GIORNALE
DI MATEMATICHE
AD USO DEGLI STUDENTI
DELLLE UNIVERSITÀ ITALIANE
PUBBLICATO PER CURA DEL PROFESSORE
G. BATTAGLINI

Volume XXII.—1884.

NAPOLI
BENEDETTO PELLERANO EDITORE
LIBRERIA SCIENTIFICA E INDUSTRIALE
Via Genovese Serra 20.
1884.
LE FUNZIONI ALGEBRICHE STUDIATE GEOMETRICAMENTE.

Nota del

Dott. ORESTE TOGNOLI.

Quando lessi questa Memoria, puro ammirandone la bellezza e l'importanza dei risultati, non mi parve che tutto vi fosse esposto in modo abbastanza semplice, e specialmente colla migliore delle chiarezze possibili; e fin d'allora presi alcuni appunti, coll'intenzione di ricostruire la Memoria stessa con diversa lezatura.

E ora pubblico qui questo lavoro, che ho ricevuto da tali appunti. In esso, lo ripeto, trattò argomenti altrui, ma non segnò nel trattare il metodo d'altrui; e il lettore se ne potrà subito persuadere, quando arriverà confrontato la citata Memoria de' due chiari autori tedeschi, con questo medesimo mio lavoro.

INTRODUZIONE.

Sia:

(1) \[f(x, y) = 0 \]

l'equazione in coordinate cartesiane ortogonali di una curva piano dell'ordine \(n \); e se condotta nel piano di questa curva, e pel punto \((a, \beta)\) di essa, una retta arbitraria, la cui equazione sia la:

(2) \[a(x - a) + b(y - \beta) = 0. \]

I punti nei quali questa retta seca la curva \(f \), sono determinati dalle radici dell'equazione:

(3) \[\varphi(x) = f\left(x, \frac{a}{b} (x - a) + \beta \right) = 0. \]

Ora, se per \(m = a \), oltre a \(\varphi \) si annullerà ciascuna delle funzioni: \(\varphi', \varphi'', \varphi''', \ldots, \varphi^{(n-1)} \), per le quali si ha \(\varphi^{(n)} = \frac{dy}{dx} \), il punto \((a, \beta)\) sara \(p^{(a)} \) sulla curva \(f \). In questa ipotesi le coordinate del punto \((a, \beta)\), dovranno verificare l'equazioni del sistema:

\[
\begin{align*}
\frac{\partial f(x, y)}{\partial x} &= 0, \\
\frac{\partial f(x, y)}{\partial y} &= 0, \\
\frac{\partial^2 f(x, y)}{\partial x^2} &= 0, \\
\frac{\partial^2 f(x, y)}{\partial x \partial y} &= 0, \\
\frac{\partial^2 f(x, y)}{\partial y^2} &= 0.
\end{align*}
\]

(4)

composto di \(\frac{1}{2} m(m + 1) \) equazioni. Di qui si deduce, che se la curva \(f \) ha nel punto \((a, \beta)\) un punto \(p^{(a)} \), fra i coefficienti della sua equazione dovranno verificarsi, in generale, \(\frac{1}{2} m(m + 1) \) equazioni lineari distinte. L'equazione:

\[
\frac{\partial^2 f(x, y)}{\partial x^2} + \frac{\partial^2 f(x, y)}{\partial x \partial y} \frac{dy}{dx} + \frac{\partial^2 f(x, y)}{\partial y^2} \left(\frac{dy}{dx} \right)^2 = 0
\]

determina i coefficienti angolari delle tangenti ai rami della curva \(f \), che passano pel punto \((a, \beta)\). Un simile punto, nel compito del numero dei punti doppio che può avere la detta curva, va dunque calcolato per \(\frac{1}{2} m(m - 1) \) di tali punti.

Osservazione. Per ogni punto \((a, y)\) della curva \(f \), si determina un punto \((z, z)\), le cui coordinate, rispetto agli assi si quali è riferita la \(f \), siano date dalle proporzioni:

\[x : 1 = 1 : z, \quad y : 1 = 1 : z. \]

Così si trasformerà la \(f \) in una curva \(F \) del medesimo ordine, e i punti della \(f \), \(F \) si corrisponderanno in modo univoco.

Ora, perché si può sempre supporre che i punti multipli della \(f \) non giacciano sopra alcuno degli assi di riferimento, ne risulta che la \(F \) non avrà punti
multipli all'infinito, e però, nelle successive ricerche, potremo sempre ammettere che la curva che vi sarà considerata, non abbia alcuno di tali punti all'infinito.

Abbiamo la f_p, punti doppi, s, triplici, ecc., s_{m-3}. Il numero dei punti doppi della f (denotato con k), sarà espresso dall'uguaglianza:

\[k = \sum_{p=1}^{m-1} s_p \frac{4}{2} \mu(p+1), \]

e il genero p della curva stessa dall'altra:

\[p = \frac{1}{2} (n-1)(n-2) - k; \]

e questo p, secondo quanto precede, avrà un valore indipendente dall'essere due (o più) delle tangenti in uno dei punti multipli della f, riunite in una stessa retta.

Sia la f_1 una curva algebrica piana dell'ordine m, assoggettata a passare per ciascuno dei punti multipli della f tante volte, quanto unità sono nel grado di multiplità del punto multiplo meno una. Se la f_1, nei punti multipli della f sottoposti alla sola condizione qui indicata, le dovremo il nome di curva aggiunta alla f, o semplicemente quello di curva aggiunta.

La f_1 sarà sostituita, in generale, a

\[\sum_{p=1}^{m-1} s_p \frac{4}{2} \mu(p+1) \]

condizioni lineari diverse; ed avrà in common

\[\sum_{p=1}^{m-1} s_p \frac{4}{2} \mu(p+1) \]

punti colla f, nei punti multipli di questa curva.

Una curva algebraica nel piano della f sarà una curva aggiunta, purché ad essa convenga la definizione data riguardo alla f_1. Tali curve aggiunte saranno considerate in seguito in modo particolare.

I. Teoremi dei resti.

Sulla curva f si suppongono dati due gruppi di punti G_1, G_2, il primo dei quali ne contenga R, e il secondo Q. Se una curva aggiunta, oltre ai punti multipli, sega la f in $R + Q$ punti, che coincidono con quelli dei gruppi G_1, G_2, dimo- remo che uno di questi gruppi è residuo dell'altro.

Immaginando sulla f più gruppi: G_1, G_2, ecc., di R, R', R'', ecc. punti; se ciascuno di questi gruppi sarà residuo rispetto ad un medesimo gruppo di Q punti della f, chiameremo corrispondenti i gruppi G_1, G_2, G_3, ecc.
Ma per la (6) (Introd.) quest'ultima uguaglianza può scriversi così:

\[R_k' + Q' = n(z-n+3) + 2(p-1); \]

e però, se \(k \geq \frac{1}{2} (n-1)(n-2) \), e quindi \(p \leq 0 \), dovrà essere sempre positivo \(\geq n \)

Il numero \(n(z-n+3) + 2(p-1) \), sarà \(z > n-3 \).

Una curva aggiunta d'ordine \(> n-3 \), restando ferma l'ipotesi fatta sul valore di \(k \), passerà effettivamente per tutti i punti di ciascuno dei gruppi \(G_{R_k'}, G_{Q'} \), perché per \(z > n-3 \), il numero \(\frac{1}{2} z(z+3) \) non è mai inferiore a \(k + R_k' + Q' \), ovvero \(a = k - h \).

Se poi \(k < \frac{1}{2} (n-1)(n-2) \), e quindi \(p > 0 \), si dimostrerà, in modo analogo a quello qui sopra indicato, che per un siffato valore di \(k \) può accadere che si possa prendere \(z = n-3 \), e che una curva aggiunta, il cui ordine potrà essere \(< z = n-3 \), passerà sempre per tutti i punti di ciascuno dei gruppi \(G_{R_k'}, G_{Q'} \); dunque si potrà affermare la verità del teorema.

Se un sistema di gruppi, formati rispettivamente di \(R_k, R_k, R_k, R_k, R_k, R_k, R_k; \) punti della curva \(f \), risulta di gruppi residui di un medesimo gruppo di \(Q \) punti della \(f \); e se un gruppo qualunque del sistema è residuo anche di un gruppo di \(Q \) punti di questa curva \(f \), ogni altro gruppo del sistema stesso sarà residuo anche di questo gruppo di \(Q \) punti.

Questo teorema, conosciuto col nome di teorema dei resti, mostra, che sebbene più gruppi di punti sulla curva \(f \), per essere corrispondenti debbano essere residui di un medesimo gruppo di punti della \(f \), non è però vero che questo gruppo sia unico; e quindi il concetto di gruppi corrispondenti, è indipendente dal gruppo particolare, rispetto al quale quelli del sistema sono residui.

II.

Serie di gruppi di punti.

Sia l'equazione:

\[\psi(x, y, \lambda_1, \lambda_2, \ldots, \lambda_r) = 0, \]

nella quale \(\psi \) esprime un polinomio razionale intero rispetto a ciascuna delle quantità: \(x, y, \lambda_1, \lambda_2, \ldots, \lambda_r \) quella che corrisponde ad un'arbitraria curva aggiunta.
una tal serie, dovendo giacere sulla curva del \(s^e \) ordine, saranno per la serie medesima: \(\varepsilon = 1 \), \(Q = k \), \(c = 4 \), e quindi \(q = 3 \). Questa serie risulterà dunque composta di \(\omega^\varepsilon \) serie lineari di gruppi di \(q \) punti, e ciascuna di queste sarà \(\omega^q \).

I singoli punti di una curva del \(3^e \) ordine formano una serie di gruppi di un punto, per la quale sussistono le uguaglianze: \(\varepsilon = 1 \), \(Q = 1 \), \(c = 1 \). In questo caso le \(\omega^q \) serie lineari dal quale risulta la serie di gruppi qui considerata, sono tutte \(\omega^q \). Ma se la curva del \(3^e \) ordine ha un punto doppio, i singoli punti di essa si potranno riguardare come determinati dalla retta del fascio, che ha il suo centro nel punto doppio; ed è chiaro che in quest’ipotesi i punti stessi formeranno una unica serie lineare, che sarà \(\omega^q \).

Dalle due delle sopra si rileva subito, che ogni gruppo di una serie di gruppi di \(q \) punti sopra una curva algebraica, contiene un certo numero di punti, che sono determinati dalle particolari condizioni, cui soddisfano in comune i gruppi della serie; un tale numero di punti sarà uguale a \(Q - s - q \), essendo \(s + q \) il numero dei punti liberi di un gruppo, dei quali si serviranno a determinare le serie.

In seguito dovrete una serie lineare con uno dei simboli \(g_1^0 \), \(g_2^0 \), ..., e uno qualunque de’ suoi gruppi con \(h_1^0 \), \(h_2^0 \), ..., dove \(q \) esprimerà sempre il grado d’infinità della serie, e \(Q \) il numero dei punti di un gruppo.

Una serie \(g^0 \) si può sempre considerare composta di gruppi corrispondenti. Infatti, i singoli gruppi di questa serie si potranno sempre immaginare separati sulla curva \(f \), ove tutti sono situati, mediante le curve di una serie lineare \(\omega^q \) di curva aggiunti, per la quale ciascuna delle sue curve passa per \(R \) punti arbitrari ma fissi della \(f \), e che la \(f \) in un gruppo di \(Q \) punti mobili; basterà semplicemente supporre, che sia \(2k + Q; R = 0 \) (mod. \(n \)). Allora ogni gruppo della serie \(g^0 \) sarà residuo di un gruppo di punti di curva corrispondente, e così tutti i gruppi della serie medesima saranno corrispondenti.

Per una serie \(g^0 \) di gruppi di \(q \) punti, che sin formata d’uno numero finito di serie lineari, non saranno, in generale, i gruppi d’una di queste serie, corrispondenti rispetto a quelli d’un’altra delle serie medesime. E infatti, se un gruppo d’una delle serie qui indicate potesse essere residuo di tutti i gruppi di un’altra delle serie stesse, dovrebbe aversi \(2(k + Q) = 0 \) (mod. \(n \)); e questa condizione non è generalmente soddisfatta.

III.

Serie lineari di gruppi di punti.

Secondo le considerazioni del § II, possiamo dedurre che una serie \(g^0 \) si può sempre separare sulla curva \(f \) col mezzo delle curve aggiunte di un sistema lineare \(\omega^q \), le quali passano per medesimi \(R \) punti della \(f \). Il gruppo di questi \(R \)

punti non è però fissato sulla \(f \), e quindi la serie \(g^0 \), che si suppone su questa curva, è indipendente da quella delle curve aggiunte che ve la separano.

Si ora la \(f \) dell’ordine \(n > 3 \), e \(q \) una sua curva aggiunta dell’ordine \(s > n \).

La curva definita dall’equazione

\[\phi_1 = \psi + \phi_1 f = 0, \]

dove \(\phi_1 = 0 \) è l’equazione d’una curva algebraica dell’ordine \(s - n \), sarà anche essa evidentemente una curva aggiunta dell’ordine \(s \).

Il numero dei costanti arbitrarie, contenuto nell’equazione \(\phi_1 = 0 \), è in generale uguale ad \(\frac{1}{2}(s-n+1)(s-n+2) \) e di esse potranno disporre in modo che all’entità dei coefficienti \(\phi_1 \) siano determinati valori.

La \(\phi_1 \) sarà dunque generalmente determinata da \(\frac{1}{2}(s+3) - k - l \) costanti, ove \(k \) è il numero espresso dalla formula (5) (Introd.), ed \(l = \frac{1}{2}(s-n+1)(s-n+2) \)

e questa curva si potrà sostituire alla \(\psi \).

Ora si ha:

\[\frac{1}{2}(s+3) - k - l = ns - \frac{1}{2}(n-1)(n-2) - k, \]

ovvero, per la formula (6) (Introd.):

\[\frac{1}{2} s(s+3) - h - l = ns - 2k - p. \]

Quest’uguaglianza dimostra, che presi ad arbitrio sulla curva \(f \) \(ns - 2k - p \) punti, dei quali non ve ne sia alcuno che cada in un punto multiplo della \(f \), la curva \(\phi_1 \) sarà completamente determinata se li si assoggetterà a passare per questi punti; e però dei punti d’intersezione delle curve \(f, \phi_1 \), i quali non cadono nei punti multipli della prima di esse, ve ne sono \(p \) plenamente determinati dai rimanenti, supposto sempre che sia \(\frac{1}{2}(n-1)(n-2) > h \).

Osservazione. Se il numero delle costanti contenute nell’equazione \(\phi_1 = 0, \) sarà minore di \(\frac{1}{2}(s-n+1)(s-n+2) \), il numero dei predetti punti di segmento delle curve \(f, \phi_1 \), che sono determinati mediante i rimanenti di essi, sarà inferiore a \(p. \) Una diminuzione nel numero dei punti qui indicati, avrà parimenti luogo anche nel caso, nel quale l’equazione chi non sono dal sottoporre la curva \(\phi_1 \) a dover passare per \(ns - 2k - p \) punti della \(f, \) per la scelta particolare di questi punti,
non saranno tutte distinte. E poi facilmente si vede che se la curva aggiunta q "è di un ordine $s < n$, la curva δ_k dovrebbe coincidere con q, e però la riduzione accennata superiore, riguardo al numero delle costanti della equazione $\varphi = 0$, non si potrà più operare. Tuttavia, se sarà $s = n - 2$ oppure $s = n - 3$, rimarrà invaria-
riabile la conclusione dedotta più sopra relativamente ai punti mobili di segnamento delle curve, che ora sono le φ ed f.

Infatti a queste due ipotesi corrispondono le uguaglianze:

\[
\begin{align*}
\left[\frac{1}{2} s (s + 3) - k \right]_{s = t - 1} &= \frac{n (n - 1) - 2k - p}{s = n - 2} = \frac{n (n - 2) - 2k - p}{s = n - 3},
\end{align*}
\]

le quali dimostrano appunto la nostra affermazione.

Esaminiamo anzi più estesamente questo caso di $s < n$, e supponiamo esso

\[s = n - \mu \quad (\mu > 5)\]

In quest'ipotesi l'equazione della curva q conterrà, in generale,

un numero di costanti arbitrarie uguale ad $\frac{1}{2} (n - \mu) (n - \mu + 3)$.

Ora si verifica facilmente l'esistenza dell'uguaglianza:

\[
\frac{1}{2} (n - \mu) (n - \mu + 3) - k = \frac{n (n - 2) - 2k - \frac{p - 1}{2} \mu (\mu - 3) - 1}{s = n - 3},
\]

dalla quale risulta, che i punti mobili d'intersezione delle curve φ, f, essendo

φ d'ordine $s = n - 3$, e f d'ordine $n - 3$, ve ne sono generalmente

$\frac{1}{2} \mu (\mu - 3) - 1$

determinati dai rimanenti.

Suppongasi adesso $k = \frac{1}{2} (n - 1) (n - 2)$; i punti mobili d'intersezione di ciascuna curva aggiunta, dell'ordine $s = n - 3$, rappresenteranno su f una serie lineare di gruppi di Q punti, e il numero dei punti necessari alla determinazione di un gruppo, e che potranno scegliersi ad arbitrrio sulla curva f, sarà almeno uguale a $Q - p$. Dunque il grado d'infinità della serie stessa, sarà almeno ugualmente uguale a $Q - p$; e però, se lo indichiamo con q, sarà $q > Q - p$.

Se poi $s = n - \mu \quad (\mu > 3)$, il numero dei punti che si potranno scegliere ad arbitrrio sulla curva f per determinare un gruppo, sarà almeno uguale a $Q - p + \frac{1}{2} \mu (\mu - 3) - 1$, perchè si ammetta sempre che l'equazione della curva aggiunta, che determina sulla f un gruppo di Q punti, contenga il massimo numero di costanti. Si avrà dunque in quest'ipotesi $q > Q - p + \frac{1}{2} \mu (\mu - 3) + 1$.
Curve aggiunte.

Sia \(f \) la curva considerata nell'introduzione, e per essa sia \(k \leq \frac{1}{2} (n-1)(n-2) \).

Dalle conclusioni riscritte nel § precedente si deduce che se una serie lineare \(g_q \) di gruppi di \(Q \) punti, è separata sulla curva \(f \) da una serie lineare di curve aggiunte dell'ordine \(n-p, (p \geq 3) \), è, in generale,

\[
q \geq Q - p + \frac{1}{2} q(n - 3) + 1,
\]

ovvero

\[
q \leq Q - p - \frac{1}{2} p(n - 3) - 1
\]

il numero dei punti di un gruppo, che sono determinati dai rimanenti punti del gruppo stesso.

Ora sia \(g_q \) una serie lineare di gruppi di \(Q \) punti sulla curva \(f \). Affinché i gruppi di una tal serie si possano separare mediante curve aggiunte dell'ordine \(n-p, \) supposto \(q \geq Q - p + \frac{1}{2} q(n - 3) + 1, \) dovrà in generale aver luogo la relazione:

\[
\frac{1}{2} q(n - p)(n - p + 3) \geq k + Q - p + \frac{1}{2} q(n - 3) + 1,
\]

ovvero, essendo \(k = \frac{1}{2} n(n - 3) - p + 1, \) l'altra:

\[
\frac{1}{2} q(n - p)(n - p + 3) \geq \frac{1}{2} q(n - 3) + Q - 2(p - 1) + \frac{1}{2} p(n - 3),
\]

dalla quale risulta:

\[
Q \leq 2(p - 1) - n(\alpha - 3),
\]

Questa condizione si rende manifesta quando si osservi, che se i gruppi della serie \(g_q \) sono separabili sulla curva \(f \) nel modo suindicato, deve aversi:

\[
Q \leq n(n - p) - 2k.
\]

Si può dunque enunciare il teorema:

Perché una serie \(g_q \) si possa separare sulla curva \(f \) mediante curve aggiunte dell'ordine \(n-p, (p \geq 3), \) è necessario e sufficiente che sia:

\[
q \geq Q - p + \frac{1}{2} p(n - 3) + 1.
\]

Da questo teorema risulta chiaramente, che le serie \(g_q \) contemplate in questo teorema sono serie particolari.

Per tali serie è sempre:

\[
q \geq Q - p + \frac{1}{2} p(n - 3) + 1,
\]

e quindi:

\[
Q \leq 2(p - 1) - n(\alpha - 3).
\]

Supponiamo ora \(Q = 2(p - 1) - n(\alpha - 3) \); dico che \(q \) non potrà allora superare il numero \(p - 1 - \frac{1}{2} (n - 3)(2n - p) \).

Infatti si consideri la serie \(g \) \(\frac{1}{2} (p-1)-n(\alpha-3) \); aggiungendo a ciascuno dei suoi gruppi un punto arbitrario e fissando la curva \(f \), si avrà la serie:

\[
\frac{1}{2} (p-1) - n(\alpha-3)
\]

\[g \]

Ora i gruppi di questa serie non si potranno separare sulla curva \(f \) mediante curve aggiunte dell'ordine \(n-p, \) se non è:

\[
n(n - p) - 2k \geq 2p - 1 - n(\alpha - 3).
\]

Ma è:

\[
k = n(n - 3) - 2p + 2,
\]

quindi:

\[
n(n - p) - 2k = n(n - p) - n(n - 3) + 2p - 2 = 2p - 2 - n(\alpha - 3).
\]

Dovrebbe dunque aversi:

\[
2p - 2 - n(\alpha - 3) \geq 2p - 1 - n(\alpha - 3),
\]

ovvero:

\[
2p - 2 \geq 2p - 1,
\]

relazione evidentemente assurda.

Si può giungere alla medesima conclusione anche osservando che affinché una serie lineare di gruppi di punti, per la quale il grado d'infinità \(q \) è uguale al numero \(p - \frac{1}{2} (n - 3)(2n - p) \), si possa separare sulla curva \(f \) mediante curve aggiunte dell'ordine \(n-p, (p \geq 3), \) è necessario e sufficiente che sia:

\[
q \geq Q - p + \frac{1}{2} p(n - 3) + 1.
\]
giunte dell'ordine \(n - p \), deve aversi in generale:
\[
\frac{1}{2} (n - p)(n - p + 3) > k + p - \frac{1}{2} (n - 3)(2n - p).
\]
e questa relazione si riconosce subito assoluta, se in essa si pone in luogo di \(k \) il suo valore dato dalla formula (6) (Introduzione).
Se adunque per una serie lineare \(g_q^{(0)} \) separabile sulla curva \(f \) mediante curve
giunte dell'ordine \(n - p \), \(q = q(p - 1) - n(p - 3) \), non può aversi
\[
q > p - 1 - \frac{1}{2} (n - 3)(2n - p).
\]
Ma secondo il precedente teorema non può neppure essere in quest'ipotesi
\[
q < p - 1 - \frac{1}{2} (n - 3)(2n - p);
\]
dunque sarà necessariamente \(q = p - 1 - \frac{1}{2} (n - 3)(2n - p) \).
Quindi, se \(Q \) è uguale a \(2(p - 1) - n(p - 3) \), esiste una sola serie lineare \(g_q^{(0)} \), sepa-
rabile sulla curva \(f \) per mezzo di curve giunte dell'ordine \(n - p \), ed è per una
tal serie \(q = p - 1 - \frac{1}{2} (n - 3)(2n - p) \).
Un gruppo di questa serie essendo determinato da
\[
p - 1 - \frac{1}{2} (n - 3)(2n - p)
\]
de \(n \) punti, arbitrariamente scelti, i punti del gruppo che rimarranno individuati
da questi, saranno in numero di
\[
p - 1 - \frac{1}{2} (n - 3)(2n - p).
\]
Le curve giunte dell'ordine \(n - p \), che separano sulla \(f \) i gruppi della serie
\[
P - 1 - \frac{1}{2} (n - 3)(2n - p), \quad p - 1 - \frac{1}{2} (n - 3)(2n - p)
\]
formano dunque una serie lineare
\[
2(p - 1) - n(p - 3)
\]
di curve giunte del detto ordine, la quale contiene per conseguenza
\[
p - 1 - \frac{1}{2} (n - 3)(2n - p)
\]
curve, fra loro indipendenti.
Daremo qui alcuni esempi relativi a serie lineari di gruppi, che formano parte
di quelle, cui si riferisce il precedente teorema.
Sia \(f \) una curva del \(6^{a} \) ordine con \(6 \) punti doppi, per essa sono \(p = 4 \), \(n = 6 \).
Una serie lineare \(g_q^{(0)} \) si può separare sulla \(f \) mediante cubiche giunte.
Siffatte cubiche hanno infatti in comune colla \(f \) nei punti doppi di questa curva,
12 punti, è quindi la seguente in altri 6 punti, i quali sono individuati da tre di
essi, scelti ad arbitrio.
Sia \(f \) una curva del \(7^{a} \) ordine con 3 punti doppi, saranno per questa curva
\(k = 3 \), \(p = 12 \).

V.

Teorema di Riemann e Rooh.

Sia \(g_q^{(0)} \) una serie lineare di gruppi di \(Q \) punti, la quale ridurnoeremo come
esistente sulla curva \(f \); e supponiamo \(q = Q - p + 1 - \frac{1}{2} (p - 3) + q' \left(q' \mbox{ intero}
positivo. < p - \frac{1}{2} (p - 3) - 1 \right) \).

Secondo il \(5 \) precedente, i gruppi di questa serie si potranno separare sulla
curva \(f \) per mezzo di curve giunte dell'ordine \(n - p \). Quella fra queste curve,
che passerà per \(q - q' \) punti arbitrari della \(f \), sarà dunque individuata dal dor
passare per altri \(q' \) punti arbitrari della stessa \(f \).

vol. xxii. 41
Ma una tal curva aggiunta sega ancora la \(f \) in un gruppo di \(2(q-1) - n(\mu - 3) - (q-q') \)
il quale si potrà ritenere come individuato da \(q' \) punti arbitrari della \(f \).
Il numero totale dei punti, che la medesima curva aggiunta ha in comune colla
\(f \), è \(2(p-1) - n(\mu - 3) \); e perché sottoponendo una siffatta curva aggiunta a pas-
sare per \(q' \) punti arbitrari della \(f \), essa passerà anche per un gruppo di \(Q \) punti della serie \(g_{Q}^{(\nu)} \), cosi essa curva aggiunta segherà la \(f \), oltre in questi \(Q \) punti, in un altro gruppo di \(2(p-1) - n(\mu - 3) - Q \) punti, il quale si potrà considerare come individuato dai suddetti \(q' \) punti. Da ciò risulta chiaramente che ad ogni gruppo della serie \(g_{Q}^{(\nu)} \) è associato un gruppo di \(Q = 2(p-1) - n(\mu - 3) - Q \) punti, il quale è individuato da \(q' = Q - p + 1 + \frac{1}{2} \mu (\mu - 3) \).

Ora siamo ricondotti a un'opera analoga, che è di non minore interesse, perch'egli, in quanto come la prima ha la proprietà, che i suoi gruppi si possono separare sulla curva \(f \), mediante curva aggiunte dell'ordine \(n - \mu \).

I ragionamenti qui fatti presuppongono evidentemente che il numero \(q \) non sia minore del numero \(q' \), ovvero, il che è lo stesso, che il numero

\[
Q - p + 1 + \frac{1}{2} \mu (\mu - 3)
\]

sia positivo.

Se ciò non ha luogo, vediamo prima di tutto se sia possibile separare sulla curva \(f \) i gruppi della serie \(g_{Q}^{(\nu)} \) per mezzo di curva aggiunte dell'ordine \(n - \mu \). Questo potrà farci, purché \((\S IV)\) sia

\[
q' > Q - p + 1 + \frac{1}{2} \mu (\mu - 3).
\]

Ma è \(\mu < n \), dunque sarà \(2n - \mu > n \), e però anche \(2n - \mu > p \). D'altronde è

\[
q' = Q - p + 1 + \frac{1}{2} (n - 3)(\mu - n) + q,
\]

quindi sarà:

\[
q' > Q - p + 1 + \frac{1}{2} \mu (\mu - 3);
\]

e la serie \(g_{Q}^{(\nu)} \) si potrà separare sulla curva \(f \) nel suddetto modo.

Dimostrato questo, si consideri una curva aggiunta dell'ordine \(n - \mu \) che passa per \(q' - q \) punti arbitrari della \(f \). Il numero totale dei punti che una tal curva ag-
giunta ha in comune colla \(f \), è uguale a \(2(p-1) - n(\mu - 3) \). E se questa curva aggiunta è una di quelle che separano uno dei gruppi della serie \(g_{Q}^{(\nu)} \), sarà indi-
vidua da altri \(q \) punti arbitrari della \(f \), e allora passerà per un determinato gruppo della serie \(g_{Q}^{(\nu)} \), e seguirà la curva \(f \), oltre nei \(Q \) punti di questo gruppo, in un altro gruppo di \(Q' = 2(p-1) - n(\mu - 3) - Q \) punti, che sarà individuato da \(q' - q + q = q' \) punti arbitrari della curva \(f \). Di qui segue poi che la serie \(g_{Q}^{(\nu)} \), in relazione a quella della serie \(g_{Q}^{(\nu)} \), quella stessa conseguenza che abbiamo già ricavato, nella supposizione che il numero \(Q - p + 1 + \frac{1}{2} \mu (\mu - 3) \) fosse positivo, per gruppi della seconda di queste serie rispetto a quelli della prima.

Ora dimostriamo, che i gruppi della serie \(g_{Q}^{(\nu)} \) hanno, rispetto a quelli della serie \(g_{n}^{(\nu)} \), la stessa proprietà che abbiamo riconosciuta per questi, rispetto a quelli.

Dalle precedenti considerazioni risulta infatti, che la curva aggiunta dell'or-
dine \(n - \mu \) che passa per un gruppo della serie \(g_{Q}^{(\nu)} \), è quella stessa che passa per il gruppo della serie \(g_{Q}^{(\nu)} \), che ha dato origine al gruppo considerato della serie \(g_{Q}^{(\nu)} \). Siffatta curva aggiunta segna la \(f \) in un gruppo di \(n(\mu - n) - 2k - Q' = 2(p-1) - n(\mu - 3) - Q' = Q \) punti mobili, che sarà evidentemente determinato appena lo sarà questa curva aggiunta, e per \(q \) punti arbitrari della \(f \). Così ad ogni gruppo della serie \(g_{Q}^{(\nu)} \) corrisponde un unico gruppo della serie \(g_{Q}^{(\nu)} \), e possiamo ora affermare che esiste univoca corrispondenza fra i gruppi delle due serie \(g_{Q}^{(\nu)}, g_{Q}^{(\nu)} \). Ha dunque luogo il teorema:

\[\text{Data sulla curva } f \text{ una serie } g_{Q}^{(\nu)}, \text{ per la quale sia }\]

\[
q = 2(p-1) + \frac{1}{2} (n(\mu - 3)) + q' \quad (q' \text{ intero positivo } < p - 1 + \frac{1}{2} \mu (\mu - 3));
\]

le curve aggiunte dell'ordine \(n - \mu \) che passano per gruppi di questa serie, de-
terminano sulla curva \(f \) una serie \(g_{Q}^{(\nu)} \), per la quale è

\[
Q' = Q - p + 1 + \frac{1}{2} (\mu - 3)(2n - \mu) + q.
\]

I gruppi di questo due serie si corrispondono univocamente.

E ovvia la dimostrazione delle seguenti uguaglianze:

\[
\begin{align*}
(1) & \\
(2) &
\end{align*}
\]

in virtù delle quali dati i numeri \(Q \) e \(q \) oppure \(Q' \), \(q' \), a l'ordine delle curve ag-
giunte che separano i gruppi di ciascuna delle serie \(g_{Q}^{(\nu)}, g_{Q}^{(\nu)} \) sulla curva \(f \), si determinano i numeri \(Q', q' \), oppure \(Q, q \).
Il precedente teorema, da Riemann, che ne iniziò la dimostrazione, e da Boch, che la generalizzò, porta il nome di ciascuno di questi due autori. Di questo teorema offriamo qui il seguente esempio. La curva f sia del 7^a ordine, ed abbia 9 punti doppi. Per essa saranno

$$n = 9, \quad \frac{1}{2} (n-1)(n-2) = 15, \quad e \quad quindi \quad p = 6.$$

Sulla f si consideri una serie $g_{0}^{(0)}$. Le curve aggiunte del 5^a ordine che passano per un gruppo di questa serie sono individuate evidentemente da due punti arbitrari della f, e però formano una serie lineare α^2. Esse segnano la f in altri gruppi di 6 punti, che formano la serie $g_{0}^{(1)}$. Ora supponiamo che sulla f si dica la serie $g_{0}^{(2)}$, le curve aggiunte del 4^a ordine che passano per i suoi gruppi formano, secondo il precedente teorema, un fascio di curve aggiunte del 4^a ordine, le quali separano sulla f i gruppi della serie $g_{0}^{(0)}$.

VI.

Trasformazioni univoche.

Denotiamo con:

$$\alpha_{e}^{x} = 0$$

l'equazione in coordinate omogenee x_1, x_2, x_3 del punto, relativa alla curva f considerata nella introduzione; ed esprimiamo con (X) il piano in cui giace questa curva.

Le coordinate omogenee y_1, y_2, y_3 del punto in un piano (X), supponiamole legate alle x dalle relazioni:

$$y_1 : y_2 : y_3 = \Theta_1 : \Theta_2 : \Theta_3,$$

dove le Θ esprimono delle funzioni omogenee (intero o razionali) di un medesimo grado v delle x.

Eliminando le x dalle equazioni (1), (2), si otterrà l'equazione omogenea nelle y:

$$\alpha_{y}^{x} = 0,$$

che rappresenterà una curva F sul piano (X). E perchè in virtù dello (2) ad ogni punto del piano (X), non comune alle tre curve Θ, corrisponde uno e determinato punto del piano (X), così i punti della F corrisponderanno uno ad uno a quelli della f.

Supposto ora che dalle (2) sia possibile ricavare le x razionalmente espresse per le y, ovvero che dalle (2) si possano dedurre le loro inverse:

$$2 \Theta_1 \Theta_2 - \Theta_2 \Theta_3,$$

dove le Δ sono funzioni delle y analoga alle Θ, allora i piani $(X), (Y)$ saranno puntati proiettivamente, e però anche le curve f, F. È chiaro che ciò si riduce ad ammettere, che eliminando le y dalle equazioni (2), (3), ne risulti, a meno d'un fattore costante, l'equazione (1).

L'ordine della curva F si deduce dalla considerazione delle due serie di curve rappresentate dalle equazioni:

$$\alpha_1 \Theta_1 + \alpha_2 \Theta_2 + \alpha_3 \Theta_3 = 0,$$

$$\alpha_1 \Delta_1 + \alpha_2 \Delta_2 + \alpha_3 \Delta_3 = 0,$$

dove le α dinotano delle costanti arbitrario, curve che sono rispettivamente nel piano $(X), (Y)$, o fra le quali v'ha univoca corrispondenza.

Sia ρ il genere della curva F, e r il numero analogo a k (Introd.) che si deduce dall'esistenza dei punti multipli di cui può essere dotata la F.

Ad una serie di gruppi di Q punti sulla curva f, corrisponde sulla F, in virtù della supposta corrispondenza fra i punti delle due curve f, F, un'altra serie di gruppi di Q punti, ed è chiaro che si corrisponderanno in modo univoce, non soltanto i gruppi di queste due serie, ma anche i punti di due gruppi corrispondenti delle medesime.

Ora abbiamo veduto (§ IV), che esiste sulla funzione serie g

$$g^{(p-1)}_0 = \frac{(n-3)(2n-\mu)}{2(n-1)-n(\mu-3)}$$

separabile mediante curve aggiunte dell'ordine $(n-p)$, essendo $n > 3$ ed $n > p > 3$ e i punti di un gruppo di questa serie, che sono determinati dai

$$p-1 - \frac{1}{2}(n-3)(2n-\mu),$$

punti arbitrari del gruppo stesso, sono in numero di $p-1 - \frac{1}{2}(n-3)$.

Sì dunque si considera sulla curva f questa serie di gruppi, ad essa corrisponderà sulla F un'altra serie di gruppi del medesimo grado di infinità, ogni gruppo della quale conterrà $2(p-1) - n(\mu-3)$ punti. Di tali serie va poi essere soltanto sulla curva F.

Ma secondo il § III una serie lineare di gruppi di punti si può sempre separare sulla curva F, mediante una serie lineare di curve aggiunte del medesimo
grado d’indelli di quella serie; e perciò la serie che ora consideriamo sulla \(F \) è unica, così detto \(X \) l’ordine della curve aggiunte che ve la separano, curve le cui equazioni supponiamo contengano il massimo numero di costanti, dovranne assi- stere le uguaglianze:

\[
4 \left(X(x+3) = h^2 + p - 1 + \frac{1}{2}(x-3)(3n-p) = p - p' + \frac{1}{2}(m^2 - 3n + p^2 - 3p - 2np + 6n) \right),
\]

\[
nX = 2h + 2(p - 1) - n(x - 3) = 2(p - p') + n(m' - n) = 3n - 3p - 2np + 6n.
\]

dalle quali eliminando la \(X \) si ottiene l’altra:

\[
2(p - p') + n^2 - 3n' - np + 3n' = 2(p - p') + n^2 + 3n - np = n^2[2(p - p') + n^2 - 3n' - np],
\]

Posto ora in quest’uguaglianza \(p = 2 \), si ha da dedurre la seguente:

\[
2(p - p') + n^2 - 3n' = 2(p - p') + n^2 = 2(p - p') + n^2 - 3n',
\]

e quindi l’altra:

\[
2(p - p') + n^2 = n^2,
\]

donde risulta \(p = p' \).

Pertanto, se si pone \(p = 2 \) nella (5), perciò \(p = p' \) se ne dedurrà \(X = n - 3 \). Dunque le curve agiunante alla \(f \) che separano su questa curva i gruppi corrispon- denti a quelli della serie \(g^{(n-1)} \) data sulla \(f \), sono dell’ordine \(n' = 3 \), e formano una serie lineare \(\omega^m \). Questa serie è unica, e per la curva \(F \) ammonta \(p \) curve agiun- gende dell’ordine \(n - 3 \) tra loro linearmente indipendenti.

Le curve agiunante dell’ordine \(n - 3 \) alla \(f' \), che separano su questa curva i gruppi della serie \(g^{(n-1)} \) corrispondono una ad una alle curve agiun- gende dell’ordine \(n' = 3 \) alla \(F \), che separano su questa curva i gruppi corrispon- denti a quelli della serie \(g^{(n-1)} \) e una tale corrispondenza fra le une e le altre di questo curve agiun- gendo, sarà univoca, se, come abbiamo supposto, le curve \(f \) e \(F \) siano punteggiate propiamente.

Dato curva agiunante dell’ordine \(n - 3 \) alla curva \(f' \), oppure due curve agiun- gende dell’ordine \(n' - 3 \) alla \(F \), che appartengono a quello che sono linearmente indipen- denti per l’una o l’altra delle curve \(f, F \), non possono avere in comune un punto alla curva \(f'(o F) \), fuori dei punti multipli della \(f \) (o \(F \)).

Infatti se ciò potesse aver luogo, tutti i gruppi della serie \(g^{(n-1)} \) sulla \(f \) (o \(F \)) avrebbero in comune un punto fisso, o quindi i rimanenti punti di un gruppo di questa serie formerebbero la serie \(g^{(n-1)} \), sempre separabile sulla curva \(f \) (o \(F \)), per mezzo di curve agiunante dell’ordine \(n - 3 \) (o \(n' - 3 \)), come si riferisca dal § IV. Ma una curva agiuntese dell’ordine \(n = 3 \) (o \(n' = 3 \)) segue ancora la curva \(f \) (o \(F \)) in un punto, che secondo il teorema del § V appartiene ad una serie \(g^{(n)} \), siti- tante sulla curva \(f \) (o \(F \)), e ciò contraddice all’ipotesi, che un tal punto sia fissato sulla curva \(f \) (o \(F \)).

Si può ora definire una curva algebrica dell’ordine \(n \), non decomponibile, col diritto, ch’esso è quel numero che esprime quanto curve agiun- gende dell’ordine \(n - 3 \) (o \(n' - 3 \)), fra loro linearmente indipendenti ammette la curva al- gebraica considerata; e affermare che un tal numero resta invariabile per tutte le trasformazioni razionali univoche, cui si soglia sottoporre la data curva (Teo- rema di Riemann) (*).

Si è ora:

\[
\varphi_1 = 0, \varphi_2 = 0, \ldots, \varphi_p = 0
\]

le equazioni delle curve agiunante dell’ordine \(n - 3 \), linearmente indipendenti, per la curva \(f \); e:

\[
\varphi_1 = 0, \varphi_2 = 0, \ldots, \varphi_p = 0
\]

quelle delle curve agiunante dell’ordine \(n' - 3 \), linearmente indipendenti, per la curva \(F \).

Se supponiamo data sulla curva \(f \) la serie \(g^{(n-1)} \), i suoi gruppi possono consi- derarsi come separati dalle curve della serie:

\[
a_1\varphi_1 + a_2\varphi_2 + \ldots + a_p\varphi_p = 0 \quad (a costanti arbitrarie),
\]

o per la particolare corrispondenza che noi supponiamo abbia luogo fra i punti della curva \(f \) e quelli della \(F \), e per quanto abbiamo superiormente dimostrato riguardo ai gruppi che sulla curva \(F \) corrispondono a quelli della serie \(g^{(n-1)} \) possiamo affermare che \(f \) ha unico corrispondenza fra le curve delle serie (6), e quella della serie:

\[
b_1\varphi_1 + b_2\varphi_2 + \ldots + b_p\varphi_p = 0 \quad (b \text{ costanti arbitrarie}).
\]

(*) Per le curve algebriche del \(2^o \) o \(3^o \) ordine che non sono decomponibili, il genere si ritornerà sempre definito dalla formula (6) (Introf).
Detta dunque $\alpha_{4,1} \frac{q}{x} + \alpha_{4,2} \frac{q}{y} + \ldots + \alpha_{4,p} \frac{q}{z}$, la curva della serie (6) che corrisponde univocamente alla Φ_i della (7), si potrà scrivere:

$$\Phi_i = \frac{q}{x} (\alpha_{4,1} \frac{q}{x} + \alpha_{4,2} \frac{q}{y} + \ldots + \alpha_{4,p} \frac{q}{z})$$

(p fattore di proporzionalità e $i = 1, 2, 3, \ldots, p$).

I $p-1$ punti della f che fissano la curva Φ_i, e che per quanto abbiamo più sopra dimostrato sono tutti diversi dal $p-1$ puntu della f, che fissano un'altro delle curve Φ, hanno per corrispondenti attrettanti punti della f, e quindi si possono determinare per mezzo della (8) i rapporti di $p-1$ dello costanti α_i alla rimanente, ovvero la curva della serie (6), che corrisponde alla considerata Φ_i, e viceversa.

Passiamo pertanto ad esaminare le relazioni (8) sono conseguenza della (2).

È facile dimostrare che sussistono le relazioni (8) fra le curve aggiunte analoghe a quelle che abbiamo indicato con Φ e Φ per le curve f ed F, e relative a due curve di date equazioni, i punti di questi due curve si corrispondono univocamente; dunque si può rilevare da una delle date equazioni l'altra per mezzo di una trasformazione razionale univoca. Da ciò si deduce che le formule di trasformazione per le curve f e F conseguono dalle relazioni (8), e ne deriva così un mezzo per giudicare, se due curve di date equazioni sono trasformabili univocamente una nell'altra.

Se ora nelle formule (2) di trasformazione per le curve f e F si sostituiscono alle Θ curve aggiunte alla f, sostituisce che determinano sulla f i gruppi della serie $g^{(p-1)}$, il numero Q esprime l'ordine della curva trasformata F; quindi se si stabilisce che l'ordine di tali curve aggiunte non debba essere inferiore ad $n-3$, il numero Q avrà in quest'ipotesi il più piccolo valore, se in luogo della Θ sostituirsi le formule (3) tre curve aggiunte dell'ordine $n-3$, come si rileva subito dalle conclusioni dedotte nel § III.

La trasformazione univoca della curva f nella F ha luogo così per mezzo di curve aggiunte dall'ordine $n-3$ alla f. Questa conclusione va tuttavia soggetta ad eccezioni, e noi diremo qui quando non è possibile esprimere in siffata guisa una trasformazione razionale univoca.

Può accadere che le curve aggiunte dell'ordine $n-3$, che passano per un punto arbitrario M della f, passino per uno o più altri punti definiti di questa curva, come per esempio se si tratta di una curva del p ordine dotata di un punto doppio. In tale ipotesi, posto che nelle formule (2) le Θ siano sostituite da curve aggiunte dell'ordine $n-3$; al punto M corrisponderà ben un escluso e determinato punto y, ma a questo punto non corrisponderà, inversamente, un solo e determinato punto x. Quindi non si potranno esprimere, mediante le anzidette formule, le x razionalmente per le y; e però nelle espressioni delle x per mezzo delle y entreranno dei radicali, o più in generale dei simboli di irrazionalità.

Ora si ricorda, che le curve aggiunte dell'ordine $n-3$, che sono state sostituite alle Θ nelle formule (2), si sono scelte fra quelle che determinano sulla f i gruppi della serie $g^{(p-1)}$ curve che seguono la f in $2n-1$ punti mobili, e sono determinate da $p-1$ punti arbitrari della f. Se dunque una di tali curve aggiunte che passa per un punto M della f, dovesse anche passare per altri i punti di questa curva, completamente determinati da M, è chiaro, nel modo stesso determinazione di una siffatta curva aggiunta, ch'ella seguirà la f in un gruppo di $(i+1)$ $(p-1)$ punti, fuori dei punti multipli della f. Ma deve aversi $(i+1)$ $(p-1)-2(p-1)$, duemve sarà 1; e si può porre conclude, che nell'ipotesi era data la corrispondenza che sì esprime marche le formule (2), ove si è effettuata l'indotta sostituzione riguardo alle Θ, può sempre considerarsi come una corrispondenza di doppio significato, espresso cioè dal numero Q. Le curve per le quali questa specie di corrispondenza ha luogo, quando si esprime nel modo qui dichiarato, sono quelle che i geometri hanno distinto con i nomi di curve iperellittiche.

Il carattere particolare di tali curve, è dunque quello di avere i punti associati due a due in guisa, che dato un punto di una coppia, l'altro rimane per mezzo di questo pienamente determinato. Una curva iperellittica, ammetterà dunque sempre una serie $g^{(p-1)}$.

Ora una tale serie, secondo il § V, dà origine ad una certa serie $g^{(p-1)}$, che è separabile sulla curva iperellittica considerata da curve aggiunte dell'ordine $n-3$; cioè le curve di quest'ordine, che passano per i gruppi della serie $g^{(p-1)}$, determinano sulla predetta curva i gruppi della serie $g^{(p-1)}$.

Se una curva iperellittica è trasformabile univocamente in altra curva, non si potrà, nelle relative formule di trasformazione (2), a ciascuna delle Θ sostituire una curva aggiunta dell'ordine $n-3$, diversa dall'una all'altra delle Θ. E se una tale trasformazione deve aver luogo per mezzo di curve aggiunte, siffatte curve dovrebbero essere un'ordine uguale almeno ad $n-2$.

Le curve aggiunte dell'ordine $n-2$ alla f, supposta ora iperellittica, soddisfano a k condizioni lineari, e sono in generale determinate da $\frac{1}{2} (n+1)(n-2)-k=p(n-2)$ di tali condizioni.

Esse seguono la f in $k(n-2)-2k=n-2$ punti, fuori dei punti multipli di questa curva. Ma è noto, che le curve che effettuano una trasformazione razionale univoca nel piano, debbono far parte di un sistema lineare \propto tale, che due curve presa ad arbitrio nel sistema si segnino in un solo punto, non comune a tutto il sistema. Dunque le curve aggiunte dell'ordine $n-2$, esse quali si vuole effettuare la trasformazione della curva iperellittica f, dovrebbero passare per $p+n-4$ punti fissi, dati ad arbitrio su questa curva, fuori de' suoi punti multipli.

La curva trasformata della f, se la trasformazione ha luogo nel modo qui sopposto, sarà perciò dell'ordine $p+2$.
Ora si rilesta, che la curva f ammette un'unica serie $g_n^{(0)}$, alla quale dovrà corrispondere sulla trasformata F della f una serie unica $g_n^{(0)}$, i cui gruppi, come risulta dalle conseguenze dedotte in questo stesso §, dovranno potersi separare sulla curva F per mezzo di curve aggiunte dell'ordine $p-1$. E perché la F deve essere del genere p, essa dovrà avere $p(p-1)$ punti doppi.

Ma le curve aggiunte alla F, che sono dell'ordine $p-2$, e passano una sola volta per ciascuno degli $\frac{1}{p}(p-1)$ di questi punti sono completamente determinate, quando la curva F ammette serie di curve aggiunte dell'ordine $p-1$, le curve delle quali si possono considerare come costituite di una curva fissa dell'ordine $p-2$, che passa una sola volta per ciascuno degli $\frac{1}{p}(p-1)-1$ punti, scelti a piacere fra i punti doppi della F, e di una retta che passa per il punto doppio rimanente. Ed essendo unica la serie $g_n^{(0)}$, che deve separarsi sulla F con curve aggiunte dell'ordine $p-1$, se ne concluderà che tutti i punti doppi della F sono riuniti in un solo punto di questa curva, e che essa ammette un punto duplice.

Dalle cose esposte in questo § possiamo finalmente concludere, che si può sempre applicare ad una curva algebraica del genere p (che non sia ipereccentrica) una trasformazione razionale univoca, nel quale formole la Θ rappresentino curve aggiunte dell'ordine $n-3$ (o ordine della curva considerata, ciascuna delle quali passi per $p-3$ punti fissi, arbitrariamente scelti sulla curva data. E una tale trasformazione darà una curva dell'ordine $p+1$, dotata di $\frac{1}{p}(p-3)p$ punti doppi.

VII.

Sui punti singolari.

In tutto ciò che abbiamo dimostrato nei precedenti §§, in sempre ammesso, che il numero k, relativo alla curva f che vi consideriamo avesse un valore indipendente dall'ipotesi, che due (o più) delle tangenti in uno (o più) dei punti multipli di questa curva, coincidono in una retta.

Si comprende ora chiaramente, che questo numero k, del quale abbiamo dato nell'introduzione la definizione precisa, debo godere della qui accennata proprietà, se si vuole che tutti i risultati racchiusi nei summationi §§, non soffrano alcun cambiamento in causa dell'essere due (o più) delle tangenti in un punto multiplo della curva f, rientrano in una retta.

E per quanto ci sembrì che una siffatta indipendenza del numero k, possa derivare dalle cose esposte nella introd., tuttavia crediamo opportuno dimostrarla qui in modo, da non lasciare alcun dubbio sulla verità della medesima.

A tal scopo si supponga la curva f riferita ad un sistema di due assi ortogonali dello x e dello y e la si trasformi in altra curva F tale, che i punti delle due curve f, F si corrispondano in modo univoco, e rispetto alla quale dimostreremo con ξ, η le coordinate d'uno o di più punti.

Si pongono perciò le uguaglianze:

$$\xi = \theta_1(x, y), \quad \eta = \theta_2(x, y),$$

dove $\theta_1, \theta_2, \theta_3$ esprimono tre polinomi razionali interi nelle variabili x, y, di ciascuno dei quali supporremo che sia v il grado.

Si ammetta che le curve Θ passino per un punto P della f, che sia su questa curva un punto P della f.

Se x, ξ sono le coordinate del punto P, le tangenti agli j rami della f nel punto (x, ξ), saranno determinate da questo punto, e dal punto infinitamente vicino ad esso sul ramo considerato. I punti della F che corrispondono al punto P, saranno determinati dalle equazioni:

$$\xi = \frac{q_1}{q_2}, \quad \eta = \frac{q_3}{q_4},$$

dove q_1, q_2, q_3, q_4 sono i polinomi che si deducono dai $\theta_1, \theta_2, \theta_3$, col percorso in questi $x+dx$, $\xi + dy$ rispettivamente in luogo di x, y. Ora dividendo ognuno dei polinomi p per dx^n, delle ultime equazioni si ottengono le altre:

$$\xi = \frac{q'_1}{q'_2}, \quad \eta = \frac{q'_3}{q'_4},$$

nelle quali le Φ rappresentano dei polinomi razionali interi e del grado v rispetto alla quantità $\frac{dy}{dx}$. Ma la quantità $\frac{dy}{dx}$ mette in valore, dunque queste equazioni determinano un punto sulla curva F, che corrisponda al punto P della f. Tali punti saranno tutti distinti o tutti o parte coincidenti, secondo che saranno tutte definite o tutte o parte coincidenti le tangenti ai rami della f, che passano per P. Questi punti della curva F saranno poi in ogni caso j dei punti d'intreccione di essa curva con quella che si deduce dalle ultime delle superiori equazioni, eliminando la quantità $\frac{dy}{dx}$. Di qui appare evidente la conseguenza, che se si ha riguardo al solo punto multiplo P della curva f, il numero k', che è per la F quello che ha k per la f, non potrà subire mutamento alcuno, quando si supporrà che due (o più) delle tangenti in P alla f, coincidano.

Pensando ora al modo di corrispondenza che abbiamo ammesso sussistere fra i punti delle curve f, F, ed indicando con n, n' i rispettivi ordini delle medesime, si arriva alla relazione:

$$\frac{1}{p}(n - 1)(n - 2) - k = \frac{1}{p}(n' - 1)(n' - 2) - k'.$$
dalla quale, considerando il solo punto multiplo \(P \) della curva \(f \), si deduce che anche il numero \(k \) deve avere un valore indipendente dall’essere tutte distinte o no le tangenti della \(f \) nel punto stesso.

Abbia ora la \(f \) in altro \((P_1)\) de’ suoi punti, un punto \(j_{\text{sup}} \); e si trasformi univocamente la \(F \) in una curva \(F_1 \) dell’ordine \(n'' \), per mezzo di curve \(\Theta \) che passino tutte per il punto \(P_1 \). Per le curve \(F, F_1 \) si può ripetere quello che sopra abbiamo detto per le \(f, F \); e quindi, se \(k'' \) è per la curva \(F_1 \) il numero analogo ai numeri \(k, k' \) per le \(f, F \), esso conserverà un valore indipendente dall’essere tutte distinte o no le tangenti in \(P_1 \) alla curva \(f \). E poiché deve verificarsi la relazione:

\[
\frac{1}{2} (n' - 1) (n' - 2) - k' = \frac{1}{2} (n'' - 1) (n'' - 2) - k'' ,
\]

così si deduce che anche il numero \(k' \) deve godere della medesima proprietà di \(k'' \); e in virtù della relazione (1) godrà della stessa proprietà anche il numero \(k \).

Con ripetute trasformazioni analoghe a quelle già operate, si finirà per concludere, che se le tangenti nei punti multipli della curva \(f \) non soddisfano ad alcuna particolare condizione, il coincidere di due o più di esse in uno dei punti stessi, non altera punto il valore del numero \(k \).

Siano \(P, P_1 \) due punti multipli della curva \(f \), e sia il primo \(j_{\text{sup}} \) e il secondo \(j_{\text{inf}} \). Se \(P, P_1 \) sono infinitamente vicini, le curve aggiunte alla \(f \) avranno tutte in comune l’elemento infinitesimo \(PP_1 \), cioè si tocheranno in \(P \).

Ora il coincidere dei punti \(P, P_1 \) della curva \(f \), vuol dire che questa curva tocca sè stessa nel punto, ove sono riuniti i punti \(P, P_1 \), cioè due rami della \(f \) che passano per un tal punto di riunione, hanno in comune la tangente nel punto stesso.

Ogni curva aggiunta alla \(f \) sarà dunque tangente in questo punto ai due rami della \(f \) ch’ivi si toccano, e quindi avrà nel punto di riunione dei punti multipli \(P, P_1 \) della \(f + j_1 - 2 \) punti in comune con questa curva, dei quali \(j_1 - 2 \) cadranno in \(P \) ed \(j_1 - 1 \) in \(P_1 \), ciò che è conforme alla definizione data di una curva aggiunta nella introduzione.

Il coincidere dunque di due punti multipli della \(f \), non può far variare il numero \(k \).

Riassumendo possiamo dunque concludere che le ipotesi fatte in questo § sui punti multipli della curva \(f \) e le tangenti in essi, non hanno per effetto di far variare il numero \(k \), e perciò tutti i risultati ricavati nei precedenti §§, conserveranno la loro validità, malgrado queste ipotesi.

(continua)