
Higher
dimensional

geometry

Marco Andreatta

Introduction

Fano manifolds
and Fano-Mori
contractions

Classifications

Rational Curves
on Projective
Varieties

Elephants and
Safari Game

Kähler-Einstein
metrics

Higher dimensional geometry
from Fano to Mori and beyond

Marco Andreatta

Dipartimento di Matematica
Universitá di Trento
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Introduction

The work of Gino Fano, in particular the idea of the varieties denoted by
his name, had a terrific impact on the development of modern projective
geometry.

A large number of mathematicians, often organized in counterposed
schools, in the last 50 years, starting from Fano’s results, constructed
theories which are among the most spectacular achievements of
contemporary mathematics.
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Notation

In the lecture we consider normal projective varieties X defined over C.
If n is the dimension of X we sometime call X and n-fold;
we denote by KX the canonical sheaf.
We assume to have good singularities such that KX , or a multiple of it, is
a line bundle (a Cartier divisor).
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Fano’s 3folds

Let X ⊂ PN be a projective 3-fold such that for general hyperplanes
H1,H2 the curve Γ := X ∩ H1 ∩ H2 is canonically embedded
(i.e. KΓ embeds Γ).
Fano called them
Varietá algebriche a tre dimensioni a curve sezioni canoniche.

This is the case if and only if the anticanonical bundle (−KX) is very
ample and X := X2g−2 ⊂ Pg+1, where g = g(Γ) is the genus of Γ.

Example: the quartic 3-fold in P4, X4 ⊂ P4.
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Fano’s 3folds

Fano noticed that for such varieties the following invariants are zero:

Pm(X) = h0(X,mKX) = 0 for all m ≥ 1 (m-th plurigenera)
(we say that X has Kodaira dimension minus infinity: k(X) = −∞)
hi(OX) = 0 for all positive i
(in particular the irregularity q(X) = h1(X,OX) is zero).

Varieties satisfying these two conditions were called by him
Varietá algebriche a tre dimensioni aventi tutti i generi nulli.
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Non rational 3folds

Fano had the insight that among this class of varieties there are varieties
which are non-rational, in spite of the fact that they have all plurigenera
and irregularity equal to zero; they would provide a counterexample to a
Castelnuovo type rationality criteria for 3-folds.
None of Fano’s attempts to prove non-rationality has been considered
acceptable.

The first proof of the non rationality of all X4 ⊂ P4 is the celebrated
Iskovskih and Manin’s. B. Segre has constructed some unirational
X4 ⊂ P4, therefore they represents counterexamples to Luroth problem
in dimension 3 (as well as to a Castelnuovo type rationality criteria).

In the same period Clemens and Griffiths proved the non-rationality of
the cubic 3-fold in P4.
Both papers gave rise to subsequent deep results and theories aimed to
determine the rationality or not of Fano varieties.
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Fano Varieties and Fano-Mori Contractions

Definition
A smooth projective variety X is called a Fano manifold if−KX is ample.
If Pic(X) = Z then X is called a prime Fano manifold;
if Pic(X/Y) =< L > and −KX = rL, r is called the index of X.

A proper surjective map between normal varieties with connected fibers,
f : X → Y is a contraction (divisorial, small or of fiber type).

Definition
Let f : X → Y be a contraction with X smooth or with mild singularities;
f is called a Fano-Mori contraction (F-M for short) if −KX is f -ample.
If Pic(X/Y) = Z then X is called a elementary F-M contraction;
if Pic(X/Y) =< L > and −KX ∼f rL, r is called the nef value of f .

A Fano manifold is a Fano-Mori contraction with dimY = 0.
A general fiber of a Fano-Mori contraction is a Fano variety.
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Classification and MMP

The Minimal Model Program (MMP), a program aimed to classify
projective varieties.

- S. Mori: Fields Medalist in 1990 for the proof of Hartshorne’s
conjecture and his work on the classification of three-dimensional
algebraic varieties
- C. Hacon and J. McKernan: Breakthrough Prize in Mathematics 2018
for transformational contributions to birational algebraic geometry,
especially to the minimal model program in all dimensions
-C. Birkhar : Fields Medalist in 2018 for the proof of the boundedness of
Fano varieties and for contributions to the minimal model program.
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Classification and MMP

According to MMP a projective variety, smooth (or with at most
Kawamata log terminal (klt) singularities), is birational equivalent

either to a projective variety with positive (nef) canonical bundle

or to a F-M contraction, f : X → Y, of fiber typer (dimX > dimY).

What is even more suggestive is the fact that:
the birational equivalence can be obtained via a finite number of either
divisorial F-M contraction or flip of small F-M contractions.

F-M contractions are the building blocks (atoms) of the classification of
projective varieties.
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Classification of Fano 3-folds

G. Fano: a biregular classification of Fano manifolds in dimension three.
His work contains serious lacunes.

V.A. Iskovskihk (1978-1980): obtained a complete classification of
prime Fano 3-folds of the principal series. He used the Fano’s method of
double projection from a line; the existence of a line, a delicate result
proved only later by Shokurov.
He proved that 3 ≤ g ≤ 12 and g 6= 11 and for every such g he gave a
satisfactory description of the associated Fano variety.
X22 ⊂ P13 (omitted by Fano and later by Roth): the double projection
from a line, π2Z : X22

... > W ⊂ P6, goes into W, a Fano 3-fold of index
2, degree 5, Pic(W) = Z and one singular point. X22 is rational.
S. Mukai (1987): a new method to classify Fano-Iskovskihk 3-folds
based on vector bundle constructions. A new X22 ⊂ P13

(Mukai-Umemura 1983).
S. Mori and S. Mukai (1981): classified Fano 3-fold with ρ(X) ≥ 2.
At the Fano Conference in Torino (2002) they announced they have
omitted the blow-up of P1 × P1 × P1 along a curve of tridegree (1, 1, 3).
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Classification of Fano n-folds

A classification of Fano manifolds of higher dimension is an Herculean
task which however could be done in finite time.
Kollár-Miyaoka-Mori:Fano manifolds of a given dimension form a
bounded family. The same has been proved recently by C. Birkhar in the
singular case.

Fano manifold of index r ≥ n = dimX are simply the projective spaces
and the quadrics, this was proved by Kobayashi and Ochiai.
Fano manifolds of index (n− 1) (del Pezzo manifolds) were intensively
studied by T. Fujita, who proved the existence of a smooth divisor in the
linear system H generating Pic(X) (that is −KX = (n− 2)H).
Mukai classified all Fano manifolds of index = (n− 2) under the
assumption that H has an effective smooth member. M. Mella proved
later that this is true for Fano manifolds of index = (n− 2).
There are several projects aiming to classify singular Fano varieties in
dimension 3, 4 and 5. One is carried out at Imperial College-London,
PI: A. Corti, title: the periodic table of mathematical shapes.
It is estimated that 500 million shapes can be defined algebraically in
four dimensions, and a few thousand more in the fifth.
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A conjecture of Mukai

A nice conjecture of Mukai (1988), very useful for classification.

Conjecture

Let X be a Fano manifold and ρX = dimN1(X). Then

ρX(rX − 1) ≤ n.

More generally if
iX = min{m ∈ N | − KX · C = m,C ⊂ X rational curve } is the
pseudoindex of X (note that iX = mrX), then

ρX(iX − 1) ≤ n with = iff X ' (PiX−1)ρX .

The conjecture holds for Toric varieties (C. Casagrande) and in other
special cases, for instance for n ≤ 5 (M. Andreatta, E. Chierici, G.
Occhetta).
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pseudoindex of X (note that iX = mrX), then

ρX(iX − 1) ≤ n with = iff X ' (PiX−1)ρX .

The conjecture holds for Toric varieties (C. Casagrande) and in other
special cases, for instance for n ≤ 5 (M. Andreatta, E. Chierici, G.
Occhetta).
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Classification of Fano-Mori contractions

S. Mori (1982), after developing his theory of extremal rays, classified
all birational Fano-Mori contractions on a smooth 3-fold.
This is the equivalent in dimension 3 of the Castelnuovo contraction
criterium on smooth algebraic surfaces.

Y. Kawamata (1989) described small local F-M contractions on a
smooth 4-fold.
Wisniewski and myself (1998) classified all birational F-M contractions
on a smooth 4-fold.
These classification are based on a careful analysis of the deformations
of rational curves contained in the fibers of the F-M contractions.
May be the most difficult part is to construct explicit examples for any
possible case; some of them are quite peculiar and bizarre.

One can find several results on the classification of F-M contraction of
fiber type on smooth 3-folds and 4-folds: the ”classical” ones on conic
bundles or more recents which compared different birational models of a
F-M contractions via the so called Sarkisov program (every birational
morphism between two fiber type F-M contractions can be factorized via
a finite number of few basic transformations).
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Classification of F-M contractions, singular case

In the eighties, immediately after the introduction of Mori theory, it
appears with full evidence that the study of F-M contractions should be
carried out in the singular set up. P. Francia constructed in 1985 a
brilliant example of commutative diagram of F-M contractions on
3-folds which convinced everybody that a MMP can be performed only
passing through singular cases. In particular he showed that even on
3-fold with mild singularities one can find small F-M contractions which
need to be ”flipped”.

S. Mori and S. Mori-J. Kollár: a carefull classification of small F-M
contractions on 3-folds with terminal singularities, together with their
flips.
Many authors, including Mori himself and Kawakita, are trying to
obtain a complete classification of F-M divisorial contractions on 3-folds
with at most terminal singularities.
Based on this I (2018) gave a characterization of birational divisorial
contractions on n-fold with terminal singularities with nef value greater
then n− 3 = weighted blow-up of hyperquotient singularities.
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Rational Curves on Fano Manifolds

The name Fano variety is also used for some subvariety of the
Grassmanian: the variety of k-planes contained in X, that is

Fk(X) := {Λ : Λ ⊂ X} ⊂ G(k, n).

Fano studied F1(X3) for the cubic hypersurfaces X3 ⊂ P4; it is a surface
of general type, called the Fano surface of X3. It plays a crucial role in
the proof of the irrationality of X3 due to Clemens and Griffiths via the
method of the intermediate Jacobian.

The idea of studying families of curves (and not linear system of
divisors on a higher dimension variety, they coincide on surfaces),
especially on Fano manifolds, was carried on first by S. Mori (D.
Mumford) and then developed by many other authors.

Theorem (S. Mori 1982)

Let X be a Fano manifold. Through every point of X there is a rational
curve D such that

0 < −(D .KX) ≤ dimX + 1.
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A very beautiful proof

Take any curve C passing through the chosen point. By deformation
theory and Riemann-Roch theorem its deformation space has dimension

≥ h0(C,TX)− h1(C,TX)− dimX = −C .KX − g(C).dimX.

Mori passed to a field of positive characteristic p and consider all
geometric objects over this new field: Xp and Cp.
He changed Cp with its image via a number m of Frobenius
endomorphism; the genus of the curve remains g(C) but the above
estimate will be multiplied by pm:

−pm.Cp
.KXp − g(Cp).dimXp.

If a curve through a point on an algebraic variety moves, staying at the
point, it will ”bend and break”: it is algebraically equivalent to a
reducible curve which one rational component through the point.
He concludes with a general principle, based on number theory, which
says that if you have a rational curve through the point for almost all
p > 0 then you have it also for p = 0.
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Uniruled and a Conjecture of Mori

A direct corollary of the Theorem is that a Fano variety is covered by
rational curve, it is uniruled. A variety X is uniruled if there is a variety
Y and a dominant rational map Y × P1 99K X which does not factor
through the projection to Y).

Later Kollár-Miyaoka-Mori proved that a Fano manifold is actually
rationally chain connected, i.e. any two points can be connected by a
chain of rational curves.

To be uniruled and rationally connected are birational properties.

If X is uniruled (with at most canonical singularities) then
H0(X,mKX) = 0 for all m > 0.
Mori in 1985 conjectured that the converse is true:

Conjecture

Let X be a projective variety with canonical singularities,
if k(X) = −∞ then X is uniruled.

The Conjecture is false for more general singularities, as some examples
of J. Kollár show (rational varieties with ample canonical divisor).
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Conjecture of Mumford

Conjecture

Let X be a smooth projective variety;
if H0(X, (Ω1

X)⊗m) = 0 for all m > 0 then X is rationally connected.

J. Harris: ”Mori’s conjecture is well founded in birational geometry.
Mumford’s seems to be some strange guess, how did he come up with
that?”

J. Kollár noticed that Mori’s implies Mumford’s:
via MRC fibration - Campana and Kollar-Mori-Miyaoka
and the Fibration theorem - Graber-Harris-Mazur-Starr.



Higher
dimensional

geometry

Marco Andreatta

Introduction

Fano manifolds
and Fano-Mori
contractions

Classifications

Rational Curves
on Projective
Varieties

Elephants and
Safari Game

Kähler-Einstein
metrics

Conjecture of Mumford

Conjecture

Let X be a smooth projective variety;
if H0(X, (Ω1

X)⊗m) = 0 for all m > 0 then X is rationally connected.

J. Harris: ”Mori’s conjecture is well founded in birational geometry.
Mumford’s seems to be some strange guess, how did he come up with
that?”

J. Kollár noticed that Mori’s implies Mumford’s:
via MRC fibration - Campana and Kollar-Mori-Miyaoka
and the Fibration theorem - Graber-Harris-Mazur-Starr.



Higher
dimensional

geometry

Marco Andreatta

Introduction

Fano manifolds
and Fano-Mori
contractions

Classifications

Rational Curves
on Projective
Varieties

Elephants and
Safari Game

Kähler-Einstein
metrics

Conjecture of Mumford

Conjecture

Let X be a smooth projective variety;
if H0(X, (Ω1

X)⊗m) = 0 for all m > 0 then X is rationally connected.

J. Harris: ”Mori’s conjecture is well founded in birational geometry.
Mumford’s seems to be some strange guess, how did he come up with
that?”

J. Kollár noticed that Mori’s implies Mumford’s:
via MRC fibration - Campana and Kollar-Mori-Miyaoka
and the Fibration theorem - Graber-Harris-Mazur-Starr.



Higher
dimensional

geometry

Marco Andreatta

Introduction

Fano manifolds
and Fano-Mori
contractions

Classifications

Rational Curves
on Projective
Varieties

Elephants and
Safari Game

Kähler-Einstein
metrics

Towards Mori’s Conjecture

S.Mori (1985) introduced the cone of pseudo-effective divisor, i.e. in
(Eff (X) ⊂ N1(X))). Non pseudoeffectivity of KX is clearly a condition
in between uniruledness and negative Kodaira dimension.

The following was conjectured by Mori in ’85, then proved first by by
BDPP and then by BCHM, using the bend and breaking theory of Mori.

Theorem
Let X be a projective variety with canonical singularities, KX is not
pseudoeffective if and only if X is uniruled.
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Towards Mori’s Conjecture

Another definition which is in between uniruledness and k(X) = −∞. It
was introduced by G. Castelnuovo and F. Enriques in the surface case
and by G. Fano and U. Morin for the 3-folds.

Definition
(Termination of Adjunction in the classical sense) Let X be a normal
projective variety and let H be an effective Cartier divisor on X (or very
ample) Adjunction Terminates in the classical sense for H if there exists
an integer m0 ≥ 1 such that

H0(X,mKX + H) = 0

for every integer m ≥ m0.

Together with C. Fontanari we conjectured that, if X has at most
canonical singularities, then A. T. for H is equivalent to uniruledness.
This is true for superficie adeguatamente preparate by a theorem of
Castelnuovo-Enriques, surfaces which are final objects of a MMP.
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Non-negativity of the Tangent =Uniruledness

Miyaoka’s criterium; a very general ”bend and break technique”.

Definition
TX is generically seminegative if for every torsion free subsheaf E ⊂ TX

we have c1(E).C ≤ 0, where C is a curve obtained as intersection of
high multiple of (n− 1) ample divisors.

Theorem
A normal complex projective variety X is uniruled if and only if TX is not
generically seminegative.



Higher
dimensional

geometry

Marco Andreatta

Introduction

Fano manifolds
and Fano-Mori
contractions

Classifications

Rational Curves
on Projective
Varieties

Elephants and
Safari Game

Kähler-Einstein
metrics

Positivity of the Tangent bundle

The criterium is a starting point to prove many results, including the
following one [M. Andreatta-J. Wisniewski], which is the generalization
of the celebrated Frenkel-Hartshorne conjecture proved by S. Mori in
1978.

Theorem
Let X be a projective manifold with an ample locally free subsheaf of
E ⊂ TX.
Then X = Pn and E = O(1)⊕r or E = TPn

A conjecture formulated by F. Campana and T. Peternell.

Conjecture

A Fano manifold with nef tangent bundle is a rational homogeneous
variety.
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VMRT and MRC

On a uniruled variety X a dominating family of rational curves

V ⊂ Hom(P1,X) such that LocusV = X

having minimal degree with respect to some fixed ample line bundle.
They are often call generically unsplit family.
An extension of the concept of family of lines used by G. Fano.

For each x ∈ X denote by Cx the subvariety of the projectivized tangent
space at x consisting of tangent directions to curves from V passing
through x, Vx; that is Cx is the closure of the image of the tangent map
Φx : Vx → P(TxX).
It has been considered first by S. Mori in his 1978 seminal paper.
Hwang and Mok studied this variety in a series of papers and called it
variety of minimal rational tangents (VMRT) of V .
The tangent map and the VMRT determine the structure of many Fano
manifold, for instance of the projective space and of the rational
homogeneous varieties.
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VMRT and MRC

Given a genricall unsplit family, V ⊂ Hom(P1,X) one can define a
relation of rational connectedness with respect to V , rcV-relation, in the
following way: x1, x2 ∈ X are in the rcV- relation if there exists a chain
of rational curves parametrized by V which joins x1 and x2.
More generally one can consider a rationally connectedness relation
with respect to all rational curves Hom(P1,X): rc-relation.
The rcV and rc- equivalence classes can be parametrized generically by
an algebraic set: Campana and independently Kollár- Miyaoka-Mori.

Theorem
There exist an open subset X0 ⊂ X and a proper surjective morphism
with connected fibers φ0 : X0 → Z0 onto a normal variety, such that the
fibers of φ0 are equivalence classes of the rcV-relation.

φ0 is called an rcV-fibration or a Maximal Rationally Connected
fibration (MRC).
They are very much connected to F-M contractions and they are crucial
tools for the study of uniruled varieties
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Elephants and Base Point Freeness

Consider a Fano manifold X or a Fano-Mori contraction f : X → Y .

Definition
A general elephant is a general element of the anticanonical system
| − KX| (M. Reid terminology).

The classification of Fano manifolds or of F-M contractions often use
and inductive procedure on the dimension of X (Apollonius method):
1. take a general elephant D ∈ | − KX|, a variety of smaller dimension;
by adjunction formula it has trivial canonical bundle.
2. Lift up sections of (−KX)|D (or of other appropriate positive bundles)
to sections of −KX , via the long exact sequence associated to

0→ OX → −KX → (−KX)|D → 0

(Kodaira vanishing theorem on a Fano manifolds implies h1(OX) = 0).
3. Use the sections obtained in this way to study the variety X.
(More generally on a Fano-Mori contraction f : X → Y consider a line
bundle L such that −KX ∼f rL, where r the nef value.
Take D ∈ |L| and do the inductive procedure on D.)
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Safari Game

The procedure has classical roots and can be lead back to Fano.
Many delicate problems were solved in the last 50 years by S. Mori, V.
Shokurov, Y. Kawamata, J. Kollár and others.
1. existence of a general elephant, a question unexpectedly avoided by
some authors. One needs also that the singularities of the elephant are
not worst than those of X (if X is smooth we like that also the elephant is
smooth).
2. existence of enough sections of (−KX)|D, or of LD. This is also
delicate and it goes under the name of ”non vanishing theorem”.
3. In order to get non vanishing sections in the linear systems |LD|
sometime one is forced to change slightly the line bundle L, introducing
so called ”boundary divisors” or ”fractional divisors”. But then the
Kodaira vanishing is not sufficient and more powerful and suitable
”vanishing theorems” are needed.
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The contemporary theory of MMP and of the study of F-M contractions
develops as a ”game” between vanishing and non vanishing. Two
”teams” were competing and cooperating on this.

The group of Algebraic Geometers, which used boundary and fractional
divisors and the so called Kawmata-Vieweg Vanishing theorem. They
refer to Shokurov as a main master of the game, his technique was called
”spaghetti type proofs”, a tribute or a teasing to the italian origins?
The other was the group of Analytic Geometers or Complex Analysts,
which used the so called Nadel Ideals and Nadel Vanishing theorem;
beside Nadel two main figures are Y.T. Siu and J.P. Demailly.
This eventually lead to the proof of the existence of MMP, first in
dimension 3 by S. Mori and later, under some conditions, in all
dimension by Birkar-Cascini-Hacon-McKernan.
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Safari Game, main achievements

V.V. Shokurov (1980): Smooth general elephant on a Fano 3-fold.
The Fano-Iskovskihk classification of Fano 3-folds is complete.
S. Mori (1988) and S. Mori and J. Kollár (1992): General elephant
with du Val singularities on a small F-M contraction on 3-fold with
terminal singularities. Prove the existence flips and the existence of
the MMP in dimension 3 (terminal singularites).
M. Kawakita (2001-2005): General elephant with du Val
singularities on a divisorial F-M contraction on 3-fold with
terminal singularities (their classification).
C. Birkhar in 2019: Element in | − mKX| for a positive integer m
depending only on d, for any d-dimensional Q-Fano variety X.
To prove the boundness of the number of families of Q-Fano
varieties in any fixed dimension d (BAB Conjecture).
Good elements in |L| for F-M contraction f : X → Y , −KX ∼f rL,
if dimF < (r + 1) or if dimF ≤ (r + 1) and f is birational.
Andreatta-Wisniewski (1993) klt and O. Fujino (2021) lcs.
Smooth element in the linear system |L| on a Fano of index r.
T. Fujita (1984), r = (n− 1); M. Mella (1999), r = (n− 2).
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depending only on d, for any d-dimensional Q-Fano variety X.
To prove the boundness of the number of families of Q-Fano
varieties in any fixed dimension d (BAB Conjecture).
Good elements in |L| for F-M contraction f : X → Y , −KX ∼f rL,
if dimF < (r + 1) or if dimF ≤ (r + 1) and f is birational.
Andreatta-Wisniewski (1993) klt and O. Fujino (2021) lcs.

Smooth element in the linear system |L| on a Fano of index r.
T. Fujita (1984), r = (n− 1); M. Mella (1999), r = (n− 2).
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Safari Game, main achievements

V.V. Shokurov (1980): Smooth general elephant on a Fano 3-fold.
The Fano-Iskovskihk classification of Fano 3-folds is complete.
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with du Val singularities on a small F-M contraction on 3-fold with
terminal singularities. Prove the existence flips and the existence of
the MMP in dimension 3 (terminal singularites).
M. Kawakita (2001-2005): General elephant with du Val
singularities on a divisorial F-M contraction on 3-fold with
terminal singularities (their classification).
C. Birkhar in 2019: Element in | − mKX| for a positive integer m
depending only on d, for any d-dimensional Q-Fano variety X.
To prove the boundness of the number of families of Q-Fano
varieties in any fixed dimension d (BAB Conjecture).
Good elements in |L| for F-M contraction f : X → Y , −KX ∼f rL,
if dimF < (r + 1) or if dimF ≤ (r + 1) and f is birational.
Andreatta-Wisniewski (1993) klt and O. Fujino (2021) lcs.
Smooth element in the linear system |L| on a Fano of index r.
T. Fujita (1984), r = (n− 1); M. Mella (1999), r = (n− 2).
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Kähler-Einstein metrics

The Einstein Field Equations on a Riemannian manifold (X, g)

Ricg −
1
2

sgg = 8πT

describe how the manifold X should curve due to the existence of mass
or energy, a quantity encapsulated by the stress-energy tensor T .
In a vacuum, where there is no mass or energy, T = 0 and the Einstein
Field Equations simplify to Ricg = λg, λ a constant.
A Riemannian manifold (X, g) solving the above equation is called an
Einstein manifold.
A Riemannian manifold with a complex structure J compatible with the
metric structure (i.e. g preserves J and J is preserved by the parallel
transport of the Levi-Civita connection) is called a Kähler manifold.
On a Kähler-Einstein manifold one define two (1, 1)-forms:
ρ(u, v) = Ricg(Ju, v) and ω(v, u) = g(Ju, v), for v, u vector fields. The
Einstein equation becomes

ρ = λω.
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Existence of Kähler-Einstein metrics

A very famous problem was to prove the existence of a Kähler-Einstein
metric on a compact Kähler manifold. It can be split up into three cases
dependent on the sign of the first Chern class of the Kähler manifold:

The first Chern class is negative; in this case Aubin and Yau proved
that there is always a Kähler-Einstein metric.
The first Chern class is zero; S.T. Yau proved the Calabi conjecture,
that there is always a Kähler-Einstein metric. He was awarded with
the Fields medal because of this work. That leads to the name
Calabi-Yau manifolds.
The third case, the positive or Fano case, is the hardest. In this case
the manifold not always has a Kähler-Einstein metric, there is in
fact a non-trivial obstruction to existence. In 2012, Chen,
Donaldson, and Sun proved that in this case the existence is
equivalent to an algebro-geometric criterion called K-stability.
Their proof appeared in a series of articles in the Journal of the
American Mathematical Society in 2014.
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Existence of Kähler-Einstein metrics on X22

Note that in 1987 G. Tian proved that there are Fano 3-folds of type X22
which do not admit a Kähler-Einstein metric.

in 2020 I. Cheltsov and C. Shramov proved that on any members of a
one parameter family of X22, which have a C∗ action and are therefore
denoted by X∗22, there exist a Kähler-Einstein metric.
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Existence of Kähler-Einstein metrics on X22

Note that in 1987 G. Tian proved that there are Fano 3-folds of type X22
which do not admit a Kähler-Einstein metric.
in 2020 I. Cheltsov and C. Shramov proved that on any members of a
one parameter family of X22, which have a C∗ action and are therefore
denoted by X∗22, there exist a Kähler-Einstein metric.
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