Trento, 5th December 2008 Physics PhD Workshop

Francesco Bariani

DYNAMIC PHOTONIC STRUCTURES USING ELECTROMAGNETICALLY INDUCED TRANSPARENCY

Supervisor: Dr. I. Carusotto

Physics Department, University of Trento

R&D Center on BEC INFM-CNR

CARUSOTTO @ BEC

 Exciton-polaritons in semiconductors: Bose-Einstein Condensation (BEC) and SuperFluidity (SF) in collaboration with Wouters, Sarchi (now coming in Trento) (EPFL - Losanna), Ciuti (Denis Diderot - Paris), lattices of quantum dots with Gerace (Pavia) and Imamoglu's group (ETH - Zurich).

Collaboration with experimental groups: Lagoudakis (EPFL - Losanna), Luis Vina (Universidad Autonoma - Madrid), Alberto Bramati (LKB - Paris).

2) Atom optics, spectroscopy and detection of quantum phases of cold gases with BEC group (Trento), Castin (ENS - Paris), Kollath, Dao, Georges (Polytechnique - Paris).

3) Zero-point fluctuations: Ultrastrong coupling regime in radiation-matter interaction and Dynamical Casimir effect with De Liberato, Ciuti, (Denis Diderot - Paris), Hawking radiation in moving BEC with Recati (BEC - Trento) and cosmology group in Bologna.

OUTLINE

Introduction to EIT

• Polaritons in cold atoms: Static properties

• Polariton in cold atoms: Time-dependent picture

OPTICAL LATTICES & ULTRACOLD ATOMS

Countepropagating laser beams generate a stationary wave:

- Induced atomic dipole moment
 - AC Stark shift

Atomic lattices realized in periodic optical potential:

High regularitiesNo impurities

BEC into an optical lattice, raising adiabatically the lattice intensity: QUANTUM PHASE TRANSITION MOTT INSULATOR PHASE:

- Fixed number of atoms per site
- Gap in the excitation spectrum: No phonons

1D DISPERSION NEAR RESONANCE

1D REFLECTIVITY NEAR RESONANCE

DYNAMIC PHOTONIC STRUCTURES

Couple light inside the medium

Change in time of the dielectric properties.

Modify the spectrum Preserve Quantum coherence

BEYOND STEADY-STATE

ADIABATIC TRANSITION THEORY

$$\begin{pmatrix} |1\rangle & 0 & \sqrt{D} \\ 0 & |2\rangle & \Omega_c(t) \\ \sqrt{D} & \Omega_c(t) & |3\rangle \end{pmatrix}$$

Coupling from state i to j for an adiabatic transition (Messiah)

$$\boldsymbol{p}_{i \to j} \cong \left| \int_{t_o}^{t_i} \alpha_{ij}(t) \exp\left(\int_{t_o}^{t} i \omega_{ij}(t') \right) \right|^2$$

$$\alpha_{ij}(t) = \left\langle \frac{d}{dt} i(t) \middle| j(t) \right\rangle$$

Adiabatic condition

$$\frac{\delta \Omega_c}{\sqrt{D} \tau} \frac{1}{\tau} << \sqrt{D}$$

PROBING ULTRACOLD FERMIONS

Trento, 5th December 2008 Physics PhD Workshop

Francesco Bariani

DYNAMIC PHOTONIC STRUCTURES USING ELECTROMAGNETICALLY INDUCED TRANSPARENCY

Supervisor: Dr. I. Carusotto

Physics Department, University of Trento

R&D Center on BEC INFM-CNR

OPTICAL BLOCH EQUATIONS

Optical Bloch equations for the atomic density matrix

$$i\hbar\partial_{t}\hat{\sigma}(t) = [\hat{H}_{0} + \hat{V}_{AL}, \hat{\sigma}(t)] + R\hat{\sigma}(t)$$

Dissipative term

Linear Polarization of an atomic ensemble

$$\boldsymbol{P(t)} = \frac{N_{atom}}{V} 2\mu_{13}\sigma_{31}(t) = \varepsilon_0 \chi E_p(t)$$

Steady-state, linear solution for the Susceptibility

$$f$$

$$(\omega_p) = -\frac{f}{\left(\omega_{31} - \omega_p - i(\gamma_{31}/2) + \frac{(\Omega_c/2)^2}{(\omega_{21} + \omega_c) - \omega_p - i(\gamma_{21}/2)}\right)}$$

$$\delta_R$$
Raman 2-photon detuning

PERSPECTIVES

- Effect of Dynamical Photonic Structures on the Scattering
- EIT as probe of quantum state of ultracold gases *

Collaboration with C. Kollath, T.L. Dao (Paris)

Extend the description in 2D and 3D: scattering, polarization effects *

Collaboration with D. Gerace (Pavia)

Polariton-polariton scattering and non-linear effects (full quantum model)

TRANSFER MATRIX FOR A CHAIN OF ATOMIC SHEETS

Matrix algorithm: useful to describe the propagation of electric field in 1D arbitrarily complex structure.

$$E(z) = E_1 \exp(in\frac{\omega}{c}z) + E_2 \exp(-in\frac{\omega}{c}z) \implies v = \begin{pmatrix} E_1 \\ E_2 \end{pmatrix}$$

$$\int_{-a} \int_{0}^{L} \int_{z}^{L} \int_{z}^{$$

FANO-HOPFIELD QUANTUM MODEL

J.J. Hopfield, Phys. Rev. 112, 5 (1958)

"Cubic array of identical atoms separated by distances large enough that the overlap of wave functions of nearest atoms can be neglected."

$$H_{M} = \sum_{j,\bar{L}} \hbar \omega_{j} b_{j,\bar{L}}^{\dagger} b_{j,\bar{L}} = \sum_{j,\bar{k}\in fBz} \hbar \omega_{j} b_{j,\bar{k}}^{\dagger} b_{j,\bar{k}}$$

$$H_{R} = \sum_{\bar{k}\in fBz} \sum_{\bar{G}} \hbar \omega_{\bar{k}+\bar{G}} a_{\bar{k}+\bar{G}}^{\dagger} a_{\bar{k}+\bar{G}}$$
Minimal coupling replacement
$$H = H_{M} + H_{R} + H_{N} + H_{N} + b_{j,\bar{L}'} \rightarrow b_{j,\bar{L}'} + i\frac{\mu}{\hbar} \bar{A}(\bar{L}')$$
Quadratic Hamiltonian: EXCITON – PHOTON mixing \longrightarrow POLARITON

$$\alpha_{\vec{k},n} = \sum_{j} \left(\boldsymbol{u}_{j,n}^{\vec{k}} \boldsymbol{b}_{j,\vec{k}}^{\dagger} + \boldsymbol{v}_{j,n}^{\vec{k}} \boldsymbol{b}_{j,-\vec{k}}^{\dagger} \right) + \sum_{\vec{G}} \left(\boldsymbol{u}_{\vec{G},n}^{\vec{k}} \boldsymbol{a}_{\vec{k}+\vec{G}}^{\dagger} + \boldsymbol{y}_{\vec{G},n}^{\vec{k}} \boldsymbol{a}_{-\vec{k}+\vec{G}}^{\dagger} \right)$$
$$\boldsymbol{H} = \sum_{\vec{k},n} \hbar \Omega_{\vec{k},n} \alpha_{\vec{k},n}^{\dagger} \alpha_{\vec{k},n}^{\dagger} \left| \begin{array}{c} \text{For the complete formalism see} \\ \text{I. Carusotto, M. Antezza, FB, S. De Liberato e C. Ciuti,} \end{array} \right|$$

For the complete formalism see I. Carusotto, M. Antezza, FB, S. De Liberato e C. Ciuti, Physical Review A, 77 063621 (2008)

In 1D Reflection is the equivalent of Scattering

PHOTON-PHOTON RESONANCE ?

Similar to Imamoglu et al., PRL **79** 1467 (1997)

The first photon transfer the atom in the metastable state

The second photon "sees" a different atomic response

PHOTON ENERGY LIFTER

D2 line of the Rubidium 87 + ZEEMAN EFFECT with strong fields

PHOTON LIFTER EFFECT

BLOCH WAVEVECTOR CONSERVATION

Because of the exciton-photon mixing It's possible to change the radiation frequency by acting on the matter degrees of freedom

PHOTON LIFTER EFFECT

Upper polariton — · — · – Middle polariton Lower polariton

MAXWELL-BLOCH EQUATIONS

To study the pulse propagation for a time-dependent dressing field: Maxwell-Bloch Equations in Slowly Varying Envelope approximation

$$\begin{cases} \partial_{t} \boldsymbol{E} = \frac{\boldsymbol{i}}{2} (\partial_{x}^{2} + 1) \boldsymbol{E} + \boldsymbol{i} \sqrt{\boldsymbol{D}} \sigma_{31} & \text{Maxwell equation} \\ \text{coupling electric field} \\ \text{and atomic polarization} \end{cases} \\ \begin{cases} \partial_{t} \sigma_{31} = -\frac{\gamma_{31}}{2} \sigma_{31} + \boldsymbol{i} \sqrt{\boldsymbol{D}} \boldsymbol{E} - \boldsymbol{i} \frac{\Omega_{c}(\boldsymbol{t})}{2} \sigma_{21} \\ \partial_{t} \sigma_{21} = -\frac{\gamma_{21}}{2} \sigma_{21} - \boldsymbol{i} \frac{\Omega_{c}(\boldsymbol{t})}{2} \sigma_{31} \end{cases} & \text{Optical} \\ \text{Bloch} \\ \text{Equations} \end{cases}$$

INFINITE PERTURBATION

$$\Omega_{c}(t) = \Omega_{o} + \frac{\partial \Omega}{2} Erf\left(\frac{t}{\tau}\right)$$
Long time behavior:
Gaussian – exponential
$$\int \Omega_{c}(t) = \Omega_{o} + \frac{\partial \Omega}{2} Erf\left(\frac{t}{\tau}\right)$$

$$\Delta \Omega^{2}(t) \rightarrow D \Rightarrow p_{\infty}(\tau) \propto exp\left(-\frac{D\tau^{-1}}{4}\right)$$

- exponential?

2

We need to use the whole integral to map the coupling

ADIABATIC TRANSITION THEORY

The Messiah's integral in our case

$$\boldsymbol{p}_{0\to\pm} \cong \left| \int_{t_o}^{t_o} \frac{\sqrt{D}}{\Delta \Omega^2(t)} \frac{d}{dt} \left(\frac{\Omega_c(t)}{2} \right) exp\left(\pm i \int_{t_o}^{t} \Delta \Omega(t')\right) \right|^2$$

$$\Delta \Omega = \sqrt{\boldsymbol{D} + (\Omega_c(t)/2)^2}$$

Adiabatic condition

