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1. The Nuclear Problem

The study of nuclei and nuclear matter is still an open problem in theoretical physic
because of:

• The absence of an unique exact nuclear potential, derived from first principles.

There are a lot phenomenological nuclear potential (es. Argonne, Illinois,
Urbana, Skyrme) very realistic for two body sector and at density typical of nuclei.
Higher density behavior (relevant in astrophysics) and n-body (n > 2) terms are
not well–known.

Nuclear potentials derived from Effective Field Theories (EFT) were recent
developed (es. CD-Bonn, Nijmegen); they are written starting from QCD sym-
metries adding more fundamental basis to phenomenological potentials and a sys-
tematic way to order and add new terms. Effective parameters must be otherwise
fitted on experimental data and not derived (at now) directly from QCD simula-
tions. Therefore the knowledge of n–body contributions is still limited by the lack
of experimenta input. For this reasons they suffer anyway of the same experimental
limits about the n-body (n > 2) sectors.

• The absence of a sufficient accurate method to calculate nuclei and nuclear mat-
ter properties. Mean field methods (like Hartree–Fock) are too much model
potential dependent, despite the computation is feasible. Hamiltonian diagonal-
ization methods (es. No Core Shell Model) could be applied only to few
body problems (n ≤ 12), because of the high number of basis functions to be con-
sidered to reach convergence. Accurate Variational Monte Carlo methods
(VMC) has been used up to n ≤ 12. Increasing the number of nucleons is very
hard, because of the exponential growth of spin–isospin states. Green Function

Monte Carlo (GFMC), starting from very accurate variational wave functions,
gives accurate results although affected by constrained path approximation and
nonlocal potential terms. My systems worked out so far are limited to n ≤ 12
for the same reason as VMC method. Auxiliary Field Diffusion Monte

Carlo (AFDMC) method[1] open the possibility to study nuclei heavier than
GFMC (40Ca, for example [2]) or nuclear matter (now up to n = 114 [3]). The
trick is to consider not the total product spin–isospin space, but only the sum
of single particle spaces, and to rewrite two body terms in one body ones using
Hubbard–Stratonovich transformation. There are still some difficulties with in-
cluding nonlocal potential terms; moreover very accurate spin–isospin correlation
dependent trial wave function couldn’t be used. Because of this restriction, for
some systems Fixed–Phase or Constrained Path approximations are not accurate
enough compared to GFMC.

2. Effective Field Theories

At present it is impossible to study nuclear systems starting directly from QCD be-
cause of its non–perturbative character. Lattice QCD simulations are also prohibitive
because of their enormous computational cost.
Limiting the study to a specified system and energy regime (es. fundamental state
of nuclei), not all degrees of freedom (es. quark and gluon) are fundamental for the
system dynamic.
Effective Field Theories helps to construct an equivalent effective Lagrangian

• including only few relevant effective degrees of freedom (es. baryons and lighter
mesons);

• ordering in a perturbative series the Lagrangian terms (in principle infinite);

• preserving the fundamental symmetries.

At momentum lower than M ∼ 1GeV QCD is intrinsically non perturbative. M is
order of nucleon mass MN . The typical momenta Q exchanged between nucleons in
small nuclei are order of the size of small nuclei, i.e. Q ∼ mπ ≃ 138MeV. Therefore
it is possible to consider two energy scales:

• low energy scale, involving only relevant degrees of freedom (nucleons, pions,...)
with momentum Q < M .

• high energy scale, including degrees of freedom that are omitted; their effects
are included in effective theory by a counterterms series. This contains in principle
an infinite number of therms. Observing that Q

M
< 1, it’s possible to order these

terms in a perturbative series, considering only a finite number of terms for a
specified precision.

Moreover a regularization cut–off must be introduced for momentum larger than
Q, removing ultraviolet divergences and the high energy physic already described by
the counterterms.

The Lagrangian used in this work (that can be systematically improved at higher
orders in perturbative series expansion) is the fallowing[4, 5]:
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3. Regularization and Effective

Parameters

Starting from the previous Lagrangian L0 it’s necessary:

• to fix a regularization scheme, with a cut–off Λ on momenta Q.

• to determine all effective parameters that depends on regularization schema
and cut–off Λ.

• to have an Hamiltonian formalism to use Monte Carlo methods.

The cut–off Λ is implemented representing the pion fields on a periodic lattice with
step a ≃ 2fm. Consistently, a discrete definition of derivative is required: we use
three point formula.
About effective parameters we can say that

• at this order mπ correspond to the physical pion mass (the mean of π+, π− and
π0 masses)

• M0 is the nucleon bare mass. The difference between the physical mass MN is
the eigenenergy due to interaction energy between the single nucleon and the pion
fields.

• gA is the axial vector coupling of nucleon and fπ is the pion decay constant.

• C and CI are the effective coefficients parameters of counterterms.

Another very good but fundamental approximation, is to consider the nucleons

number constant. With these assumptions, the Hamiltonian is the following:

H = Hπ + HπN + HN
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4. Methods

In order to compute the energy of the ground state of the previous Hamiltonian, three
methods are used:

• Variational Monte Carlo. The problem is well posed and an upper bound
of the exact energy is obtained . Jastrow spin–isospin dependent correlations
are used to have a better wave function. Otherwise, with a non central Jastrow
(i.e. spin–isospin dependent) it’s possible to treat only few body nuclear systems,
because the entire spin–isospin product space is to be considered, which dimension
increase exponentially as 4n respect to the nucleon number n.

• Green Function Monte Carlo. The idea is to start from a variational wave
function and evolve it in imaginary time in order to project on the fundamen-
tal state. But, because of the intrinsic complex nature of the Hamiltonian, the
problem is not well posed, and an approximation like constrained path[6] or
fixed–phase is necessary to compute a positive defined transition function. With
a real Hamiltonian it is possible to use the fixed–node approximation, obtain-
ing an upper bound to the energy. Otherwise the upper bound property is not
guaranteed however, if the trial wave function is very good, the approximation is
under control. So it is necessary to have a good variational wave function, using
a Jastrow spin–isospin dependent correlation function and limiting the method to
the study of few body systems. Moreover nonlocal terms (coming at higher order
in EFT) are not easy to included.

• Auxiliary Field Diffusion Monte Carlo. The idea is the same as that one
of GFMC, but the two body terms in the propagator are rewritten into a one
body term using the Hubbard–Stratonovich transformation and including
auxiliary fields. The goal of AFDMC method is to reduce the configuration space
to be considered from the product space (dimension 4n) to the sum of one body
spaces (dimension 4n), making possible to treat many nucleons systems. Otherwise
operatorial Jastrow correlations (i.e. non local or spin–isospin dependent), can not
be included into the trial wave function. So a poorer trial wave function is used
Consequently it might became problematic to correctly describe the system and
to limit fixed–phase or constrained path approximations.

5. Toy Model

As a first step, pions vacuum was studied. The Hamiltonian is only H0 = Hπ.
For this system the exact ground state wave function was been found:
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This is important, because the pion fields vacuum energy V0 is several orders larger
than typical nucleon binding energy.
As a second step a system with only one nucleon into the pion fields is considered. A
simpler interaction term is used:
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For this system with Hamiltonian H̃ = Hπ + H̃πN the exact ground state was found:
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The difference between the smallest eigenvalues of H0 and H̃ is the nucleon eigenen-
ergy of the toy model.

6. Trial Wave Function

Starting from the toy model, the trial wave function was determined.
With the true pion–nucleon interaction HπN it is not possible to find the one–nucleon
ground state as for the toy model, but fallowing the same structure a pion–nucleonm

correlation with the operator θm was included:
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Two body nucleon–nucleon correlations are included with other Jastrow spin–isospin
dependent terms, paying attention to symmetrize operators to preserve the antisym-
metry of the uncorrelated wave function [7].
Calling |χ〉 the antisymmetric uncorrelated nucleon wave function, the final form of
the trial wave function:
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The correlation functions fc(rmn) and fτ(rmn) and the parameter gT og ΘM must be
determined variationally, minimizing the energy of the system.

7. Effective and Variational

Parameters

As a first step the nucleon eigenenergy is computed by DMC. Variational parameter
gT is fixed by minimizing the variational nucleon eigenenergy (see figure).

The remnant two effective field theory coefficients have to be fixed fitting the binding
energy of two few nucleons systems (es. 3He and 2H).

8. Results, problems and

future developments

The AFDMC algorithm does not work for two nucleon system, because of too poor
correlation in trial wave function. So, in order to fit C and CI parameters on a
few nucleon system we try to use VMC and GFMC methods. Probably for a high
precision result, also NNπ correlations must be included. For some systems the
AFDMC algorithm results stable and scale linearly with nucleon number. In figure is
plotted the AFDMC energy evolution for 4He, with two arbitrary coefficients C and
CI.
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