INTERPLAY BETWEEN SURFACE TENSION AND LOCAL AMORPHOUS ORDER IN THE MOSAIC PICTURE OF THE GLASS TRANSITION

Giacomo Gradenigo

University of Trento

Supervisor: P.Verrocchio (Trento) In collaboration with: C.Cammarota, A.Cavagna (Roma) T.S. Grigera (La Plata)

SPING GLASS COMMUNITY (ROME, G.PARISI)

STRUCTURAL GLASSES

Physic ruled by classical thermodynamic

Diverging timescales

? Thermodynamic transition ?

? Diverging lenghtscale ?

MOSAIC

EXPONENTIAL NUMBER OF VALLEYS: COMPLEXITY

$$\begin{array}{c} (f) = e^{N\Sigma(f)} \\ \hline f(T) \\ \hline \mathcal{N}(f) = e^{N\Sigma(f)} \\ \hline f = T\Sigma(f) \\ \hline T_{K} \\ \hline T_$$

Glass

Multistate scenario : many amorphous phases

Entropic contribution to free energy

 $T_{K} < T \leq T_{D}$

 $T > T_D$

Supercooled liquid

Liquid

OVERLAP AS ORDER PARAMETER

 $q_1 \approx 1$ System in glassy state

 $q_0 \approx 0$ System in liquid state

RELAXATION FROM METASTABILITY RANDOM FIRST ORDER

Random First Order

$$\Delta f = \Upsilon R^{\theta} - T\Sigma R^3$$

eta New amorphous state

Standard First Order

 $\Delta f = \Upsilon \beta R^2 - \delta f R^3$

DIVERGING CORRELATION LENGHT

$$\Delta f = \Upsilon R^{\theta} - T\Sigma R^{3} = 0 \qquad \qquad \Upsilon R^{\theta} = T\Sigma R^{3}$$

G.Biroli, J.-P. Bouchaud, J.Chem.Phys, 121, 7347, (2004)

<u>G.Biroli, J-P Bouchaud, A. Cavagna, T.S. Grigera and P.Verrocchio,</u> <u>Nature Phys. (2008)</u>

Really exhist ??

Analitically computed in mean field models

Computed numerically for short range interactions

INHERENT STRUCTURES APPROXIMATION

 $DE = \Upsilon R^2 - \delta R^{\omega}$

Small size correction

Standard surface cost

 $\omega < 2$

Roughening of surface between amorphous phases

VANISHING SURFACE TENSION: FROM MINIMA TO SADDLES

CONCLUSIONS

Exhistence of surface tension among "states" in supercooled liquids.

Our result are consistent with a crossover from activated (supercooled liquid) to non activated (liquid) relaxational dynamic.

PLANS

Study of thermodynamic stability of interfaces in supercooled liquids using constrained MonteCarlo simulations.

Calculation of the surface tension term from the partition function of a liquid using a replica formulation of the problem.

CONFIGURATIONAL ENTROPY : MULTISTATE SCENARIO

CRITICAL SIZE OF DOMAINS

<u>G.Biroli,J-P Bochaud,</u> J.Chem.Phys, 121, 7347, (2004)

$$\beta(t=0) = \alpha \qquad \beta(t=\infty) = ?$$

$$Z_{S} = e^{-\beta f R^{3}} + e^{R^{3}\Sigma(f) - \beta f R^{3} - \beta \Upsilon R^{\theta}}$$

$$\sum_{Z_{\beta=\alpha}} Z_{\beta=\alpha} = \frac{1}{Z_{\beta=\alpha}}$$

$$p_{\beta=\alpha} = \frac{Z_{\beta=\alpha}}{Z_{S}} = \frac{1}{e^{-\beta(\Upsilon R^{\theta} - T\Sigma R^{3})} + 1}$$

$$p_{\beta\neq\alpha} = 1 - p_{\beta=\alpha} \qquad Free energy cost to nucleate a new phase}$$

$$R_{C} = \left(\frac{\beta \Upsilon}{\Sigma}\right)^{\frac{1}{3-\theta}} \qquad \theta \le 2$$

Growing correlation length benchmark of glass transition

FIRST ORDER PHASE TRANSITIONS

$$m = +1 \quad m = -1$$

Up magnetic field

Ising Model

$$-\sum_{\langle i,j\rangle} S_i S_j - h \sum_i S_i$$

Nearest neighboors

$$\Delta f = \Upsilon R^2 - T \delta f R^3$$

$$\Delta f = 0 \implies R_c = \left(\frac{\beta \Upsilon}{\delta f}\right)$$

$$-\sum_{i,j}S_iS_j-h\sum_iS_i$$

All to all

 $\Delta f = \alpha L^{\theta} - T \delta f R^3$

