Femto Newton level testing of free-fall on-ground

Daniele Nicolodi

Experimental Gravitation Laboratory University of Trento

Trento — February 3rd 2010

Why do we need to test free-fall?

Realisation of free-fall is the key component for defining geodesic reference frames.

It is crucial for
 Gravitational Waves
 detection and for any
 other general relativity
 experiment.

Why do we want to detect GW?

- Confirmation of general relativity.
- Gravitational wave astronomy.
- Cosmology.

The LISA experiment

- * Three spacecraft located 5 millions km away to form an equilateral triangle orbiting the Sun.
- Each spacecraft contains two test bodies nominally in free-fall.
- Distance between test bodies measured by means of interferometric ranging with pm resolution.

Giant Michelson interferometer in space.

Sensitivity to GW

The LISA Spacecraft in brief

- Spacecraft shields TMs from external disturbances.
- SC must be kept centred around test mass position by means of FEEP micro-thrusters.
- 2 TMs in each SC: actuation in the non scientific DOF.

The Gravitational Reference Sensor

- Defines test mass environment.
- Limit forces and force gradients acting on the TM.
- * Measurement of TM position in 6 DOF.
- Supply actuation authority to control test mass position.

$$S_a^{1/2} < 3.0 \times 10^{-15} \text{ m s}^{-2} \text{ Hz}^{-1/2}$$

 $S_x^{1/2} < 1.8 \times 10^{-9} \text{ m Hz}^{-1/2}$

LISA GRS design

- * 2 kg 46 mm cubic Au-Pt test mass
- * 6 DOF capacitive sensor:
 - contact free sensing bias injection
 - resonant 100 kHz AC bridge readout.
- Audio frequency electrostatic actuation.
- Large gaps 3-4 mm.
- High thermal conductivity Mo-Sapphire construction.

Reason for free-fall ground testing

LISA free-fall performance should be 1000x better than currently flying missions.

Reason for testing free-fall on-ground

STS-125 Mission servicing Hubble space telescope. NASA

No PhD students to tight bolts in space!!

LISA Pathfinder and LTP

- Demonstration of geodesic motion.
- One particle sets the reference frame.
- One particle acts as test body.
- Measure the relative acceleration.

Shrink one LISA arm from 5 millions km to 30 cm.

On-ground free-fall testing

* Torsion pendulum

- Provide quasi free-fall in 1D
- Lightweight test mass
 - Hollow aluminium test mass replica
 - Test limited to surface forces
 - Bulk forces tested separately

Trento torsion pendulums facilities

 Single mass torsion pendulum: torque measurements.

Four masses torsion pendulum: direct force sensitivity.

 Sensitivity limited by thermal noise and angular read-out noise.

Torsion pendulum upper limits on GRS force noise

- Quietest possible conditions.
- Angular deflection measurement with two readouts: GRS capacitive sensing and optical readout.
- Cross correlation to distinguish true torque noise floor from background readout noise.
- Average over many runs each one lasting one WE.

Torsion pendulum upper limits on GRS force noise

to Fused Silica with Q = 740000

Conversion to test mass acceleration noise

Known noise sources investigation

- Coherent detection:
 - modulate force disturbance source
 - measure coherent pendulum motion

* Examples:

- Thermal gradients induced forces
- Electrostatic forces

Ongoing effort

- * Understand detected torque noise excess:
 - known disturbances transfer function measurements.
 - detailed noise budget.
- Interferometric angular readout development:
 - few nrad Hz^-1/2 sensitivity in 0.1 mHz -1 Hz
 - based on LTP design: heterodyne wave-front sensing
 - in collaboration with AEI Hannover
- * Thinner fused silica torsion fibre:
 - improve production technique
 - reduce read-out noise impact
 - in collaboration with Glasgow University

The Trento LISA Team:

F. Antonucci - A. Cavalleri - G. Ccongedo - F. Demarchi
R. Dolesi - L. Ferraioli - M. Hueller - D. Nicolodi
D. Tombolato - S. Vitale - P. J. Wass - W. J. Weber

THE GRAVITATIONAL WAVE SPECTRUM

LISA Pathfinder mission

Interferometric read-out scheme

