) \to \mathbf{R}, \qquad f \mapsto \int_{\mathbf{R}^n} f:$$

è lineare.

DIMOSTRAZIONE: Siano $f, g \in \mathcal{R}(\mathbf{R}^n)$. Dimostriamo che allora

$$f + g \in \mathcal{R}(\mathbf{R}^n)$$

e

$$\int_{\mathbf{R}^n} (f+g) = \int_{\mathbf{R}^n} f + \int_{\mathbf{R}^n} g.$$

Infatti, per ogni fissato $\varepsilon > 0$, esistono

$$\varphi_- \in \Sigma_-(f), \quad \varphi_+ \in \Sigma_+(f), \quad \psi_- \in \Sigma_-(g), \quad \psi_+ \in \Sigma_+(g)$$

tali che

(14)
$$I_n(\varphi_+) - I_n(\varphi_-) \le \varepsilon, \qquad I_n(\psi_+) - I_n(\psi_-) \le \varepsilon.$$

Ma

$$\varphi_- + \psi_- \in \Sigma_-(f+q), \qquad \varphi_+ + \psi_+ \in \Sigma_+(f+q)$$

e si ha

$$I_{n}(\varphi_{+} + \psi_{+}) - I_{n}(\varphi_{-} + \psi_{-}) = I_{n}(\varphi_{+}) + I_{n}(\psi_{+}) - I_{n}(\varphi_{-}) - I_{n}(\psi_{-})$$

$$= I_{n}(\varphi_{+}) - I_{n}(\varphi_{-}) + I_{n}(\psi_{+}) - I_{n}(\psi_{-})$$

$$< 2\varepsilon$$

per (14). A maggior ragione dunque

$$I_n^+(f+g) - I_n^-(f+g) \le 2\varepsilon$$

da cui, per l'arbitrarietà di ε , segue che

$$I_n^-(f+g) = I_n^+(f+g)$$

e cioè che f+g è Riemann integrabile. Inoltre, poiché

$$I_n(\varphi_-) + I_n(\psi_-) = I_n(\varphi_- + \psi_-) \le \int_{\mathbf{R}^n} (f+g) \le I_n(\varphi_+ + \psi_+) = I_n(\varphi_+) + I_n(\psi_+)$$

e

$$I_n(\varphi_-) \le \int_{\mathbf{R}^n} f \le I_n(\varphi_+), \qquad I_n(\psi_-) \le \int_{\mathbf{R}^n} g \le I_n(\psi_+)$$

si trova anche

$$\left| \int_{\mathbf{R}^n} f + \int_{\mathbf{R}^n} g - \int_{\mathbf{R}^n} (f+g) \right| \le I_n(\varphi_+) + I_n(\psi_+) - I_n(\varphi_-) - I_n(\psi_-) \le 2\varepsilon.$$

Invocando nuovamente l'arbitrarietà di ε , otteniamo

$$\int_{\mathbf{R}^n} f + \int_{\mathbf{R}^n} g - \int_{\mathbf{R}^n} (f + g) = 0$$

ossia

$$\int_{\mathbf{R}^n} (f+g) = \int_{\mathbf{R}^n} f + \int_{\mathbf{R}^n} g.$$

Procedendo in modo analogo, si prova che se $f \in \mathcal{R}(\mathbf{R}^n)$ e $\lambda \in \mathbf{R}$ allora $\lambda f \in \mathcal{R}(\mathbf{R}^n)$ e si ha

$$\int_{\mathbf{R}^n} \lambda f = \lambda \int_{\mathbf{R}^n} f.$$

Proposizione 8. $\mathcal{R}(\mathbf{R}^n)$ è un reticolo.

DIMOSTRAZIONE: Siano $f, g \in \mathcal{R}(\mathbf{R}^n)$. Dato che

$$f \wedge g = -((-f) \vee (-g))$$

sarà sufficiente dimostrare che

$$(15) f \lor g \in \mathcal{R}(\mathbf{R}^n).$$

Per farlo, fissiamo arbitrariamente $\varepsilon > 0$ e consideriamo

$$\varphi_- \in \Sigma_-(f), \quad \varphi_+ \in \Sigma_+(f), \quad \psi_- \in \Sigma_-(g), \quad \psi_+ \in \Sigma_+(g)$$

tali che

(16)
$$I_n(\varphi_+) - I_n(\varphi_-) \le \varepsilon, \qquad I_n(\psi_+) - I_n(\psi_-) \le \varepsilon.$$

Ovviamente

$$\varphi_- \vee \psi_- \in \Sigma_-(f \vee g), \qquad \varphi_+ \vee \psi_+ \in \Sigma_+(f \vee g).$$

Inoltre, come proveremo in seguito, si ha

(17)
$$I_n(\varphi_+ \vee \psi_+) - I_n(\varphi_- \vee \psi_-) \le I_n(\varphi_+) - I_n(\varphi_-) + I_n(\psi_+) - I_n(\psi_-).$$

Da questa e da (16) troviamo subito che

$$I_n(\varphi_+ \vee \psi_+) - I_n(\varphi_- \vee \psi_-) \le 2\varepsilon$$

e quindi, a maggior ragione, si ha

$$I_n^+(f \vee g) - I_n^-(f \vee g) \le 2\varepsilon.$$

Dall'arbitrarietà di ε segue ora la (15).

Rimane da dimostrare la disuguaglianza (17). A questo scopo, osserviamo prima di tutto che le funzioni semplici $\varphi_-, \varphi_+, \psi_-, \psi_+$ possono supporsi essere tutte e quattro combinazioni lineari di

funzioni caratteristiche degli stessi intervalli aperti a destra D_j , con $j \in J := \{1, \dots, N\}$. Per $j \in J$ scegliamo poi $x_j \in D_j$, poniamo

$$J_* := \{ j \in J \mid \varphi_+(x_i) \ge \psi_+(x_i) \}$$

e osserviamo che J_* non dipende dalla scelta degli x_i .

Allora, per $j \in J_*$, si ha

$$(\varphi_{+} \vee \psi_{+})(x_{j}) - (\varphi_{-} \vee \psi_{-})(x_{j}) = \varphi_{+}(x_{j}) - \varphi_{-}(x_{j}) \vee \psi_{-}(x_{j}) \leq \varphi_{+}(x_{j}) - \varphi_{-}(x_{j})$$

e analogamente, per $j \in J \setminus J_*$, vale

$$(\varphi_{+} \vee \psi_{+})(x_{i}) - (\varphi_{-} \vee \psi_{-})(x_{i}) = \psi_{+}(x_{i}) - \varphi_{-}(x_{i}) \vee \psi_{-}(x_{i}) \leq \psi_{+}(x_{i}) - \psi_{-}(x_{i}).$$

Da queste due disuguaglianze segue subito che

$$\begin{split} I_{n}(\varphi_{+} \vee \psi_{+}) - I_{n}(\varphi_{-} \vee \psi_{-}) &= \sum_{j \in J_{*}} (\varphi_{+} \vee \psi_{+})(x_{j}) \, m_{n}(D_{j}) + \sum_{j \in J \setminus J_{*}} (\varphi_{+} \vee \psi_{+})(x_{j}) \, m_{n}(D_{j}) + \\ &- \sum_{j \in J_{*}} (\varphi_{-} \vee \psi_{-})(x_{j}) \, m_{n}(D_{j}) - \sum_{j \in J \setminus J_{*}} (\varphi_{-} \vee \psi_{-})(x_{j}) \, m_{n}(D_{j}) \\ &= \sum_{j \in J_{*}} \left((\varphi_{+} \vee \psi_{+})(x_{j}) - (\varphi_{-} \vee \psi_{-})(x_{j}) \right) m_{n}(D_{j}) + \\ &+ \sum_{j \in J \setminus J_{*}} \left((\varphi_{+} \vee \psi_{+})(x_{j}) - (\varphi_{-} \vee \psi_{-})(x_{j}) \right) m_{n}(D_{j}) \\ &\leq \sum_{j \in J_{*}} \left(\varphi_{+}(x_{j}) - \varphi_{-}(x_{j}) \right) m_{n}(D_{j}) + \\ &+ \sum_{j \in J \setminus J_{*}} \left(\psi_{+}(x_{j}) - \psi_{-}(x_{j}) \right) m_{n}(D_{j}) + \\ &+ \sum_{j \in J} \left(\varphi_{+}(x_{j}) - \varphi_{-}(x_{j}) \right) m_{n}(D_{j}) + \\ &+ \sum_{j \in J} \left(\psi_{+}(x_{j}) - \psi_{-}(x_{j}) \right) m_{n}(D_{j}) + \\ &+ \sum_{j \in J} \left(\psi_{+}(x_{j}) - \psi_{-}(x_{j}) \right) m_{n}(D_{j}) \\ &= I_{n}(\varphi_{+}) - I_{n}(\varphi_{-}) + I_{n}(\psi_{+}) - I_{n}(\psi_{-}) \end{split}$$

e cioè proprio la disuguaglianza (17).

Come facile conseguenza delle precedenti proposizioni otteniamo il seguente risultato.

Proposizione 9. Siano $f, g \in \mathcal{R}(\mathbf{R}^n)$. Allora

- (1) Se $f \geq g$, si ha $\int_{\mathbf{R}^n} f \geq \int_{\mathbf{R}^n} g$; (2) $|f| \in \mathcal{R}(\mathbf{R}^n)$ e $\int_{\mathbf{R}^n} |f| \geq |\int_{\mathbf{R}^n} f|$.

DIMOSTRAZIONE: Prima di tutto, Proposizione 7 implica che f-g è Riemann integrabile e vale

$$\int_{\mathbf{R}^n} (f - g) = \int_{\mathbf{R}^n} f - \int_{\mathbf{R}^n} g.$$

Dopodiché (1) segue subito notando che la funzione identicamente nulla appartiene a $\Sigma_{-}(f-g)$, quindi

$$\int_{\mathbf{R}^n} (f - g) = \sup_{\varphi \in \Sigma_-(f - g)} I_n(\varphi) \ge I_n(0) = 0.$$

Per dimostrare (2), osserviamo che

$$|f| = f \vee 0 - f \wedge 0.$$

Proposizione 7 e Proposizione 8 garantiscono allora che |f| è Riemann integrabile e, tenendo conto anche di (1), si trova

$$\left| \int_{\mathbf{R}^n} f \right| = \left| \int_{\mathbf{R}^n} (f \vee 0 + f \wedge 0) \right| = \left| \int_{\mathbf{R}^n} f \vee 0 + \int_{\mathbf{R}^n} f \wedge 0 \right|$$

$$\leq \left| \int_{\mathbf{R}^n} f \vee 0 \right| + \left| \int_{\mathbf{R}^n} f \wedge 0 \right| = \int_{\mathbf{R}^n} f \vee 0 - \int_{\mathbf{R}^n} f \wedge 0$$

$$= \int_{\mathbf{R}^n} f \vee 0 - f \wedge 0 = \int_{\mathbf{R}^n} |f|.$$

Lezione del 3/10/06 (2 ore)

Definizione 9. Siano dati una funzione $f: \mathbf{R}^n \to \mathbf{R}$ e un sottoinsieme A di \mathbf{R}^n . Diremo allora che \underline{f} è Riemann integrabile in \underline{A} se $f\varphi_A \in \mathcal{R}(\mathbf{R}^n)$. L'insieme delle funzioni Riemann integrabili in \underline{A} è indicato con $\mathcal{R}(A)$.

OSSERVAZIONE: Si può ora facilmente dimostrare che per $\mathcal{R}(A)$ sussistono i risultati corrispondenti a Proposizione 7, Proposizione 8 e Proposizione 9.

INDICAZIONE BIBLIOGRAFICA: [1] è un possibile testo di riferimento per la teoria dell'integrazione secondo Riemann, coerente con l'esposizione fattane a lezione e in queste note.

Vale il seguente teorema di integrabilità di una funzione continua.

Teorema 1. Sia A un sottoinsieme compatto di \mathbf{R}^n e supponiamo che valga la seguente condizione (che riassumeremo dicendo che " ∂A ha misura zero"): per ogni $\varepsilon > 0$ esistono due pluriintervalli aperti a destra P_I e P_E tali che

(18)
$$P_I \subset A \subset P_E, \qquad m_n(P_E \backslash P_I) \le \varepsilon.$$

Allora ogni $f: \mathbf{R}^n \to \mathbf{R}$ che sia continua in A è anche Riemann integrabile in A.

DIMOSTRAZIONE: Osserviamo che f è uniformemente continua in A. Allora, fissato $\varepsilon > 0$, esiste $\delta = \delta(\varepsilon) > 0$ tale che $|f(x) - f(x')| \le \varepsilon$, ogni volta che $x, x' \in A$ soddisfano $|x - x'| \le \delta$. Ora, presi P_I e P_E come in (18), possiamo supporre (suddividendo gli intervalli, se necessario) che

- (i) la famiglia di intervalli $\{D_j\}_{j=1}^N$ costituenti P_I sia una sottofamiglia degli intervalli costituenti P_E , che potremo quindi indicare con $\{D_j\}_{j=1}^{N+k}$;
- (ii) il diametro di ogni D_j , con j = 1, ..., N, non superi δ .

Poniamo

$$\psi_- := \sum_{j=1}^N \left(\min_{\overline{D_j}} f \right) \varphi_{D_j}$$

e

$$\psi_+ := \sum_{j=1}^N \left(\max_{\overline{D_j}} f \right) \varphi_{D_j} + \sum_{j=N+1}^{N+k} M \varphi_{D_j}, \qquad M := \max_A f$$

e osserviamo che

$$\psi_{-} \in \Sigma_{-}(f\varphi_{A}), \qquad \psi_{+} \in \Sigma_{+}(f\varphi_{A}).$$

Se indichiamo con I_0 un qualsiasi intervallo fissato contenente A e scegliamo $\xi_j, \eta_j \in \overline{D_j}$ in modo che

$$f(\xi_j) = \max_{\overline{D_j}} f, \qquad f(\eta_j) = \min_{\overline{D_j}} f,$$

otteniamo

$$I_{n}^{+}(f\varphi_{A}) - I_{n}^{-}(f\varphi_{A}) \leq I_{n}(\psi_{+}) - I_{n}(\psi_{-})$$

$$= \sum_{j=1}^{N} f(\eta_{j}) m_{n}(D_{j}) + \sum_{j=N+1}^{N+k} M m_{n}(D_{j}) - \sum_{j=1}^{N} f(\xi_{j}) m_{n}(D_{j})$$

$$= \sum_{j=1}^{N} (f(\eta_{j}) - f(\xi_{j})) m_{n}(D_{j}) + M m_{n}(P_{E} \backslash P_{I})$$

$$\leq \varepsilon \sum_{j=1}^{N} m_{n}(D_{j}) + \varepsilon |M|$$

$$\leq \varepsilon (m_{n}(I_{0}) + |M|).$$

Dall'arbitrarietà di ε segue che $I_n^+(f\varphi_A) = I_n^-(f\varphi_A)$.

Argomento intuitivo a favore della seguente affermazione: sotto opportune ipotesi su $A \subset \mathbf{R}^2$ e $f: \mathbf{R}^2 \to R$, vale la formula di "integrazione iterata":

(19)
$$\int_{A} f = \int_{\mathbf{R}} \left(\int_{A_{y}} f(x, y) dx \right) dy, \qquad A_{y} := \{ x \in \mathbf{R} \mid (x, y) \in A \}.$$

OSSERVAZIONE: Il fatto che siano verificate le condizioni per l'esistenza del secondo membro di (19), detto "integrale iterato", non implica, in generale, l'integrabilità di f in A. Per esempio, consideriamo $A \subset \mathbf{R}^2$ tale che

$$A_y = \begin{cases} [0,1] & \text{se } y \in [0,1] \cap \mathbf{Q} \\ [1,2] & \text{se } y \in [0,1] \setminus \mathbf{Q} \\ \emptyset & \text{se } y \in \mathbf{R} \setminus [0,1] \end{cases}$$

e sia f la funzione identicamente uguale a 1 in ${\bf R}^2$. Vediamo allora subito che $x\mapsto f(x,y)$ è Riemann integrabile in A_y per ogni y e si ha

$$\int_{A_y} f(x, y) dx = \varphi_{[0,1]}(y), \qquad y \in \mathbf{R}.$$

In particolare, quindi, anche $y \mapsto \int_{A_y} f(x,y) dx$ è Riemann integrabile in **R**. Tuttavia la funzione f non è integrabile in A poiché, come si vede facilmente, si ha $I_2^-(f) = 0$ e $I_2^+(f) = 2$.

Tuttavia vale il seguente teorema per il caso dell'integrale d'area.

Teorema 2. Sia A un sottoinsieme di \mathbb{R}^2 e sia $f \in \mathcal{R}(A)$. Si verificano i seguenti fatti:

(1) Se $x \mapsto f(x,y)$ è Riemann integrabile in $A_y := \{x \mid (x,y) \in A\}$, per ogni y, allora la funzione $y \mapsto \int_{A_y} f(x,y) dx$ è Riemann integrabile in \mathbf{R} e si ha

$$\int_{\mathbf{R}} \left(\int_{A_y} f(x, y) dx \right) dy = \int_A f;$$

(2) Se $y \mapsto f(x,y)$ è Riemann integrabile in $A_x := \{y \mid (x,y) \in A\}$, per ogni x, allora la funzione $x \mapsto \int_{A_x} f(x,y) dy$ è Riemann integrabile in \mathbf{R} e si ha

$$\int_{\mathbf{R}} \left(\int_{A_x} f(x, y) dy \right) dx = \int_A f.$$

Lezione del 6/10/06 (2 ore)

Enunciato dei seguenti due teoremi che completano il quadro dei risultati (interessanti per noi) sull'integrazione iterata.

Teorema 3. Sia A un sottoinsieme di \mathbb{R}^3 e sia $f \in \mathcal{R}(A)$. Si verificano i seguenti fatti:

(1) Se $(x,y) \mapsto f(x,y,z)$ è Riemann integrabile in $A_z := \{(x,y) \mid (x,y,z) \in A\}$, per ogni z, allora la funzione $z \mapsto \int_{A_z} f(x,y,z) dx dy$ è Riemann integrabile in \mathbf{R} e si ha

$$\int_{\mathbf{R}} \left(\int_{A_z} f(x, y, z) dx dy \right) dz = \int_A f;$$

(2) Se $(x,z) \mapsto f(x,y,z)$ è Riemann integrabile in $A_y := \{(x,z) \mid (x,y,z) \in A\}$, per ogni y, allora la funzione $y \mapsto \int_{A_y} f(x,y,z) dxdz$ è Riemann integrabile in $\mathbf R$ e si ha

$$\int_{\mathbf{R}} \left(\int_{A_y} f(x, y, z) dx dz \right) dy = \int_A f;$$

(3) Se $(y,z) \mapsto f(x,y,z)$ è Riemann integrabile in $A_x := \{(y,z) \mid (x,y,z) \in A\}$, per ogni x, allora la funzione $x \mapsto \int_{A_x} f(x,y,z) dy dz$ è Riemann integrabile in \mathbf{R} e si ha

$$\int_{\mathbf{R}} \left(\int_{A_x} f(x, y, z) dy dz \right) dx = \int_A f.$$

Teorema 4. Sia A un sottoinsieme di \mathbb{R}^3 e sia $f \in \mathcal{R}(A)$. Si verificano i seguenti fatti:

(1) Se $z \mapsto f(x, y, z)$ è Riemann integrabile in $A_{(x,y)} := \{z \mid (x, y, z) \in A\}$, per ogni (x, y), allora la funzione $(x, y) \mapsto \int_{A_{(x,y)}} f(x, y, z) dz$ è Riemann integrabile in \mathbf{R}^2 e si ha

$$\int_{\mathbf{R}^2} \left(\int_{A_{(x,y)}} f(x,y,z) dz \right) dx dy = \int_A f;$$

(2) Se $y \mapsto f(x, y, z)$ è Riemann integrabile in $A_{(x,z)} := \{y \mid (x, y, z) \in A\}$, per ogni (x, z), allora la funzione $(x, z) \mapsto \int_{A_{(x,z)}} f(x, y, z) dy$ è Riemann integrabile in \mathbf{R}^2 e si ha

$$\int_{\mathbf{R}^2} \left(\int_{A_{(x,z)}} f(x,y,z) dy \right) dx dz = \int_A f;$$

(3) Se $x \mapsto f(x, y, z)$ è Riemann integrabile in $A_{(y,z)} := \{x \mid (x, y, z) \in A\}$, per ogni (y, z), allora la funzione $(y, z) \mapsto \int_{A_{(y,z)}} f(x, y, z) dx$ è Riemann integrabile in \mathbf{R}^2 e si ha

$$\int_{\mathbf{R}^2} \left(\int_{A_{(y,z)}} f(x,y,z) dx \right) dy dz = \int_A f.$$

Esempi.

OSSERVAZIONE: Sia A una regione "elementare", come per esempio: il rettangolo, il disco, il prisma, il cilindro, il cono, la sfera. Allora, com' è facile verificare, ∂A ha misura zero e dunque A è misurabile secondo Riemann (grazie a Teorema 1). Il calcolo esplicito di $\int_A 1$ in questi casi elementari conduce a risultati coerenti a quelli noti fin dall'antichità. Questo fatto, insieme con le proprietà generali di $\int_A 1$ (invarianza rispetto ad alcune classi di trasformazioni), costituisce una buona motivazione per la seguente definizione.

Definizione 10. Un sottoinsieme A di \mathbb{R}^n si dice misurabile secondo Riemann (in \mathbb{R}^n) se la sua funzione caratteristica è Riemann integrabile in \mathbb{R}^n , cioè se la funzione che vale identicamente 1 appartiene a $\mathcal{R}(A)$. In tal caso, si definisce la misura n-dimensionale di A (secondo Riemann) come il numero

$$m_n(A) := \int_{\mathbf{R}^n} \varphi_A = \int_A 1.$$

Notazione alternativa: $\mathcal{L}^n(A)$, $\mathcal{H}^n(A)$.

DIMOSTRAZIONE DI Teorema 2: Sarà sufficiente provare (1), essendo la dimostrazione di (2) identica a quella di (1).

Primo passo: $A = \mathbb{R}^2$. Fissato $\varepsilon > 0$, possiamo trovare

$$\psi_- \in \Sigma_-(f), \qquad \psi_+ \in \Sigma_+(f)$$

tali che

$$I_2(\psi_+) - I_2(\psi_-) < \varepsilon$$
.

Senza perdere in generalità possiamo supporre che esse siano combinazione lineare delle stesse funzioni caratteristiche, cioè

$$\psi_{-} = \sum_{j=1}^{N} \lambda_j \varphi_{D_j}, \qquad \psi_{+} = \sum_{j=1}^{N} \mu_j \varphi_{D_j}$$

con

$$D_j = A_j \times B_j$$
, $(A_j, B_j \text{ intervalli aperti a destra in } \mathbf{R})$.

Osserviamo che , per ogni y fissato, le funzioni $x\mapsto \psi_-(x,y)$ e $x\mapsto \psi_+(x,y)$ sono semplici. Si ha più precisamente

$$\psi_{-}(\cdot,y) = \sum_{j=1}^{N} \lambda_j \varphi_{B_j}(y) \varphi_{A_j}, \qquad \psi_{+}(\cdot,y) = \sum_{j=1}^{N} \mu_j \varphi_{B_j}(y) \varphi_{A_j}.$$

Poiché inoltre

$$\psi_{-}(\cdot,y) \le f(\cdot,y) \le \psi_{+}(\cdot,y)$$

per ogni y, segue da Proposizione 9 che

$$I_1(\psi_-(\cdot,y)) \le \int_{\mathbf{R}} f(x,y) dx \le I_1(\psi_+(\cdot,y))$$

e cioè

$$\sum_{j=1}^{N} \lambda_j \varphi_{B_j}(y) m_1(A_j) \le \int_{\mathbf{R}} f(x, y) dx \le \sum_{j=1}^{N} \mu_j \varphi_{B_j}(y) m_1(A_j)$$

per ogni y. Se poniamo

$$F(y) := \int_{\mathbf{R}} f(x,y) dx, \qquad \Psi_{-}(y) := \sum_{j=1}^{N} \lambda_{j} m_{1}(A_{j}) \varphi_{B_{j}}(y), \qquad \Psi_{+}(y) := \sum_{j=1}^{N} \mu_{j} m_{1}(A_{j}) \varphi_{B_{j}}(y)$$

allora si ha

$$\Psi_- \in \Sigma_-(F), \qquad \Psi_+ \in \Sigma_+(F).$$

Osservando che

$$I_1(\Psi_-) = \sum_{j=1}^N \lambda_j m_1(A_j) m_1(B_j) = \sum_{j=1}^N \lambda_j m_1(D_j) = I_2(\psi_-)$$

е

$$I_1(\Psi_+) = \sum_{j=1}^N \mu_j m_1(A_j) m_1(B_j) = \sum_{j=1}^N \mu_j m_1(D_j) = I_2(\psi_+)$$

troviamo prima di tutto che

$$I_1^+(F) - I_1^-(F) \le I_1(\Psi_+) - I_1(\Psi_-) = I_2(\psi_+) - I_2(\psi_-) \le \varepsilon$$

e cioè, essendo ε arbitrario, che F è Riemann integrabile in ${\bf R}$. Inoltre

$$I_2(\psi_-) \le I_1(\Psi_-) \le \int_{\mathbf{R}} F \le I_1(\Psi_+) \le I_2(\psi_+).$$

Poiché si ha anche

$$I_2(\psi_-) \le \int_{\mathbf{R}^2} f \le I_2(\psi_+)$$

si ottiene

$$\left| \int_{\mathbf{R}^2} f - \int_{\mathbf{R}} F \right| \le \varepsilon$$

e quindi, per l'arbitrarietà di ε

$$\int_{\mathbf{R}^2} f = \int_{\mathbf{R}} F.$$

Ciò conclude la dimostrazione di (1), nel caso $A = \mathbf{R}^2$.

Secondo passo: $A \subset \mathbf{R}^2$ qualsiasi. In tal caso, basta applicare il primo passo alla funzione $f\varphi_A$ dopo aver osservato che

- (i) $f\varphi_A$ è Riemann integrabile in \mathbb{R}^2 ;
- (ii) $x \mapsto (f\varphi_A)(x,y)$ è Riemann integrabile in **R**. Infatti si ha

$$\varphi_A(x,y) = \varphi_{A_y}(x)$$

e inoltre, per ogni y, la funzione $f(\cdot,y)\varphi_{A_y}$ è Riemann integrabile in **R** per ipotesi.

Se ne deduce che

$$y \mapsto \int_{\mathbf{R}} f(x,y) \varphi_A(x,y) dx = \int_{\mathbf{R}} f(x,y) \varphi_{A_y}(x) dx = \int_{A_y} f(x,y) dx$$

è Riemann integrabile e si ha

$$\begin{split} \int_{\mathbf{R}} \left(\int_{A_y} f(x, y) dx \right) dy &= \int_{\mathbf{R}} \left(\int_{\mathbf{R}} f(x, y) \varphi_A(x, y) dx \right) dy \\ &= \int_{\mathbf{R}^2} f \varphi_A \\ &= \int_{A} f. \end{split}$$

OSSERVAZIONE: L'argomento usato per la dimostrazione precedente si adatta in modo naturale e semplice per dimostrare Teorema 3 e Teorema 4.

Lezione del 10/10/06 (2 ore)

OSSERVAZIONE: Considerata una funzione $f:\Omega\to [0,+\infty),$ con $\Omega\subset \mathbf{R}^2,$ definiamo il suo "sottografico":

$$S_f := \{(x, y, z) \in \mathbf{R}^3 \mid (x, y) \in \Omega, \ 0 \le z \le f(x, y) \}.$$

Poiché

$$(S_f)_{(x,y)} = \begin{cases} [0, f(x,y)] & \text{se } (x,y) \in \Omega \\ \emptyset & \text{se } (x,y) \notin \Omega \end{cases}$$

risulta banalmente che la funzione $z \mapsto 1$ è Riemann integrabile in $(S_f)_{(x,y)}$, per ogni (x,y). Allora, se S_f è misurabile secondo Riemann, dal Teorema 4 segue subito che

$$(x,y) \mapsto \int_{(S_f)_{(x,y)}} 1 \, dz = f(x,y) \varphi_{\Omega}(x,y)$$

è a sua volta Riemann integrabile e si ha

(20)
$$m_3(S_f) = \int_{S_f} 1 = \int_{\mathbf{R}^2} \left(\int_{(S_f)_{(x,y)}} 1 \, dz \right) dx dy = \int_{\Omega} f(x,y) \, dx dy.$$

Un caso notevole in cui S_f risulta misurabile secondo Riemann (e vale quindi la formula (32)), si verifica quando f è continua e Ω è un compatto con frontiera di misura zero. Più precisamente:

- \bullet La continuità di fe la compattezza di $\Omega,$ insieme, implicano che S_f è compatto;
- Le stesse ipotesi su f, Ω e l'ulteriore assunzione che $\partial \Omega$ abbia misura zero comportano facilmente che ∂S_f ha misura zero;

• La conclusione segue subito da Teorema 1.

Dimostrazione di $\int_{\mathbf{R}} e^{-x^2} dx = \pi^{1/2}$.

Esempi.

Lezione del 13/10/06 (2 ore)

Proposizione 10. Poniamo:

$$\mathbb{P}(u,v) := \{ ru + sv \, | \, r,s \in [0,1] \}, \qquad per \, u,v \in \mathbf{R}^n \ (n=2,3)$$

e

$$\mathbb{P}(u, v, w) := \{ ru + sv + tw \mid r, s, t \in [0, 1] \}, \qquad per \ u, v, w \in \mathbf{R}^3.$$

allora si ha:

$$m_2\left(\mathbb{P}(u,v)\right) = \begin{cases} \|u \times v\| & \text{se } u,v \in \mathbf{R}^3\\ |\det(u|v)| & \text{se } u,v \in \mathbf{R}^2 \end{cases}$$

e

$$m_3(\mathbb{P}(u,v,w)) = |(u \times v) \bullet w| = |\det(u|v|w)|, \quad se \ u,v,w \in \mathbf{R}^3.$$

DIMOSTRAZIONE: La prima e la terza formula seguono subito dalla definizione di prodotto vettoriale data nel corso di Fisica e ricordando le proprietà del prodotto scalare. La seconda formula si ottiene infine dalla prima, come segue (se $u = (u_1, u_2)$ e $v = (v_1, v_2)$):

$$m_2(\mathbb{P}(u,v)) = ||(u_1,u_2,0) \times (v_1,v_2,0)|| = |\det(u|v)|.$$

Esempi di parametrizzazione di una superficie (grafico di una funzione di due variabili, grafici di rotazione, sfera, cono).

OSSERVAZIONE: Ogni superficie liscia ammette parametrizzazioni non liscie. Inoltre esistono superfici non liscie con parametrizzazioni liscie (esempio: $\varphi(s,t) := (s^3, s^2, t), (s,t) \in [-1,1]^2$).

Nella seguente proposizione si introduce una condizione di regolarità (omologa a quella delle curve) e si dimostra come essa serva a prevenire situazioni come quella descritta nella precedente osservazione.

Proposizione 11. Sia $\varphi: A \to \mathbf{R}^3$, con A un aperto di \mathbf{R}^2 , mappa di classe C^1 soddisfacente la seguente condizione (detta di regolarità):

(21)
$$\frac{\partial \varphi}{\partial s}(P) \times \frac{\partial \varphi}{\partial t}(P) \neq 0$$

per ogni $P \in A$. Allora $\varphi(A)$ è localmente grafico di una funzione di classe C^1 .

DIMOSTRAZIONE: Sia $(s_0, t_0) \in A$. Per (21), deve essere verificata almeno una delle seguenti equazioni:

(22)
$$\det \left(\nabla \varphi_1(s_0, t_0) \middle| \nabla \varphi_2(s_0, t_0) \right) \neq 0$$

(23)
$$\det \left(\nabla \varphi_1(s_0, t_0) \middle| \nabla \varphi_3(s_0, t_0) \right) \neq 0$$

(24)
$$\det \left(\nabla \varphi_2(s_0, t_0) \middle| \nabla \varphi_3(s_0, t_0) \right) \neq 0.$$

Proveremo adesso che se è verificata (22), allora, vicino a $P_0 := \varphi(s_0, t_0)$, l'immagine $\varphi(A)$ è grafico di una funzione di classe C^1 nella variabile (x, y).

In tal caso, infatti, essendo i campi $\nabla \varphi_j$ continui e ricordando il teorema della permanenza del segno per le funzioni continue, troviamo che deve esistere un intorno di (s_0, t_0) , contenuto in A, per ogni (s, t) del quale si ha

$$\det (\nabla \varphi_1(s,t) | \nabla \varphi_2(s,t)) \neq 0.$$

Il teorema di invertibilità locale (che è una facile conseguenza del teorema delle funzioni implicite di Dini; vedasi [1, 2]), prova allora l'esistenza di un intorno I di (s_0, t_0) , $I \subset A$, tale che

$$\Phi := (\varphi_1, \varphi_2)|I$$

è invertibile con inversa di classe C^1 . A questo punto è facile verificare che $\varphi(I)$ è grafico di una funzione di classe C^1 e precisamente di

$$\varphi_3 \circ \Phi^{-1} : \Phi(I) \to \mathbf{R}.$$

Infatti, dire che $(x, y, z) \in \varphi(I)$ equivale a dire che

$$(x,y) = \Phi(s,t), \qquad z = \varphi_3(s,t)$$

per un certo $(s,t) \in I$, il che implica subito $z = \varphi_3 \circ \Phi^{-1}(x,y)$.

Analogamente si può verificare che se è verificata (23) (risp. (24), allora, vicino a P_0 , l'immagine $\varphi(A)$ è grafico di una funzione di classe C^1 nella variabile (x, z) (risp. (y, z)).

Lezione del 17/10/06 (2 ore)

OSSERVAZIONE: Sia I un intorno di 0 in ${\bf R}$ e

$$\gamma:I\to\mathbf{R}^2$$

una curva derivabile in 0. Sia poi A un intorno di $\gamma(0)$ e

$$\varphi = (\varphi_1, \varphi_2, \varphi_3) : A \to \mathbf{R}^3$$

una mappa differenziabile in $\gamma(0)$. Allora, per j=1,2,3, la funzione $\varphi_j\circ\gamma$ è derivabile in 0 e si ha

$$(\varphi_j \circ \gamma)'(0) = \nabla \varphi_j(\gamma(0)) \bullet \gamma'(0).$$

In altri termini, il campo $\varphi \circ \gamma$ è derivabile in 0 e se $d\varphi_{(s_0,t_0)}$ indica il differenziale di φ in (s_0,t_0) , cioè la matrice

$$d\varphi_{(s_0,t_0)} := \left(\frac{\partial \varphi}{\partial s}(s_0,t_0) \,\middle|\, \frac{\partial \varphi}{\partial t}(s_0,t_0)\right)$$

allora

$$(\varphi \circ \gamma)'(0) = (\nabla \varphi_1(\gamma(0)) \bullet \gamma'(0), \nabla \varphi_2(\gamma(0)) \bullet \gamma'(0), \nabla \varphi_3(\gamma(0)) \bullet \gamma'(0))$$

$$= d\varphi_{\gamma(0)}(\gamma'(0))$$

$$= \gamma_1'(0) \frac{\partial \varphi}{\partial s}(\gamma(0)) + \gamma_2'(0) \frac{\partial \varphi}{\partial t}(\gamma(0)).$$
(25)

Proposizione 12. Sia $A \stackrel{.}{e}$ un aperto di \mathbb{R}^2 e

$$\varphi:A\to\mathbf{R}^3$$

una mappa tale che

- (i) φ sia differenziabile in $(s_0, t_0) \in A$;
- (ii) la condizione di regolarità sia verificata in (s_0, t_0) , i.e.

$$\frac{\partial \varphi}{\partial s}(s_0, t_0) \times \frac{\partial \varphi}{\partial t}(s_0, t_0) \neq 0.$$

Allora:

(1) lo spazio vettoriale $d\varphi_{(s_0,t_0)}(\mathbf{R}^2)$ ha dimensione due e una sua base è data da

$$\left\{ \frac{\partial \varphi}{\partial s}(s_0, t_0), \frac{\partial \varphi}{\partial t}(s_0, t_0) \right\};$$

(2) $v \in d\varphi_{(s_0,t_0)}(\mathbf{R}^2)$ se e soltanto se esiste

$$\gamma:I\to A$$

dove $I \subset \mathbf{R}$ è un intorno di 0, derivabile in 0 e tale che

(26)
$$\gamma(0) = (s_0, t_0), \qquad (\varphi \circ \gamma)'(0) = v.$$

DIMOSTRAZIONE: (1) Segue banalmente da (ii) e dalla definizione di $d\varphi_{(s_0,t_0)}$.

(2) Sia $v \in d\varphi_{(s_0,t_0)}(\mathbf{R}^2)$, cioè $v = d\varphi_{(s_0,t_0)}(w)$ per un certo $w \in \mathbf{R}^2$. Se poniamo $(\varepsilon > 0$, sufficientemente piccolo)

$$\gamma(\rho) := (s_0, t_0) + \rho w, \quad \rho \in (-\varepsilon, \varepsilon)$$

e ci ricordiamo della formula (25), otteniamo subito che vale (26).

Anche il viceversa è una conseguenza, stavolta immediata, di (25).

Proposizione 13. Siano A e B sottoinsiemi aperti di \mathbb{R}^2 e

$$\varphi: A \to \mathbf{R}^3, \qquad \psi: B \to \mathbf{R}^3$$

 $mappe iniettive di classe C^1$, entrambe soddisfacenti la condizione di regolarità. Supponiamo inoltre che

$$\varphi(A) = \psi(B).$$

Allora, se $(s_0, t_0) \in A$ e $(u_0, v_0) \in B$ sono tali che

$$\varphi(s_0, t_0) = \psi(u_0, v_0)$$

si ha

$$d\varphi_{(s_0,t_0)}(\mathbf{R}^2) = d\psi_{(u_0,v_0)}(\mathbf{R}^2).$$

DIMOSTRAZIONE: Fissato arbitrariamente $w \in \mathbb{R}^2$, per $\varepsilon > 0$ sufficientemente piccolo, possiamo definire

$$\lambda(\rho) := \psi^{-1} \circ \varphi((s_0, t_0) + \rho w), \qquad \rho \in (-\varepsilon, \varepsilon).$$

Allora $\lambda(0) = (u_0, v_0)$ e inoltre, mediante un argomento simile a quello invocato in Proposizione 5, si può dimostrare che λ è derivabile in 0.

Poiché

$$\varphi((s_0, t_0) + \rho w) = \psi \circ \lambda(\rho), \qquad \rho \in (-\varepsilon, \varepsilon)$$

si ottiene che

$$d\varphi_{(s_0,t_0)}(w) = d\psi_{(u_0,v_0)}(\lambda'(0)).$$

Così l'inclusione

$$d\varphi_{(s_0,t_0)}(\mathbf{R}^2) \subset d\psi_{(u_0,v_0)}(\mathbf{R}^2)$$

segue dall'arbitrarietà di $w \in \mathbf{R}^2$, mentre quella opposta si ricava scambiando i ruoli di φ e ψ . \square

La Proposizione 12 motiva la seguente definizione, che risulta ben posta per Proposizione 13.

Definizione 11. Sia A un sottoinsieme aperto di \mathbf{R}^2 e $\varphi: A \to \mathbf{R}^3$ una mappa iniettiva di classe C^1 soddisfacente la condizione di regolarità. Allora, per $(s_0, t_0) \in A$, lo spazio vettoriale bidimensionale $d\varphi_{(s_0,t_0)}(\mathbf{R}^2)$ è denominato piano tangente a $S:=\varphi(A)$ in $P_0:=\varphi(s_0,t_0)$ e viene indicato con la notazione $T_{P_0}S$. Ogni suo elemento viene detto vettore tangente a S in P_0 .

Vogliamo definire l'integrale di una funzione su una superficie e, in particolare, una nozione di misura delle superfici che estenda coerentemente l'area nota di superfici "elementari" come la porzione poligonale di piano, il cono, il cilindro o la sfera. Volendo riprendere l'idea di considerare le superfici poliedrali (triangolari), ci si deve ricordare dell'esempio di Schwarz (vedi lezione del 19/9/06). Esso ci indica che i triangoli debbono essere scelti di modo che, passando al limite, essi tendano a disporsi "in posizione tangente".

OSSERVAZIONE: Sia $\varphi: A \to \mathbf{R}^3$, con A sottoinsieme aperto di \mathbf{R}^2 , una mappa che supporremo iniettiva, regolare e di classe C^1 . Preso $(s_0, t_0) \in A$, siano poi $T(\varepsilon)$ e $T_{\varphi}(\varepsilon)$, rispettivamente, il triangolo interno ad A di vertici (s_0, t_0) , $(s_0 + \varepsilon, t_0)$, $(s_0, t_0 + \varepsilon)$ e quello inscritto in

$$S := \varphi(A) \subset \mathbf{R}^3$$

di vertici $\varphi(s_0, t_0)$, $\varphi((s_0 + \varepsilon, t_0), \varphi((s_0, t_0 + \varepsilon))$. Le ben note uguaglianze

$$\lim_{\varepsilon \to 0} \frac{\varphi(s_0 + \varepsilon, t_0) - \varphi(s_0, t_0)}{\varepsilon} = \frac{\partial \varphi}{\partial s}(s_0, t_0), \qquad \lim_{\varepsilon \to 0} \frac{\varphi(s_0, t_0 + \varepsilon) - \varphi(s_0, t_0)}{\varepsilon} = \frac{\partial \varphi}{\partial t}(s_0, t_0).$$

ci mostrano che il triangolo $T_{\varphi}(\varepsilon)$ tende (quando $\varepsilon \to 0$) a disporsi "in posizione tangente" a S in $\varphi(s_0, t_0)$. Inoltre si ha

(27)
$$\lim_{\varepsilon \to 0} \frac{m_2(T_{\varphi}(\varepsilon))}{m_2(T(\varepsilon))} = \left\| \frac{\partial \varphi}{\partial s}(s_0, t_0) \times \frac{\partial \varphi}{\partial t}(s_0, t_0) \right\|.$$

Infatti

$$\frac{m_2(T_{\varphi}(\varepsilon))}{m_2(T(\varepsilon))} = \frac{\|[\varphi(s_0 + \varepsilon, t_0) - \varphi(s_0, t_0)] \times [\varphi(s_0, t_0 + \varepsilon) - \varphi(s_0, t_0)]\|/2}{\varepsilon^2/2}$$
$$= \left\|\frac{\varphi(s_0 + \varepsilon, t_0) - \varphi(s_0, t_0)}{\varepsilon} \times \frac{\varphi(s_0, t_0 + \varepsilon) - \varphi(s_0, t_0)}{\varepsilon}\right\|$$

per Proposizione 10. Il numero al secondo membro di (27) si candida dunque ad essere il "fattore di trasformazione dell'area" indotto da φ in (s_0, t_0) .

Ci aspettiamo quindi che, data una funzione $f:S\to \mathbf{R}$ e sotto opportune ulteriori ipotesi, il numero

$$\int_C f \circ \varphi \, \left\| \frac{\partial \varphi}{\partial s} \times \frac{\partial \varphi}{\partial t} \right\|$$

costituisca il candidato naturale per la definizione dell'integrale su S di f.

Nella seguente definizione si precisa la natura del dominio di integrazione, per l'integrale di superficie.

Definizione 12. Diremo che $\varphi: C \to \mathbf{R}^3$ è una parametrizzazione regolare (di superficie) se

- (i) C è un sottoinsieme compatto di \mathbf{R}^2 , chiusura di un aperto A la cui frontiera è una curva regolare a tratti;
- (ii) φ è continua;
- (iii) $\varphi|A$ è iniettiva, di classe C^1 e la mappa

$$P \mapsto \frac{\partial \varphi}{\partial u}(P) \times \frac{\partial \varphi}{\partial v}(P), \qquad P \in A$$

è limitata e sempre diversa da zero;

(iv) se $\gamma:[a,b]\to \mathbf{R}^2$ è una parametrizzazione regolare a tratti tale che $\gamma([a,b])=\partial C$, allora $\varphi\circ\gamma:[a,b]\to \mathbf{R}^3$ è una parametrizzazione regolare a tratti.

Una <u>superficie regolare</u> è un sottoinsieme S di \mathbf{R}^3 per cui esiste una parametrizzazione regolare $\varphi: C \to \mathbf{R}^3$ tale che $S = \varphi(C)$.

Questa definizione si estende naturalmente al caso "regolare a tratti", come segue.

Definizione 13. Una parametrizzazione regolare a tratti (di superficie) è una mappa

$$\varphi: C \to \mathbf{R}^3$$

tale che $\varphi|(C \setminus \partial C)$ è iniettiva e gode della seguente ulteriore proprietà. Esistono C_1, \ldots, C_N insiemi compatti tali che

- (i) $C = \bigcup_{j=1}^{N} C_j$;
- (ii) $C_i \cap C_j = \partial C_i \cap \partial C_j$, se $i \neq j$;
- (iii) per ogni j = 1, ..., N, la mappa $\varphi|C_i$ è una parametrizzazione regolare.

Ogni sottoinsieme S di \mathbf{R}^3 per cui esiste una parametrizzazione regolare a tratti $\varphi: C \to \mathbf{R}^3$ tale che $S = \varphi(C)$ è detto superficie regolare a tratti.

Vale il seguente risultato sull'indipendenza dalla parametrizzazione, omologo di Proposizione 5 per le curve.

Proposizione 14. Se $\varphi: C \to \mathbf{R}^3$, $\psi: K \to \mathbf{R}^3$ sono parametrizzazioni regolari a tratti tali che

$$\varphi(C) = \psi(K)$$

e se è data una qualsiasi funzione continua

$$f: \varphi(C) = \psi(K) \to \mathbf{R},$$

allora si ha

$$\int_C f \circ \varphi \, \left\| \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \right\| = \int_K f \circ \psi \, \left\| \frac{\partial \psi}{\partial u} \times \frac{\partial \psi}{\partial v} \right\|.$$

Lezione del 20/10/06 (2 ore)

La seguente definizione è ben posta, in virtù di Proposizione 14.

Definizione 14. Siano S una superficie regolare a tratti e $f: S \to \mathbf{R}$ una funzione continua. Allora l'integrale di f su S è il numero

$$\int_{S} f := \int_{C} f \circ \varphi \left\| \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \right\|$$

dove $\varphi: C \to \mathbf{R}^3$ è una qualsiasi parametrizzazione regolare a tratti tale che $\varphi(C) = S$. In particolare, si può definire l'area di S:

$$m_2(S) := \int_S 1 = \int_C \left\| \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \right\|$$

Notazione alternativa: $\int_{S} f d\sigma$, $\int_{S} f d\mathcal{H}^{2}$.

OSSERVAZIONE: La definizione precedente di misura di una superficie gode delle proprietà naturalmente attese per questa nozione. Per esempio, per le superfici di cui sia nota elementarmente l'area (una porzione poligonale di piano, un cilindro, un cono, una sfera, ...), allora tale area coincide con la corrispondente misura m_2 . Inoltre, si prova molto facilmente che

$$m_2(S+v) = m_2(S)$$

per ogni $v \in \mathbf{R}^2$ (invarianza rispetto alla traslazione) e

$$m_2(\lambda S) = \lambda^2 m_2(S)$$

per ogni numero reale positivo λ (invarianza rispetto alle omotetie).

OSSERVAZIONE: Sia C un sottoinsieme compatto di \mathbf{R}^2 , chiusura di un aperto la cui frontiera è una curva regolare a tratti. Sia poi f una funzione continua in C. Allora non è difficile verificare che

- (1) f è integrabile in C (infatti ∂C ha misura zero e vale Teorema 1);
- (2) l'insieme $\tilde{C} := \{(x, y, 0) \mid (x, y) \in C\}$ è una superficie regolare (con parametrizzazione scontata: $\varphi(s, t) := (s, t, 0), (s, t) \in C$);

(3) se si considera la funzione continua $\tilde{f}: \tilde{C} \to \mathbf{R}$ definita come segue

$$\widetilde{f}(x, y, z) := f(x, y)$$

allora si ha

$$\int_{\widetilde{C}} \widetilde{f} = \int_{C} (\widetilde{f} \circ \varphi) \left\| \frac{\partial \varphi}{\partial s} \times \frac{\partial \varphi}{\partial t} \right\| = \int_{C} f.$$

Quest'ultima uguaglianza ci permette di interpretare l'integrale d'area come integrale di superficie.

Definizione 15. Una superficie regolare orientatata è una coppia (S, N) tale che:

- (i) S è una superficie regolare;
- (ii) $N: S \to \mathbf{R}^3$ è un campo ortogonale a S, unitario e continuo.

Esempio di S liscia per la quale non esiste N tale che (S, N) è una superficie regolare orientata: il nastro di Moebius.

Definizione 16. Siano (S, N) e $F: S \to \mathbf{R}^3$, rispettivamente, una superficie regolare orientatata e un campo continuo di vettori. Allora l'integrale di F su (S, N) è definito come segue:

$$\int_{(S,N)} F := \int_S F \bullet N.$$

Notazione alternativa: $\int_{\overline{S}} F \bullet d\sigma$.

OSSERVAZIONE: Sia (S, N) una superficie regolare orientata. Se φ è la parametrizzazione sottintesa in Definizione 15 allora, in virtù di Proposizione 12(1), si ha

$$\frac{\partial \varphi}{\partial s} \times \frac{\partial \varphi}{\partial t} = \sigma \left\| \frac{\partial \varphi}{\partial s} \times \frac{\partial \varphi}{\partial t} \right\| N \circ \varphi$$

dove σ vale identicamente 1 (risp. -1) se i vettori collineari

$$N \circ \varphi, \qquad \frac{\partial \varphi}{\partial s} \times \frac{\partial \varphi}{\partial t}$$

hanno verso coincidente (risp. opposto).

Ne segue che

$$\int_{(S,N)} F = \int_A (F \circ \varphi) \bullet (N \circ \varphi) \left\| \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \right\| = \sigma \int_A (F \circ \varphi) \bullet \left(\frac{\partial \varphi}{\partial s} \times \frac{\partial \varphi}{\partial t} \right).$$

Osserviamo che nel caso particolare che S sia il grafico di una funzione f di classe C^1 e considerata la parametrizzazione "naturale"

$$\varphi(s,t) := (s,t,f(s,t)),$$

si ha

$$\frac{\partial \varphi}{\partial s} \times \frac{\partial \varphi}{\partial t} = \left(-\frac{\partial f}{\partial s}, -\frac{\partial f}{\partial t}, 1\right).$$

Esempi.

Lezione del 24/10/06 (2 ore)

Definizione 17. Sia A un sottoinsieme aperto di \mathbb{R}^n (n=2,3) e

$$\varphi: A \to \mathbf{R}^n$$

una mappa di classe C^1 . Si chiama fattore di trasformazione della misura (associato a φ) la funzione continua $J\varphi: A \to \mathbf{R}$ definita come segue:

$$J\varphi := \begin{cases} \left| \det \left(\frac{\partial \varphi}{\partial u} \middle| \frac{\partial \varphi}{\partial v} \right) \right|, & se \ n = 2 \\ \left| \det \left(\frac{\partial \varphi}{\partial u} \middle| \frac{\partial \varphi}{\partial v} \middle| \frac{\partial \varphi}{\partial w} \right) \right|, & se \ n = 3. \end{cases}$$

Vale la seguente formula per il cambiamento di variabile negli integrali d'area e di volume, di cui daremo una dimostrazione nel corso della prossima lezione.

Teorema 5. Sia A un sottoinsieme aperto e misurabile di \mathbb{R}^n (n=2,3) e sia

$$\varphi: \overline{A} \to \mathbf{R}^n$$

una mappa continua tale che:

- (i) $\varphi|A$ è iniettiva e di classe C^1 con derivate parziali uniformemente continue;
- (ii) la funzione $J\varphi: A \to \mathbf{R}$ è sempre diversa da zero.

Allora l'insieme $\varphi(A)$ è misurabile e, se $f:\varphi(\overline{A})\to \mathbf{R}$ è una funzione continua, vale la seguente uguaglianza

$$\int_{\varphi(A)} f = \int_{A} (f \circ \varphi) J\varphi.$$

OSSERVAZIONE: Il Teorema 5 è compatibile con la definizione di integrale di funzione su una superficie. Infatti (sotto le ipotesi del teorema), definendo

$$\tilde{\varphi}(u,v) := (\varphi_1(u,v), \varphi_2(u,v), 0), \quad (u,v) \in A$$

 \mathbf{e}

$$\tilde{f}(x, y, z) := f(x, y), \qquad (x, y, z) \in \tilde{\varphi}(A),$$

si ha prima di tutto (per una delle osservazioni della precedente lezione)

$$\int_{\varphi(A)} f = \int_{\tilde{\varphi}(A)} \tilde{f}.$$

Inoltre, dalla definizione di integrale di funzione su una superficie, si ha

$$\int_{\tilde{\varphi}(A)} \tilde{f} = \int_{A} (\tilde{f} \circ \tilde{\varphi}) \left\| \frac{\partial \tilde{\varphi}}{\partial u} \times \frac{\partial \tilde{\varphi}}{\partial v} \right\| = \int_{A} (f \circ \varphi) J \varphi.$$

Calcolo del fattore di trasformazione in alcuni casi notevoli: coordinate polari, coordinate cilindriche e coordinate sferiche.

Esempi.

Lezione del 27/10/06 (2 ore)

DIMOSTRAZIONE di Teorema 5 (Sketch): Esporremo l'argomento dimostrativo nell'ipotesi che sia n=2 (per n=3 il ragionamento è identico) e $f\equiv 1$ (l'estensione alle funzioni semplici e in seguito al caso generale non è difficile). In quanto segue, un triangolo di vertici P,Q,R verrà denotato col simbolo [P;Q;R].

Fissato arbitrariamente $\varepsilon > 0$, consideriamo la rete a maglia quadrata di lato ε (supponiamo che l'origine ne sia un nodo). Indichiamo poi con $\{(s_j, t_j)\}$ tutti i nodi di questa rete per i quali accade che i triangoli

$$A_j := \llbracket (s_j, t_j); (s_j + \varepsilon, t_j); (s_j, t_j + \varepsilon) \rrbracket \quad \text{e} \quad B_j := \llbracket (s_j, t_j); (s_j - \varepsilon, t_j); (s_j, t_j - \varepsilon) \rrbracket$$

sono inclusi in A.

Poniamo anche

$$A_i^{\varphi} := [\![\varphi(s_j,t_j);\varphi(s_j+\varepsilon,t_j);\varphi(s_j,t_j+\varepsilon)]\!], \qquad B_i^{\varphi} := [\![\varphi(s_j,t_j);\varphi(s_j-\varepsilon,t_j);\varphi(s_j,t_j-\varepsilon)]\!].$$

Allora si ha

(28)
$$\left| \int_{\varphi(A)} f - \int_{A} (f \circ \varphi) J\varphi \right| = \left| m_2(\varphi(A)) - \int_{A} J\varphi \right| \le I_1 + I_2 + L_1 + L_2$$

dove

$$I_1 := \left| m_2(\varphi(A)) - \sum_j m_2(A_j^{\varphi}) - \sum_j m_2(B_j^{\varphi}) \right|,$$

$$I_2 := \left| \sum_j \int_{A_j} J\varphi + \sum_j \int_{B_j} J\varphi - \int_A J\varphi \right|$$

e

$$L_1 := \sum_{j} \left| m_2(A_j^{\varphi}) - \int_{A_j} J\varphi \right|, \qquad L_2 := \sum_{j} \left| m_2(B_j^{\varphi}) - \int_{B_j} J\varphi \right|.$$

Per Proposizione 10 si ha

$$m_{2}(A_{j}^{\varphi}) - \int_{A_{j}} J\varphi = \frac{\left| \det[\varphi(s_{j} + \varepsilon, t_{j}) - \varphi(s_{j}, t_{j}) \mid \varphi(s_{j}, t_{j} + \varepsilon) - \varphi(s_{j}, t_{j}) \right| }{2} - \int_{A_{j}} J\varphi$$

$$= \frac{1}{2} \left| \det\left[\varepsilon \frac{\partial \varphi}{\partial s}(s_{j}, t_{j}) + o(\varepsilon) \mid \varepsilon \frac{\partial \varphi}{\partial t}(s_{j}, t_{j}) + o(\varepsilon) \right] \right| - \int_{A_{j}} J\varphi$$

$$= \frac{\varepsilon^{2}}{2} \left| \det\left[\frac{\partial \varphi}{\partial s}(s_{j}, t_{j}) \mid \frac{\partial \varphi}{\partial t}(s_{j}, t_{j}) \right] \right| + o(\varepsilon^{2}) - \int_{A_{j}} J\varphi$$

$$= m_{2}(A_{j})J\varphi(s_{j}, t_{j}) + m_{2}(A_{j})\frac{o(\varepsilon^{2})}{\varepsilon^{2}} - \int_{A_{j}} J\varphi$$

e anzi non è difficile dimostrare che l'infinitesimo $o(\varepsilon^2)/\varepsilon^2$, presente in quest'ultima espressione, si può maggiorare con un infinitesimo $\sigma(\varepsilon)$ indipendente da j, sicché

$$\left| m_2(A_j^{\varphi}) - \int_{A_j} J\varphi \right| \le \left| m_2(A_j)J\varphi(s_j, t_j) - \int_{A_j} J\varphi \right| + m_2(A_j)\sigma(\varepsilon)$$

$$= \left| \int_{A_j} J\varphi(s_j, t_j) - J\varphi \right| + m_2(A_j)\sigma(\varepsilon)$$

$$\le \int_{A_j} |J\varphi(s_j, t_j) - J\varphi| + m_2(A_j)\sigma(\varepsilon).$$

Pertanto

$$L_1 \leq \sum_{j} \int_{A_j} |J\varphi(s_j, t_j) - J\varphi| + \sigma(\varepsilon) \sum_{j} m_2(A_j) \leq \sum_{j} \int_{A_j} |J\varphi(s_j, t_j) - J\varphi| + \sigma(\varepsilon) m_2(A)$$

da cui, richiamando anche l'uniforme continuità di $J\varphi$, segue subito

$$\lim_{\varepsilon \downarrow 0} L_1 = 0$$

Con lo stesso ragionamento si trova anche

$$\lim_{\varepsilon \downarrow 0} L_2 = 0$$

e d'altra parte si può facilmente verificare che

$$\lim_{\varepsilon \downarrow 0} I_1 = \lim_{\varepsilon \downarrow 0} I_2 = 0.$$

La conclusione segue finalmente da (28).

Enunceremo ora il Teorema di Gauss della divergenza (n = 2,3) e il Teorema di Stokes, dei quali daremo la dimostrazione in una delle prossime lezioni.

Teorema 6 (Gauss). Sia $C \subset \mathbf{R}^n$ (n = 2,3) compatto, chiusura di un insieme aperto A con frontiera regolare a tratti. Indichiamo con N il campo normale a ∂C uscente da C e sia $F: C \to \mathbf{R}^n$ continuo, di classe C^1 in A e con derivate parziali limitate. Allora vale l'uquaglianza

$$\int_{\partial C} F \bullet N = \int_{C} \operatorname{div} F.$$

OSSERVAZIONE: Consideriamo il caso n=2 e supponiamo che C e F soddisfino alle ipotesi di Teorema 6. Se

- con τ indichiamo il campo unitario tangente che orienta positivamente ∂C , cioè quello ottenuto ruotando N (il campo normale a ∂C uscente da C) di $\pi/2$ in senso antiorario,
- con R indichiamo l'operatore di rotazione di $\pi/2$ in senso orario in \mathbf{R}^2 , i.e. R(a,b)=(b,-a),

allora il Teorema di Gauss implica che

$$\int_{\partial C} F \bullet \tau = \int_{\partial C} RF \bullet R\tau = \int_{\partial C} (F_2, -F_1) \bullet N = \int_C \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dx dy.$$

Vale pertanto il seguente risultato.

Teorema 7 (Green). Sia $C \subset \mathbf{R}^2$ compatto, chiusura di un insieme aperto A con frontiera regolare a tratti. Indichiamo con τ il campo unitario tangente che orienta positivamente ∂C e sia $F: C \to \mathbf{R}^n$ continuo, di classe C^1 in A e con derivate parziali limitate. Allora vale l'uguaglianza

$$\int_{\partial C} F \bullet \tau = \int_{C} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dx dy.$$

Frontiera orientata $\partial \overline{S}$ di una superficie regolare a tratti orientata $\overline{S}=(S,N)$ tale che ∂S è regolare a tratti.

Teorema 8 (Stokes). Sia $\overline{S} = (S, N)$ una superficie regolare orientata tale che ∂S è regolare a tratti. Allora, se $F: A \to \mathbf{R}^3$ è un campo di classe C^1 , con A sottoinsieme aperto di \mathbf{R}^3 e $S \subset A$, si ha

$$\int_{\overline{S}} \operatorname{rot} \, F = \int_{\partial \overline{S}} F.$$

Esempi.

Lezione del 7/11/06 (2 ore)

Prima di dimostrare il Teorema 6 di Gauss, diamo la seguente definizione.

Definizione 18. Un insieme compatto $C \subset \mathbb{R}^3$ si dice <u>semplice</u> se esso è la chiusura di un aperto A e se nelle direzioni degli assi coordinati è compreso fra grafici di funzioni lisce a tratti, cioè

$$\begin{split} C &= \left\{ (x,y,z) \,|\, a(x,y) \leq z \leq b(x,y), \quad (x,y) \in \overline{A^{(z)}} \right\} \\ &= \left\{ (x,y,z) \,|\, c(x,z) \leq y \leq d(x,z), \quad (x,z) \in \overline{A^{(y)}} \right\} \\ &= \left\{ (x,y,z) \,|\, e(y,z) \leq x \leq f(y,z), \quad (y,z) \in \overline{A^{(x)}} \right\} \end{split}$$

dove $A^{(x)}$, $A^{(y)}$, $A^{(z)}$ sono le proiezioni ortogonali di A, rispettivamente nei piani coordinati x=0, y=0, z=0 e inoltre:

- le funzioni a, b sono continue in $\overline{A^{(z)}}$ e di classe C^1 a tratti in $A^{(z)}$;
- le funzioni c, d sono continue in $\overline{\underline{A^{(y)}}}$ e di classe C^1 a tratti in $A^{(z)}$;
- le funzioni e, f sono continue in $\overline{A^{(x)}}$ e di classe C^1 a tratti in $A^{(x)}$.

DIMOSTRAZIONE DEL TEOREMA DI GAUSS (per n=3): Ci limiteremo a dimostrare il teorema per insiemi C che sono unione finita di insiemi semplici.

Passo 1: C semplice.

Dimostreremo che si hanno le seguenti uguaglianze

(29)
$$\int_{C} \frac{\partial F_{1}}{\partial x} = \int_{\partial C} F_{1} N_{1}, \qquad \int_{C} \frac{\partial F_{2}}{\partial y} = \int_{\partial C} F_{2} N_{2}, \qquad \int_{C} \frac{\partial F_{3}}{\partial z} = \int_{\partial C} F_{3} N_{3}$$

dalle quali, sommando, si ottiene subito la formula di Gauss. Cominciamo col provare la terza uguaglianza. Si ha

(30)
$$\int_{C} \frac{\partial F_{3}}{\partial z} = \int_{\mathbf{R}^{2}} \left(\int_{C_{(x,y)}} \frac{\partial F_{3}}{\partial z} dz \right) dx dy = \int_{A^{(z)}} \left(\int_{a(x,y)}^{b(x,y)} \frac{\partial F_{3}}{\partial z} dz \right) dx dy$$
$$= \int_{A^{(z)}} F_{3}(x,y,b(x,y)) - F_{3}(x,y,a(x,y)) dx dy$$

per Teorema 4. Indichiamo con G_a e G_b rispettivamente i grafici di a e di b e poniamo

$$S := \partial C \backslash (G_a \cup G_b).$$

Per $(x,y) \in \overline{A^{(z)}}$ definiamo inoltre

$$\varphi(x,y) := (x, y, a(x,y)), \qquad \psi(x,y) := (x, y, b(x,y))$$

e osserviamo che

$$N_3|S \equiv 0, \qquad (N_3 \circ \varphi) \left\| \frac{\partial \varphi}{\partial x} \times \frac{\partial \varphi}{\partial y} \right\| = -1, \qquad (N_3 \circ \psi) \left\| \frac{\partial \psi}{\partial x} \times \frac{\partial \psi}{\partial y} \right\| = 1.$$

Otteniamo quindi

$$\int_{\partial C} F_3 N_3 = \int_{G_a} F_3 N_3 + \int_{G_b} F_3 N_3
= \int_{A^{(z)}} (F_3 \circ \varphi) (N_3 \circ \varphi) \left\| \frac{\partial \varphi}{\partial x} \times \frac{\partial \varphi}{\partial y} \right\| + \int_{A^{(z)}} (F_3 \circ \psi) (N_3 \circ \psi) \left\| \frac{\partial \psi}{\partial x} \times \frac{\partial \psi}{\partial y} \right\|
= \int_{A^{(z)}} F_3 \circ \psi - F_3 \circ \varphi$$

da cui, tenuto conto di (30), segue la terza uguaglianza di (29). Lo stesso ragionamento permette di dimostrare le prime due uguaglianze di (29). Come abbiamo già spiegato sopra, a questo punto si conclude sommando le tre uguaglianze di (29).

Passo 2: $C = \bigcup_{i=1}^{h} C_i$, dove i C_i sono semplici e si intersecano al più in regioni di frontiera, e cioè

$$C_i \cap C_k = \partial C_i \cap \partial C_k \qquad (j \neq k).$$

Per illustrare il regionamento, sarà sufficiente capire il caso h=2. Supponiamo pertanto che $C=C_1\cup C_2$, con C_1,C_2 insiemi semplici tali che

$$C_1 \cap C_2 = \partial C_1 \cap \partial C_2$$
.

Se indichiamo con N' e N'' rispettivamente i campi normali a ∂C_1 e ∂C_2 , uscenti da C_1 e C_2 , e poniamo

$$I := \partial C_1 \cap \partial C_2, \qquad \partial^* C_1 := \partial C_1 \setminus I, \qquad \partial^* C_2 := \partial C_2 \setminus I$$

allora si vede subito che

- N''|I = -N'|I, cioè $N' + N'' \equiv 0$ in I;
- $\partial^* C_1 \cap \partial^* C_2 = \emptyset$ e $\partial^* C_1 \cup \partial^* C_2 = \partial C$;
- $N|\partial^* C_1 = N'|\partial^* C_1 \in N|\partial^* C_2 = N''|\partial^* C_2$.

Otteniamo così, tenendo conto anche di quanto dimostrato nel primo passo, che vale

$$\begin{split} \int_{C} \operatorname{div} F &= \int_{C_{1}} \operatorname{div} F + \int_{C_{2}} \operatorname{div} F = \int_{\partial C_{1}} F \bullet N' + \int_{\partial C_{2}} F \bullet N'' \\ &= \int_{\partial^{*}C_{1}} F \bullet N' + \int_{\partial^{*}C_{2}} F \bullet N'' + \int_{I} F \bullet N' + \int_{I} F \bullet N'' \\ &= \int_{\partial^{*}C_{1}} F \bullet N + \int_{\partial^{*}C_{2}} F \bullet N + \int_{I} F \bullet (N' + N'') \\ &= \int_{\partial C} F \bullet N. \end{split}$$

La dimostrazione del Teorema di Gauss per n=2 (identica a quella per n=3) è lasciata come esercizio.

DIMOSTRAZIONE DEL TEOREMA DI STOKES: Ci limiteremo a dimostrare il risultato nel caso che:

- (i) S sia il grafico di una funzione f|C, dove $f \in C^1(\mathbf{R}^2)$ e C soddisfa le ipotesi di Teorema 7 (Green);
- (ii) il campo normale a S scelto sia quello per cui risulta $N_3 > 0$.

L'estensione al caso in cui C è unione finita e disgiunta (a meno di regioni di frontiera) di insiemi siffatti si ottiene con un argomento analogo a quello utilizzato nel secondo passo della dimostrazione del Teorema della divergenza.

Proviamo dapprima che la formula vale per il campo $(F_1, 0, 0)$ e cioè che

(31)
$$\int_{\overline{S}} \text{rot}(F_1, 0, 0) = \int_{\partial \overline{S}} (F_1, 0, 0).$$

Sia dunque $\gamma:[a,b]\to {\bf R}^2$ una parametrizzazione regolare a tratti di ∂C (coerente con la sua orientazione positiva) e poniamo

$$\Gamma(t) = (\gamma_1(t), \gamma_2(t), f(\gamma(t))) = (\gamma(t); f(\gamma(t))), \qquad t \in [a, b].$$

Si ha allora

$$\int_{\partial \overline{S}} (F_1, 0, 0) = \int_a^b ((F_1, 0, 0) \circ \Gamma) \bullet \Gamma' = \int_a^b F_1(\gamma(t); f(\gamma(t))) \gamma_1'(t) dt$$

Applicando il Teorema 7 (Green) al campo $G := (G_1, G_2) : C \to \mathbf{R}^2$, dove

$$\begin{cases} G_1(x,y) := F_1(x,y,f(x,y)) \\ G_2(x,y) := 0 \end{cases}$$

otteniamo

(32)
$$\int_{\partial \overline{S}} (F_1, 0, 0) = \int_a^b (G \circ \gamma) \bullet \gamma' = \int_{\partial C} G = \int_C \left(\frac{\partial G_2}{\partial x} - \frac{\partial G_1}{\partial y} \right) = -\int_C \frac{\partial G_1}{\partial y}.$$

D'altra parte, parametrizzando S con

$$\varphi: C \to \mathbf{R}^3, \quad (x,y) \mapsto (x,y,f(x,y))$$

e osservando che

$$(N \circ \varphi) \left\| \frac{\partial \varphi}{\partial x} \times \frac{\partial \varphi}{\partial y} \right\| = \frac{\partial \varphi}{\partial x} \times \frac{\partial \varphi}{\partial y} = \left(-\frac{\partial f}{\partial x}, -\frac{\partial f}{\partial y}, 1 \right)$$

si ottiene anche

$$\int_{\overline{S}} \operatorname{rot} (F_{1}, 0, 0) = \int_{\overline{S}} \frac{\partial F_{1}}{\partial z} N_{2} - \frac{\partial F_{1}}{\partial y} N_{3}
= \int_{C} \left[\left(\frac{\partial F_{1}}{\partial z} \circ \varphi \right) (N_{2} \circ \varphi) - \left(\frac{\partial F_{1}}{\partial y} \circ \varphi \right) (N_{3} \circ \varphi) \right] \left\| \frac{\partial \varphi}{\partial x} \times \frac{\partial \varphi}{\partial y} \right\|
= -\int_{C} \frac{\partial F_{1}}{\partial z} (x, y, f(x, y)) \frac{\partial f}{\partial y} + \frac{\partial F_{1}}{\partial y} (x, y, f(x, y)) dx dy
= -\int_{C} \frac{\partial G_{1}}{\partial y}.$$

L'uguaglianza (31) segue ora immediatamente da (32). In maniera analoga si provano anche le uguaglianze

$$\int_{\overline{S}} \text{rot}(0, F_2, 0) = \int_{\partial \overline{S}} (0, F_2, 0), \qquad \int_{\overline{S}} \text{rot}(0, 0, F_3) = \int_{\partial \overline{S}} (0, 0, F_3).$$

Sommando queste e la (31), si ottiene finalmente la conclusione.

Lezione del 10/11/06 (2 ore)

Definizione 19. Sia A sottoinsieme aperto di \mathbb{R}^n e consideriamo un campo continuo $F: A \to \mathbb{R}^n$. Allora ogni funzione $\varphi \in C^1(A)$ tale che $\nabla \varphi \equiv F$ è detta potenziale di F.

OSSERVAZIONE: Capita sovente che il campo F non abbia nemmeno un potenziale. Infatti l'esistenza di un potenziale "restringe alquanto la libertà di scelta del campo", affermazione resa precisa dalla sottostante Proposizione 16. Tale proposizione consente, in particolare, di produrre immediatamente esempi di campo senza potenziale, e.g. il campo F(x,y) := (0,x) (cfr Lezione del 26/9/06).

OSSERVAZIONE: Da un potenziale di F se ne possono ottenere infiniti altri. Infatti, indicato con φ il potenziale dato e con A_j (j=1,...) le componenti connesse di A, allora ogni funzione così definita

(33)
$$\psi(x) := \varphi(x) + c_i, \quad \text{se } x \in A_i$$

 $(c_j \in \mathbf{R})$ è un potenziale di F. Anzi, è facile convincersi anche del viceversa e cioè che ogni potenziale di F è della forma (33). Una dimostrazione rigorosa di quest'ultima affermazione segue subito dal seguente risultato (intuitivamente scontato).

Proposizione 15. Se A è un sottoinsieme aperto e connesso di \mathbb{R}^n e se f è una funzione differenziabile in A con $\nabla f \equiv 0$, allora f è costante.

DIMOSTRAZIONE: Fissiamo $P_0 \in A$ e definiamo

$$A_1 := \{P \in A \mid f(P) = f(P_0)\} \quad (\neq \emptyset, \text{ in quanto } P_0 \in A_1)$$

 $A_2 := \{P \in A \mid f(P) \neq f(P_0)\} = A \setminus A_1.$

La conclusione seguirà una volta dimostrato che

(34)
$$A_1$$
 e A_2 sono entrambi aperti.

Infatti da questo e dal fatto che A è connesso si deduce subito che $A_2 = \emptyset$. Ciò significa che $f(P) = f(P_0)$, per ogni $P \in A$.

Dimostriamo dunque (34). La continuità di f implica subito che A_2 è aperto. Per provare che anche A_1 lo è, consideriamo $P \in A_1$ e un disco D centrato in P tale che $D \subset A$. Allora, per ogni $Q \in D$, si ha

$$f(Q) - f(P_0) = f(Q) - f(P)$$

$$= \int_0^1 \frac{d}{dt} f(P + t(Q - P)) dt$$

$$= \int_0^1 \nabla f(P + t(Q - P)) \bullet (Q - P) dt$$

$$= 0.$$

Quindi $D \subset A_1$. La conclusione segue dall'arbitrarietà di $P \in A_1$.

OSSERVAZIONE: D'ora in poi ci occuperemo di campi $F: A \to \mathbf{R}^n$ (A aperto in \mathbf{R}^n) di classe C^1 . Ogni potenziale di F sarà dunque di classe C^2 .

Definizione 20. Diremo che F soddisfa la <u>condizione delle derivate incrociate</u> (CDI) se vale l'uguaglianza

$$\frac{\partial F_1}{\partial y} \equiv \frac{\partial F_2}{\partial x}$$
 (nel caso che sia $n=2$)

oppure

rot
$$F \equiv 0$$
 (nel caso che sia $n = 3$).

Proposizione 16. Se esiste un potenziale φ di F, allora

- (i) Il campo F soddisfa la CDI;
- (ii) Se \overline{C} è una curva regolare a tratti orientata, $C \subset A$, con punto iniziale P e punto finale Q, allora si ha

$$\int_{\overline{C}} F = \varphi(Q) - \varphi(P).$$

DIMOSTRAZIONE: (i) È una facile conseguenza del teorema di Schwartz. Infatti, limitandosi a considerare il caso n = 2, si ha

$$\frac{\partial F_1}{\partial y} \equiv \frac{\partial}{\partial y} \frac{\partial \varphi}{\partial x} \equiv \frac{\partial}{\partial x} \frac{\partial \varphi}{\partial y} \equiv \frac{\partial F_2}{\partial x}.$$

Lo stesso argomento funziona anche nel caso n=3 (lasciato per esercizio).

(ii) Segue subito dalla formula (12), dimostrata nella Lezione del 27/9/05. □

OSSERVAZIONE: Il fatto che F soddisfi la CDI non è sufficiente, in generale, a garantire l'esistenza di un potenziale. Lo capiremo subito attraverso un esempio che riusciremo presto ad interpretare

come "rivelatore particolare" di un fenomeno generale. Sia F il campo così definito

$$A:=\mathbf{R}^2\backslash (0,0), \qquad F(x,y):=\frac{R(x,y)}{\|(x,y)\|^2}=\left(\frac{-y}{x^2+y^2},\frac{x}{x^2+y^2}\right)$$

che soddisfa CDI, come si verifica facendo il conto. Mostreremo ora come supporre l'esistenza di un potenziale di F conduca ad una contraddizione. Infatti, se consideriamo la curva regolare a tratti $\overline{C} = (C, \tau)$ dove C è il cerchio unitario centrato nell'origine e τ è il campo unitario tangente compatibile con l'orientazione "antioraria", i.e.

$$\tau(x,y) = R(x,y), \qquad (x,y) \in C,$$

troviamo subito

(35)
$$\int_{\overline{C}} F = \int_{C} F \bullet \tau = \int_{C} \frac{\|R(x,y)\|^{2}}{\|(x,y)\|^{2}} = \int_{C} 1 = 2\pi.$$

D'altra parte, se esistesse un potenziale φ di F, si avrebbe anche

$$\int_{\overline{C}} F = 0$$

per (ii) in Proposizione 16. Da questa contraddizione segue che F non ha potenziale.

Prima di dare la definizione di "campo conservativo", osserviamo che vale il seguente risultato.

Proposizione 17. Queste due affermazioni sono fra loro equivalenti:

(i) Vale

$$\int_{\overline{C}} F = 0$$

per ogni curva regolare a tratti orientata \overline{C} , con C chiusa e contenuta in A;

(ii) Per ogni coppia ordinata (P,Q) di punti appartenenti ad una medesima componente connessa di A e per ogni curva regolare a tratti orientata \overline{C} che congiunge P (punto iniziale) a Q, con $C \subset A$, l'integrale

$$\int_{\overline{C}} F$$

dipende solo da (P,Q).

DIMOSTRAZIONE: Dimostriamo che (i) implica (ii). Presi P,Q in una medesima componente connessa di A, siano $\overline{C_1}$ e $\overline{C_2}$ due curve regolari a tratti orientate che congiungono P (punto iniziale) a Q, con $C_1, C_2 \subset A$. Applicando (i) a $\overline{C} := \overline{C_1} \cup (-\overline{C_2})$, otteniamo

$$0 = \int_{\overline{C_1} \cup (-\overline{C_2})} F = \int_{\overline{C_1}} F - \int_{\overline{C_2}} F$$

e cioè quanto volevamo provare.

Dimostriamo che (ii) implica (i). Consideriamo una curva regolare a tratti orientata e chiusa \overline{C} , con $C \subset A$. Preso $P_0 \in C$, indichiamo con $\overline{C_1}$ la curva banale costituita dal solo P_0 e applichiamo (ii) con $P = Q = P_0$. Otteniamo

$$\int_{\overline{C}} F = \int_{\overline{C_1}} F = 0.$$

Definizione 21. Il campo F si dice conservativo (in A) se

$$\int_{\overline{C}} F = 0$$

per ogni curva regolare a tratti orientata \overline{C} , con C chiusa e contenuta in A (oppure, equivalentemente, se vale la "condizione di indipendenza dal percorso" (ii) in Proposizione 17).

Ora, come corollario di (ii) in Proposizione 16, otteniamo immediatamente la seguente proposizione.

Proposizione 18. Se F ha un potenziale, allora F è conservativo.

Dimostriamo infine il seguente risultato che ci verrà utile in seguito.

Proposizione 19. Sia A un sottoinsieme aperto connesso di \mathbb{R}^n . Allora considerata una qualsiasi coppia di punti in A esiste una curva regolare a tratti, tutta contenuta in A, che li congiunge (il che si esprime dicendo che A è connesso per archi regolari a tratti).

DIMOSTRAZIONE: Basterà verificare che per ogni $P \in A$ l'insieme Γ_P dei punti Q per i quali esiste una curva regolare a tratti, tutta contenuta in A e congiungente P a Q, coincide con l'insieme A. Poiché A è connesso e Γ_P è non vuoto, sarà sufficiente dimostrare che gli insiemi Γ_P e $A \setminus \Gamma_P$ sono entrambi aperti, per concludere che allora si ha proprio $\Gamma_P = A$.

A questo scopo, consideriamo un disco $D \subset A$ e osserviamo che in D esiste un punto congiungibile a P mediante una curva regolare a tratti, tutta contenuta in A, se e solo se ogni punto di D è congiungibile a P mediante una curva regolare a tratti, tutta contenuta in A. Quindi si possono verificare soltanto le seguenti due situazioni:

Ogni punto di D è congiungibile a P mediante una curva regolare a tratti in A, ossia $D \subset \Gamma_P$;

oppure

nessun punto di D è congiungibile a P mediante una curva regolare a tratti in A, ossia $D \subset A \backslash \Gamma_P$.

Ciò significa, per l'appunto, che Γ_P e $A \setminus \Gamma_P$ sono entrambi aperti.

Lezione del 14/11/06 (2 ore)

Dimostriamo ora il viceversa del risultato stabilito in Proposizione 18.

Proposizione 20. Se F è conservativo, allora F ha un potenziale. Più precisamente siano A_j (j = 1, ...) le componenti connesse di A, si consideri $P_j \in A_j$ e si ponga

$$\varphi(P) := \int_{\overline{C}} F \qquad (se \ P \in A_j)$$

dove \overline{C} è una qualsiasi curva regolare a tratti orientata, con $C \subset A_j$, congiungente P_j (punto iniziale) a P. Allora φ è un potenziale di F (quello che si annulla nei P_j).

<u>Nota bene:</u> una siffatta curva \overline{C} esiste, quale che sia P, grazie a Proposizione 19. Inoltre l'integrale non dipende dalla scelta di \overline{C} , per Proposizione 17. La funzione φ risulta pertanto ben definita.

DIMOSTRAZIONE: Senza compromettere la generalità dell'argomento dimostrativo, possiamo supporre n=2. Dimostreremo che $\partial \varphi/\partial x=F_1$ (allo stesso modo si prova che $\partial \varphi/\partial y=F_2$).

Si consideri dunque $P \in A_j$ e sia \overline{C} una curva come sopra. Poiché A_j è aperto, si può trovare r tale che il disco D_r di raggio r e centrato in P sia contenuto in A_j . Se per $|\varepsilon| < r$ indichiamo con Σ_{ε} il segmento orientato congiungente P a $P + \varepsilon(1,0)$, parametrizzato da

$$\gamma: [0,1] \to \mathbf{R}^2, \qquad t \mapsto P + t\varepsilon(1,0),$$

(osserviamo che $\Sigma_{\varepsilon} \subset D_r \subset A_j$) si trova

$$\frac{\varphi(P+\varepsilon(1,0))-\varphi(P)}{\varepsilon} = \frac{1}{\varepsilon} \left(\int_{\overline{C} \cup \Sigma_{\varepsilon}} F - \int_{\overline{C}} F \right) = \frac{1}{\varepsilon} \int_{\Sigma_{\varepsilon}} F$$

$$= \frac{1}{\varepsilon} \int_{0}^{1} (F \circ \gamma) \bullet \gamma' = \int_{0}^{1} F_{1}(P+t\varepsilon(1,0)) dt$$

$$= F_{1}(P) + \int_{0}^{1} F_{1}(P+t\varepsilon(1,0)) - F_{1}(P) dt.$$

Dalla continuità di F_1 in P segue che esiste $\frac{\partial \varphi}{\partial x}(P)$ e che si ha

$$\frac{\partial \varphi}{\partial x}(P) = F_1(P).$$

La seguente definizione ci servirà per formulare ipotesi sotto le quali la prima implicazione di Proposizione 16 si può invertire.

Definizione 22. L'insieme A si dice stellato rispetto a P_0 ($P_0 \in A$) se il segmento

$$P_0P := \{P_0 + t(P - P_0) \mid t \in [0, 1]\}$$

è contenuto in A per ogni $P \in A$.

OSSERVAZIONE: Valgono i seguenti fatti.

• Se A è stellato (rispetto a $P_0 \in A$) allora A è connesso; in generale il viceversa è falso. Per esempio gli insiemi

$$\mathbf{R}^2 \setminus \{(0,0)\}, \quad \mathbf{R}^3 \setminus \{(0,0,0)\}$$

sono connessi e non stellati;

- Se A è convesso, allora A è stellato rispetto ad ogni suo punto (e viceversa);
- Si prova, e si intuisce facilmente, che se A è stellato (rispetto a P₀ ∈ A) allora A è semplicemente connesso; in generale non è vero il viceversa. E.g. l'insieme connesso e non stellato R³\{(0,0,0)} è semplicemente connesso.

Esempi di insiemi stellati, non stellati, semplicemente connessi.

Proposizione 21. Se F soddisfa la CDI e se ogni componente connessa A_j di A è un insieme stellato rispetto a $P_j \in A_j$, allora F ha potenziale. In particolare, il potenziale che si annulla nei P_j è dato da

$$\varphi(P) := \int_{\overline{P_j P}} F \qquad (se \ P \in A_j)$$

dove l'orientazione del segmento è scelta di modo che P_i sia il punto iniziale.

DIMOSTRAZIONE: Come nella dimostrazione di Proposizione 20, possiamo ridurci a supporre che n=2 e a provare che $\partial \varphi/\partial x=F_1$.

Considerato $P \in A_j$, come prima possiamo determinare r per cui il disco D_r di raggio r e centro P risulta incluso in A_j .

Osserviamo che se $|\varepsilon| < r$ allora il triangolo chiuso T di vertici

$$P_j$$
, P , $Q := P + \varepsilon(1,0)$

è contenuto in A_j , in quanto A_j è stellato rispetto a P_j . Dal Teorema 7 di Green (useremmo invece il Teorema 8 di Stokes se stessimo supponendo n = 3) otteniamo allora che

$$\int_{\overline{P_jQ}} F + \int_{-\Sigma_{\varepsilon}} F + \int_{-\overline{P_jP}} F = \int_{\overline{\partial T}} F = \int_{T} \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = 0$$

dove Σ_{ε} è definito esattamente come nella dimostrazione di Proposizione 20. Segue subito che

$$\frac{\varphi(P+\varepsilon(1,0))-\varphi(P)}{\varepsilon} = \frac{1}{\varepsilon} \left(\int_{\overline{P_jQ}} F - \int_{\overline{P_jP}} F \right) = \frac{1}{\varepsilon} \int_{\Sigma_{\varepsilon}} F.$$

Si procede ora come nella dimostrazione di Proposizione 20.

OSSERVAZIONE: La Proposizione 21 può essere estesa al caso in cui le componenti connesse di A sono semplicemente connesse.

Esempi.

Lezione del 21/11/06 (2 ore)

Richiami su numeri complessi, funzioni complesse, limiti di funzioni complesse. Notazioni canoniche: z = (x, y) = x + iy (per i punti), f = (u, v) = u + iv (per le funzioni). D'ora in poi Ω denoterà un sottoinsieme aperto di \mathbf{C} ed f una funzione a valori complessi definita e continua in Ω .

Definizione 23. La funzione f si dice <u>derivabile</u> (o anche olomorfa) in $z_0 \in \Omega$ se esiste il limite

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

indicato in tal caso con $f'(z_0)$. Se f è derivabile in tutti i punti di Ω , si dice che f è derivabile (oppure olomorfa) in Ω .

Come per le funzioni reali, vale questo risultato.

Proposizione 22. Se f è derivabile in $z_0 \in \Omega$, allora f è continua in z_0 .

DIMOSTRAZIONE: Analogamente al caso di una funzione reale, la tesi segue subito osservando che

$$f(z) = f(z_0) + \frac{f(z) - f(z_0)}{z - z_0}(z - z_0)$$

per ogni $z \in \Omega \setminus \{z_0\}.$

Nel seguente risultato e nel seguito R indica, come in passato, l'operatore di rotazione di $\pi/2$ (in senso antiorario) nel piano, ossia

$$R: \mathbf{R}^2 \to \mathbf{R}^2, \qquad (x,y) \mapsto R(x,y) := (-y,x).$$

Teorema 9. Data $f = (u, v) : \Omega \to \mathbb{C}$ e $z_0 = (x_0, y_0) \in \Omega$, le seguenti affermazioni sono equivalenti:

- (i) La funzione f è derivabile in z_0 ;
- (ii) Le funzioni u, v sono differenziabili in z_0 e vale

$$\nabla v(z_0) = R \nabla u(z_0)$$

detta condizione di Cauchy-Riemann (CCR) in z_0 .

Inoltre, se f è derivabile in z_0 , si ha

$$f'(z_0) = u_x(z_0) + iv_x(z_0)$$

(da questa e dalla CCR si ottengono poi, ovviamente, altre uguaglianze equivalenti, e.g. $f'(z_0) = v_y(z_0) - iu_y(z_0)$).

DIMOSTRAZIONE: Osserviamo prima di tutto che f è derivabile in z_0 se e solo se esistono

$$w = a + ib \in \mathbf{C}, \qquad \sigma(z) = (\sigma_1(z), \sigma_2(z))$$

con $\sigma(z) = o(|z - z_0|)$, o equivalentemente

$$\sigma_1(z) = o(|z - z_0|), \qquad \sigma_2(z) = o(|z - z_0|),$$

tali che

$$f(z) = f(z_0) + w(z - z_0) + \sigma(z).$$

Osserviamo che quest'ultima uguaglianza equivale al seguente sistema

(36)
$$\begin{cases} u(z) = u(z_0) + a(x - x_0) - b(y - y_0) + \sigma_1(z) \\ v(z) = v(z_0) + b(x - x_0) + a(y - y_0) + \sigma_2(z). \end{cases}$$

Segue pertanto che

• Se f è derivabile in z_0 , allora vale (36) con $a + ib = f'(z_0)$. Questo implica che u e v sono differenziabili (e quindi derivabili parzialmente) in z_0 e che si ha

$$\nabla u(z_0) = (a, -b), \qquad \nabla v(z_0) = (b, a)$$

da cui segue subito la CCR.

• Viceversa, se u e v sono differenziabili in z_0 e se inoltre vale la CCR, allora il sistema (36) è soddisfatto con

$$a := u_x(z_0), \qquad b := v_x(z_0)$$

 \mathbf{e}

$$\sigma_1(z) := u(z) - u(z_0) - \nabla u(z_0) \cdot (z - z_0) = u(z) - u(z_0) - a(x - x_0) + b(y - y_0)$$
$$= o(|z - z_0|)$$

$$\sigma_2(z) := v(z) - v(z_0) - \nabla v(z_0) \cdot (z - z_0) = v(z) - v(z_0) - b(x - x_0) - a(y - y_0)$$

= $o(|z - z_0|)$.

Di conseguenza f è derivabile in z_0 e si ha $f'(z_0) = w = a + ib = u_x(z_0) + iv_x(z_0)$.

Dal Teorema del differenziale totale (dimostrato nel corso di Analisi III) segue immediatamente il seguente corollario.

Proposizione 23. Siano u e v derivabili parzialmente in un intorno di $z_0 \in \Omega$. Supponiamo inoltre che i gradienti ∇u e ∇v siano continui in z_0 e che sia verificata la CCR in z_0 . Allora f è derivabile in z_0 e si ha

$$f'(z_0) = u_x(z_0) + iv_x(z_0).$$

In particolare:

Proposizione 24. Se $u, v \in C^1(\Omega)$ e la CCR è soddisfatta in tutti i punti di Ω , allora f è derivabile in Ω e si ha

$$f' = u_r + iv_r.$$

Esempio: La funzione exp: $z \mapsto e^z$ è derivabile in \mathbb{C} e si ha exp' = exp.

Lezione del 24/11/06 (2 ore)

Teorema 10. Le seguenti affermazioni, relative a $f = u + iv : \Omega \to \mathbb{C}$, sono equivalenti:

- (i) la funzione f è derivabile in Ω ;
- (ii) la funzione f è derivabile infinite volte in Ω ;
- (iii) si ha $u, v \in C^{\infty}(\Omega)$ e, in ogni punto di Ω , vale la CCR;
- (iv) si ha $u, v \in C^1(\Omega)$ e, in ogni punto di Ω , vale la CCR.

DIMOSTRAZIONE: Che (i) implichi (ii) segue subito dalla formula di rappresentazione di Cauchy, di cui tratteremo in seguito (Teorema 13).

Assumiamo (ii) e dimostriamo (iii). A questo scopo, osserviamo che se fissiamo arbitrariamente un intero $n \ge 1$, allora esistono le derivate parziali

$$\frac{\partial^j u}{\partial x^j}, \ \frac{\partial^j v}{\partial x^j} \qquad \quad (j=1,\ldots,n).$$

Inoltre queste sono differenziabili in Ω , valgono le CCR

(37)
$$\nabla \left(\frac{\partial^{j-1} v}{\partial x^{j-1}} \right) = R \nabla \left(\frac{\partial^{j-1} u}{\partial x^{j-1}} \right) \qquad (j = 1, \dots, n)$$

e si ha

(38)
$$f^{(j)} = \frac{\partial^j u}{\partial x^j} + i \frac{\partial^j v}{\partial x^j} \qquad (j = 1, \dots, n)$$

per Teorema 9. Tutto questo implica facilmente che $u, v \in C^n(\Omega)$. Per esempio:

- Se n = 1 le funzioni u_x e v_x sono continue, per (38) e Proposizione 22. A questo punto anche le derivate u_y e v_y sono continue, per (37). Quindi $u, v \in C^1(\Omega)$.
- Analogamente, se n=2 le derivate u_{xx} e v_{xx} sono continue (per (38) e Proposizione 22). La continuità di tutte le altre derivate parziali seconde segue subito dal set (37) di CCR.

Infine (iii) implica (iv) banalmente, mentre (iv) implica (i) per il Teorema 9.

Definizione 24. Una funzione $u: \Omega \to \mathbf{R}$ si dice <u>armonica</u> (in Ω) se $u \in C^2(\Omega)$ e $\Delta u \equiv 0$.

Proposizione 25. Se f = u + iv è derivabile in Ω , allora u e v sono armoniche in Ω .

DIMOSTRAZIONE: Le funzioni u e v sono di classe C^2 e vale la CCR

$$\nabla v = R \nabla u$$
, i.e. $\begin{cases} v_x = -u_y \\ v_y = u_x \end{cases}$

per Teorema 10. Ricordando anche il Teorema di Schwartz, si ottiene allora

$$u_{xx} = (u_x)_x = (v_y)_x = (v_x)_y = (-u_y)_y = -u_{yy}$$

da cui $\Delta u \equiv 0$. Analogamente si prova che $\Delta v \equiv 0$.

Proposizione 26. Sia data una funzione armonica $u: \Omega \to \mathbf{R}$ e supponiamo che le componenti connesse di Ω siano insiemi stellati (oppure, più debolmente, semplicemente connessi). Allora esiste una funzione armonica $v: \Omega \to \mathbf{R}$ (detta armonica coniugata di u) tale che u+iv è derivabile in Ω . Essa è un potenziale del campo $R\nabla u$.

DIMOSTRAZIONE: la prova è (più che) suggerita nell'enunciato stesso. Infatti, per il Teorema 9, se v esiste deve soddisfare la CCR, i.e $\nabla v = R\nabla u$. Ma una tale v esiste di sicuro, grazie alla Proposizione 21 e osservando che il campo $R\nabla u$, essendo u armonica, soddisfa la CDI.

Come facile conseguenza di Proposizione 26 e di Teorema 10, si ha il seguente risultato.

Corollario 11. Se $u \ \dot{e} \ armonica \ in \ \Omega$, allora $u \in C^{\infty}(\Omega)$.

DIMOSTRAZIONE: Sia D un disco qualsiasi incluso in Ω . Allora, per Proposizione 26, esiste v armonica in D tale che u+iv è derivabile in D. Il Teorema 10 implica allora che u è di classe C^{∞} in D. La conclusione segue, ovviamente, dall'arbitrarietà di D.

Prima di enunciare e dimostrare il prossimo risultato, definiamo l'integrale di una funzione complessa.

Definizione 25. Sia f continua in Ω e sia \overline{C} una curva regolare a tratti orientata, con $C \subset \Omega$. Definiamo allora

$$\int_{\overline{C}} f(z)dz := \int_{\overline{C}} (u, -v) \bullet ds + i \int_{\overline{C}} (v, u) \bullet ds$$

Coerenza con le "regole formali" della notazione di Leibniz.

Il seguente facile risultato è spesso utile nel calcolo esplicito di integrali.

Proposizione 27. Nelle ipotesi di Definizione 25, sia $\gamma:[a,b]\to\Omega$ una parametrizzazione regolare a tratti di \overline{C} . Allora si ha

$$\int_{\overline{C}} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt$$

dove il prodotto nell'integrando del secondo membro è quello complesso e dove si sottintende la seguente definizione di integrale di $\alpha + i\beta$: $[a,b] \to \mathbf{C}$ (con α e β continue)

$$\int_a^b (\alpha(t)+i\beta(t))dt := \int_a^b \alpha(t)dt + i \int_a^b \beta(t)dt.$$

DIMOSTRAZIONE: Infatti si ha

$$\begin{split} \int_a^b f(\gamma(t))\gamma'(t)dt &= \int_a^b \left(u(\gamma(t))+iv(\gamma(t))\right)\left(\gamma_1'(t)+i\gamma_2'(t)\right)dt \\ &= \int_a^b \left(u(\gamma(t))\gamma_1'(t)-v(\gamma(t))\gamma_2'(t)\right)+i\left(v(\gamma(t))\gamma_1'(t)+u(\gamma(t))\gamma_2'(t)\right)dt \\ &= \int_a^b \left(u(\gamma(t))\gamma_1'(t)-v(\gamma(t))\gamma_2'(t)\right)dt+i\int_a^b \left(v(\gamma(t))\gamma_1'(t)+u(\gamma(t))\gamma_2'(t)\right)dt \\ &= \int_a^b \left(u(\gamma(t)),-v(\gamma(t))\right)\bullet\gamma'(t)dt+i\int_a^b \left(v(\gamma(t)),u(\gamma(t))\right)\bullet\gamma'(t)dt \\ &= \int_{\overline{C}} (u,-v)\bullet ds+i\int_{\overline{C}} (v,u)\bullet ds. \end{split}$$

Proveremo ora un risultato che corrisponde, nel contesto dei campi, a Proposizione 16.

Proposizione 28. Se esiste una primitiva F di f (in Ω), allora

- (i) La funzione f è derivabile in Ω (i.e. $u, v \in C^1(\Omega)$ e vale la CCR, per Teorema 10);
- (ii) Se \overline{C} è una curva regolare a tratti orientata, $C \subset \Omega$, con punto iniziale P e punto finale Q, allora si ha

$$\int_{\overline{C}} f(z)dz = F(Q) - F(P).$$

DIMOSTRAZIONE: (i) Poiché F è derivabile, il Teorema 10 implica che anche $F^\prime=f$ è derivabile.

(ii) Sia F = U + iV. Allora $U, V \in C^{\infty}(\Omega)$, vale la CCR

$$\nabla V = R \nabla U$$
, i.e. $\begin{cases} V_x = -U_y \\ V_y = U_x \end{cases}$

e

$$u + iv = U_x + iV_x$$

per Teorema 9 e Teorema 10. Segue subito che U è un potenziale del campo (u, -v) e che V è un potenziale del campo (v, u). Dalla (ii) di Proposizione 16, otteniamo allora

$$\begin{split} \int_{\overline{C}} f(z) dz &= \int_{\overline{C}} (u, -v) \bullet ds + i \int_{\overline{C}} (v, u) \bullet ds \\ &= U(Q) - U(P) + i \left(V(Q) - V(P) \right) \\ &= F(Q) - F(P). \end{split}$$

OSSERVAZIONE: (Confrontare con l'osservazione che segue la Proposizione 16). La derivabilità di f non implica, in generale, che esista una primitiva di f. Per esempio, la funzione

$$f(z) := \frac{1}{z}, \qquad z \in \Omega := \mathbf{C} \setminus \{0\}$$

è derivabile in Ω ma, come stiamo per verificare, non è dotata di primitive in Ω . Infatti , se \overline{C} indica il circolo parametrizzato da

$$\gamma(t) := (\cos t, \sin t) = e^{it}, \qquad t \in [0, 2\pi]$$

si ha

(39)
$$\int_{\overline{C}} \frac{1}{z} dz = \int_{0}^{2\pi} \frac{1}{e^{it}} i e^{it} dt = 2\pi i.$$

D'altra parte se f avesse una primitiva F, dovremmo avere anche

$$\int_{\overline{C}} \frac{1}{z} dz = F(\gamma(2\pi)) - F(\gamma(0)) = 0$$

per (ii) di Proposizione 28. Si rimuove l'assurdo ammettendo che f non ha primitiva.

Osserviamo che

$$\int_{\overline{C}}(v,u) = 2\pi \neq 0$$

per (39). In altri termini, il campo (v,u) non è conservativo pur soddisfacendo CDI (come discende subito da CCR che vale in quanto f è derivabile). In effetti tale campo coincide proprio con quello indicato nell' osservazione menzionata sopra, fatta nell'ambito della teoria del potenziale. Infatti si ha

$$f(z) = \frac{1}{z} = \frac{x - iy}{x^2 + y^2}$$

e cioè

$$u(x,y) = \frac{x}{x^2 + y^2}, \qquad v(x,y) = \frac{-y}{x^2 + y^2}.$$

Lezione del 28/11/06 (2 ore)

Definizione 26. Si dice che una funzione continua $f: \Omega \to \mathbf{C}$ soddisfa la condizione di indipendenza dal percorso (CIP) se per ogni coppia ordinata (P,Q) di punti appartenenti ad una medesima

componente connessa di Ω e per ogni curva regolare a tratti orientata \overline{C} che congiunge P (punto iniziale) a Q, con $C \subset \Omega$, l'integrale

$$\int_{\overline{C}} f(z) dz$$

dipende solo da (P,Q).

Proposizione 29. Supponiamo che $f: \Omega \to \mathbb{C}$ sia continua e soddisfi CIP. Allora i campi (u, -v) e (v, u) hanno un potenziale. Considerati un potenziale U di (u, -v) e un potenziale V di (v, u), allora la funzione F:=U+iV è una primitiva di f.

DIMOSTRAZIONE: (i) Poiché vale CIP e, per definizione, si ha

$$\int_{\overline{C}} f(z) dz = \int_{\overline{C}} (u, -v) \bullet ds + i \int_{\overline{C}} (v, u) \bullet ds,$$

segue subito che i campi (u, -v) e (v, u) sono conservativi in Ω (Proposizione 17) e quindi hanno un potenziale (Proposizione 20).

La derivabilità di F seguirà subito dal Teorema 9, una volta dimostrato che F soddisfa la CCR. In effetti, si ha che $U, V \in C^1(\Omega)$ e vale

$$R\nabla U = R(u, -v) = (v, u) = \nabla V.$$

Infine, sempre per Teorema 9, si trova

$$F' = U_x + iV_x = u + iv = f.$$

Come conseguenza immediata di Proposizione 29, Proposizione 28(i) e Teorema 10, si ottiene il seguente

Corollario 12. Se $f: \Omega \to \mathbb{C}$ è continua e soddisfa CIP, allora f è derivabile infinite volte.

Dimostreremo adesso un risultato che "corrisponde" alla Proposizione 21 della teoria del potenziale. Esso afferma che, proprio sotto le ipotesi supplementari assunte sul dominio in Proposizione 21, la prima implicazione di Proposizione 28 si può invertire.

Proposizione 30. Supponiamo che la funzione f sia derivabile in Ω e che ogni componente connessa di Ω sia un insieme stellato. Allora f ha una primitiva.

DIMOSTRAZIONE: Da Teorema 10 segue che le funzioni u e v sono di classe C^1 in Ω e che vale la CCR

$$\nabla v = R \nabla u.$$

Questo implica subito che i campi (u, -v) e (v, u) soddisfano la CDI. Quindi, per Proposizione 21 e Proposizione 18, tali campi sono conservativi. Di conseguenza f soddisfa CIP e pertanto ha una primitiva (Proposizione 29).

OSSERVAZIONE: Grazie all'osservazione che segue la dimostrazione di Proposizione 21, la Proposizione 30 si può estendere al caso di insiemi le cui componenti connesse siano semplicemente connesse.

Dimostreremo fra poco la formula di rappresentazione di Cauchy utilizzata per provare l'implicazione principale in Teorema 10. Osserviamo che la dimostrazione attualmente disponibile dell'affermazione "se f è derivabile allora f soddisfa CIP" (valida nell'ipotesi che le componenti connesse di Ω siano insiemi stellati) si basa sulla stessa formula di Cauchy. Dunque è necessario che del seguente lemma si dia una dimostrazione indipendente.

Proposizione 31. Consideriamo un sottoinsieme aperto E di Ω tale che ∂E sia una curva regolare a tratti, con $\partial E \subset \Omega$. Sia inoltre f una funzione derivabile in Ω . Allora

$$\int_{\partial E} f(z)dz = 0.$$

DIMOSTRAZIONE: Per Teorema 9 vale la CCR

$$\nabla v = R \nabla u$$
.

Allora, da una versione sufficientemente generale della formula di Green (NB: Le funzioni u e v risultano essere differenziabili, ma non necessariamente di classe C^1 . Tuttavia ∇u e ∇v sono misurabili e inoltre, essendo valida la CCR, si ha $\partial (-v)/\partial x - \partial u/\partial y = \partial u/\partial x - \partial v/\partial y = 0$), si ottiene

$$\int_{\partial E} f(z)dz = \int_{\partial E} (u, -v) \bullet ds + i \int_{\partial E} (v, u) \bullet ds$$

$$= \int_{E} \left(\frac{\partial (-v)}{\partial x} - \frac{\partial u}{\partial y} \right) dxdy + i \int_{E} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) dxdy$$

$$= 0.$$

Siamo ora pronti per dimostrare la formula di Cauchy.

Teorema 13. Siano E ed f come in Proposizione 31. Allora, per ogni $w \in E$, si ha

$$f(w) = \frac{1}{2\pi i} \int_{\partial E} \frac{f(z)}{z - w} dz.$$

DIMOSTRAZIONE: Sia D_{ε} il disco di raggio ε centrato in w. Supporremo ε sufficientemente piccolo, di modo che $D_{\varepsilon} \subset E$. Poiché $z \mapsto f(z)/(z-w)$ è derivabile in $\Omega \setminus \{w\}$, dalla Proposizione 31 segue che

$$0 = \int_{\partial (E \setminus D_{\varepsilon})} \frac{f(z)}{z - w} dz = \int_{\partial E} \frac{f(z)}{z - w} dz - \int_{\partial D_{\varepsilon}} \frac{f(z)}{z - w} dz.$$

Parametrizzando ∂D_{ε} con

$$\gamma(t) := w + \varepsilon e^{it}, \qquad t \in [0, 2\pi]$$

e ricordando Proposizione 28, si ottiene allora

$$\int_{\partial E} \frac{f(z)}{z - w} dz = \int_{\partial D_{\varepsilon}} \frac{f(z)}{z - w} dz = \int_{0}^{2\pi} \frac{f(w + \varepsilon e^{it})}{\varepsilon e^{it}} \varepsilon i e^{it} dt = i \int_{0}^{2\pi} f(w + \varepsilon e^{it}) dt$$

per ogni ε sufficientemente piccolo. A questo punto la conclusione segue subito osservando che

$$\lim_{\varepsilon \downarrow 0} \int_0^{2\pi} f(w + \varepsilon e^{it}) dt = 2\pi f(w) + \lim_{\varepsilon \downarrow 0} \int_0^{2\pi} f(w + \varepsilon e^{it}) - f(w) dt = 2\pi f(w)$$

per la continuità di f in w.

OSSERVAZIONE: Come affermato nella dimostrazione di Teorema 10, dalla formula di Cauchy segue che una funzione derivabile in Ω è derivabile infinite volte in Ω . Vale infatti il seguente facile corollario di Teorema 13 (dimostrazione per induzione).

Proposizione 32. Siano E ed f come in Proposizione 31. Allora f è derivabile indefinitamente in E e vale la formula

$$f^{(n)}(w) = \frac{n!}{2\pi i} \int_{\partial E} \frac{f(z)}{(z-w)^{n+1}} dz, \quad w \in E \qquad (n=0,1,2,\dots).$$

Lezione del 1/12/06 (2 ore)

Esercizi di riepilogo.

Lezione del 5/12/06 (2 ore)

Esercizi di riepilogo.

References

- $[1]\,$ S. Campanato: Lezioni di Analisi Matematica, 2^a parte. Libreria Scientifica Pellegrini, Pisa.
- [2] E. Giusti: Analisi Matematica 2. Bollati Boringhieri.