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Why do we need to test free-fall?

* Realisation of free-fall is
the key component for
defining geodesic
reference frames.

* It is crucial for
Gravitational Waves
detection and for any
other general relativity
experiment.




Why do we want to detect GW?

* Confirmation of
general relativity.

% Gravitational wave
astronomy.

* Cosmology.




The LISA experiment

in free-fa

| * Distance

Giant Michelson interferometer |

* Three spacecraft located
5 millions km away to
form an equilateral
triangle orbiting the Sun.

* Each spacecraft contains
two test bodies nominally

petween test

bodies measured by
means of interferometric
ranging with pm
resolution.

n space.



Sensitivity to GW
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The LISA Spacecraft in brief

* Spacecraft shields TMs
from external
disturbances.

* SC must be kept centred
around test mass
position by means of
FEEP micro-thrusters.

* 2 TMs in each SC:
actuation in the non
scientific DOF.




The Gravitational Reference Sensor

Defines test mass environment.

_imit forces and force gradients acting on the TM.
Measurement of TM position in 6 DOF.

¥ X F #*

Supply actuation authority to control test mass position.

S1/2 «30x107 ms™2 Hz V2

S1/2 1.8 x 107 m Hz~1/?



LISA GRS design

* 2 kg 46 mm cubic Au-Pt test mass

* 6 DOF capacitive sensor: | e
- contact free sensing bias injection

- resonant 100 kHz AC bridge readout.
* Audio frequency electrostatic actuation.

—

* Large gaps 3-4 mm. ‘

* High thermal conductivity
Mo-Sapphire construction.




Reason for free-fall ground testing
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LISA free-fall performance should be 1000x
better than currently flying missions.



Reason for testing free-fall on-ground
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STS-125 Mission servicing Hubble space telescope. NASA

No PhD students to tight bolts in space!!



LISA Pathfinder and LTP

* Demonstration of
geodesic motion.

* One particle sets the
reference frame.

* One particle acts as
test body.

% Measure the relative
acceleration.

Shrink one LISA arm from 5 millions km to 30 cm.



On-ground free-fall testing

i * Torsion pendulum

* Provide quasi free-fall in 1D

torsion fibre

* Lightweight test mass

- Hollow aluminium test mass replica

0 - Test limited to surface forces

l - Bulk forces tested separately

test mass




Trento torsion pendulums facilities

* Single mass torsion * Four masses torsion
pendulum: torque pendulum: direct
measurements. force sensitivity.

* Sensitivity limited by thermal noise
and angular read-out noise.



Torsion pendulum upper limits
on GRS force noise

* Quietest possible conditions.

* Angular deflection
measurement with two
readouts: GRS capacitive
sensing and optical readout.

* Cross correlation to distinguish
true torque noise floor from
background readout noise.

* Average over many runs
each one lasting one WE.




Torsion pendulum upper limits
on GRS force noise
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Fibre upgrade from Tunghsten with Q = 3000
to Fused Silica with Q = 740000



Conversion to test mass
acceleration noise
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Known noise sources investigation

* Coherent detection:
- modulate force disturbance source

- measure coherent pendulum motion

— Angular signal
- — Free-mode filtered
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* Examples:

- Thermal gradients induced forces

- Electrostatic forces



Ongoing effort

* Understand detected torque noise excess:
- known disturbances transfer function measurements.
- detailed noise budget.
* Interferometric angular readout development:
- few nrad Hz”-1/2 sensitivity in 0.1 mHz -1 Hz
- based on LTP design: heterodyne wave-front sensing
- in collaboration with AEI Hannover
* Thinner fused silica torsion fibre:
- improve production technique
- reduce read-out noise impact

- in collaboration with Glasgow University
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LISA Pathfinder mission
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Interferometric read-out scheme
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