q-deformed spin foams for Riemannian quantum gravity

Igor Khavkine

Department of Applied Mathematics
University of Western Ontario
Canada

26 June 2007
LOOPS ’07
UNAM Morelia, Mexico

based on arXiv:0704.0278 [gr-qc] (with Dan Christensen)
Outline

What?
Barrett-Crane Model
q-deformation

Why?
Regularization
Cosmological Constant

How?
q-Barrett-Crane model
Computer Simulation

So What?
Results

Summary
Spin Foams

Start with a triangulated 4-manifold T ($T^* \supset \Delta_n$ — the set of dual n-simplices). A spin foam is a coloring of the triangulation faces (Δ_2). A spin foam model assigns an amplitude to each spin foam F:

$$A(F) = \prod_{f \in \Delta_2} A_F(f) \prod_{e \in \Delta_2} A_E(e) \prod_{v \in \Delta_1} A_V(v).$$

Also, to the triangulation as a whole and expectation values to observables

$$Z = \sum_F A(F), \quad \langle O \rangle = \frac{1}{Z} \sum_F O(F)A(F).$$

Sum over all histories — discrete path integral!
Spin Foams

Start with a triangulated 4-manifold T ($T^* \supset \Delta_n$ — the set of dual n-simplices). A spin foam is a coloring of the triangulation faces (Δ_2). A spin foam model assigns an amplitude to each spin foam F:

$$\mathcal{A}(F) = \prod_{f \in \Delta_2} A_F(f) \prod_{e \in \Delta_2} A_E(e) \prod_{v \in \Delta_1} A_V(v).$$

Also, to the triangulation as a whole and expectation values to observables

$$Z = \sum_F \mathcal{A}(F), \quad \langle O \rangle = \frac{1}{Z} \sum_F O(F) \mathcal{A}(F).$$

Sum over all histories — discrete path integral!

Goal — compute these sums numerically.
Barrett-Crane Model

What?

A spin foam model for Riemannian General Relativity.

- Historically, obtained as a constrained version of discretized BF theory.
- Can also be derived from Group Field Theory.
- Specifies vertex amplitude ($10j$ symbol):

$$A_V(v) = \begin{array}{c}
\begin{array}{ccc}
1 & \rightarrow & 0 \\
2 & \rightarrow & 0 \\
3 & \rightarrow & 0 \\
4 & \rightarrow & 0 \\
\end{array}
\end{array}$$

- The $j_{1,k}$ are balanced irreps ($j \otimes j$) of Spin(4) $\cong SU(2) \times SU(2)$.

- Several choices for amplitudes $A_F(f)$ and $A_E(e)$.
q-deformation

For $q = 1$, no deformation.

First, deal with $SU(2)$.

For $q = 1$, no deformation.

First, deal with $SU(2)$.

$U(\mathfrak{su}(2))$ generated by:

\[
\begin{align*}
[\sigma_+, \sigma_-] &= 4\sigma_3 \\
[\sigma_3, \sigma_{\pm}] &= \pm 2\sigma_{\pm}
\end{align*}
\]
q-deformation

For $q = 1$, no deformation.

First, deal with $SU(2)$.

$U(\mathfrak{su}(2))$ generated by:

\[[\sigma_+, \sigma_-] = 4\sigma_3 \]

\[[\sigma_3, \sigma_\pm] = \pm 2\sigma_\pm \]

$U_q(\mathfrak{su}(2))$ generated by ($\Sigma \sim q^{\frac{1}{2}}\sigma_3$):

\[[\sigma_+, \sigma_-] = 4 \frac{\Sigma^2 - \Sigma^{-2}}{q - q^{-1}} \]

\[\Sigma \sigma_\pm = q\sigma_\pm \Sigma \]
q-deformation

For $q = 1$, no deformation.

First, deal with $SU(2)$.

$U(\mathfrak{su}(2))$ generated by:

\[
[\sigma_+, \sigma_-] = 4\sigma_3
\]

\[
[\sigma_3, \sigma_\pm] = \pm 2\sigma_\pm
\]

Irreps classified by:

\[
j = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots
\]

\[
dim j = 2j + 1
\]

$U_q(\mathfrak{su}(2))$ generated by ($\Sigma \sim q^{\frac{1}{2}}\sigma_3$):

\[
[\sigma_+, \sigma_-] = 4\frac{\Sigma^2 - \Sigma^{-2}}{q - q^{-1}}
\]

\[
\Sigma \sigma_\pm = q\sigma_\pm \Sigma
\]
For $q = 1$, no deformation.

First, deal with $SU(2)$.

$U(\mathfrak{su}(2))$ generated by:

\[[\sigma_+, \sigma_-] = 4\sigma_3 \]
\[[\sigma_3, \sigma_{\pm}] = \pm 2\sigma_{\pm} \]

Irreps classified by:

\[j = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots \]
\[\dim j = 2j + 1 \]

$U_q(\mathfrak{su}(2))$ generated by ($\Sigma \sim q^{\frac{1}{2}}\sigma_3$):

\[[\sigma_+, \sigma_-] = 4 \frac{\Sigma^2 - \Sigma^{-2}}{q - q^{-1}} \]
\[\Sigma \sigma_{\pm} = q \sigma_{\pm} \Sigma \]

Irreps classified by (generic q):

\[j = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots \]
\[\dim j = 2j + 1 \]
q-deformation

For $q = 1$, no deformation.

First, deal with $SU(2)$.

$U(\mathfrak{su}(2))$ generated by:

\[
[\sigma_+, \sigma_-] = 4\sigma_3
\]

\[
[\sigma_3, \sigma_\pm] = \pm 2\sigma_\pm
\]

Irreps classified by:

\[
j = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots
\]

\[
dim j = 2j + 1
\]

$U_q(\mathfrak{su}(2))$ generated by ($\Sigma \sim q^{\frac{1}{2}}\sigma_3$):

\[
[\sigma_+, \sigma_-] = 4\frac{\Sigma^2 - \Sigma^{-2}}{q - q^{-1}}
\]

\[
\Sigma \sigma_\pm = q\sigma_\pm \Sigma
\]

Irreps classified by (generic q):

\[
j = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots
\]

\[
dim j = 2j + 1
\]

ROU $q = e^{i\pi/r}$: \[j \leq \frac{r}{2} - 1 \]
q-deformation

For $q = 1$, no deformation.

First, deal with $SU(2)$.

$U(su(2))$ generated by:

$$[\sigma_+, \sigma_-] = 4\sigma_3$$

$$[\sigma_3, \sigma_\pm] = \pm 2\sigma_\pm$$

Irreps classified by:

$j = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$

$$\dim j = 2j + 1$$

$U(su(2)) \cong U(su(2)) \oplus U(su(2))$

$U_q(su(2))$ generated by ($\Sigma \sim q_{\frac{1}{2}}\sigma_3$):

$$[\sigma_+, \sigma_-] = 4\frac{\Sigma^2 - \Sigma^{-2}}{q - q^{-1}}$$

$$\Sigma\sigma_\pm = q\sigma_\pm\Sigma$$

Irreps classified by (generic q):

$j = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$

$$\dim j = 2j + 1$$

ROU $q = e^{i\pi/r}$: $j \leq \frac{r}{2} - 1$
q-deformation

For \(q = 1 \), no deformation.

First, deal with \(SU(2) \).

\[
U(\mathfrak{su}(2)) \text{ generated by:}
\]

\[
\begin{align*}
&[\sigma_+ , \sigma_-] = 4\sigma_3 \\
&[\sigma_3 , \sigma_\pm] = \pm 2\sigma_\pm
\end{align*}
\]

Irreps classified by:

\[
\begin{align*}
j &= 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots \\
\dim j &= 2j + 1
\end{align*}
\]

\[
U(\text{spin}(4)) \cong U(\mathfrak{su}(2)) \oplus U(\mathfrak{su}(2))
\]

\[
U_q(\mathfrak{su}(2)) \text{ generated by } (\Sigma \sim q^\frac{1}{2}\sigma_3):
\]

\[
[\sigma_+ , \sigma_-] = 4 \frac{\Sigma^2 - \Sigma^{-2}}{q - q^{-1}}
\]

\[
\Sigma \sigma_\pm = q \sigma_\pm \Sigma
\]

Irreps classified by (generic \(q \)):

\[
\begin{align*}
j &= 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots \\
\dim j &= 2j + 1
\end{align*}
\]

\[
U_{q,q'}(\text{spin}(4)) \cong U_q(\mathfrak{su}(2)) \oplus U_{q'}(\mathfrak{su}(2))
\]

ROU \(q = e^{i\pi/r} : \ j \leq \frac{r}{2} - 1 \)
For $q = 1$, no deformation.

First, deal with $SU(2)$.

$U(\mathfrak{su}(2))$ generated by:

\[
[\sigma_+, \sigma_-] = 4\sigma_3
\]

$[\sigma_3, \sigma_\pm] = \pm 2\sigma_\pm$

Irreps classified by:

\[j = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots\]

\[\dim j = 2j + 1\]

$U_q(\mathfrak{su}(2))$ generated by ($\Sigma \sim q^{\frac{1}{2}\sigma_3}$):

\[
[\sigma_+, \sigma_-] = 4\frac{\Sigma^2 - \Sigma^{-2}}{q - q^{-1}}
\]

\[\Sigma \sigma_\pm = q\sigma_\pm \Sigma\]

Irreps classified by (generic q):

\[j = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots\]

\[\dim j = 2j + 1\]

ROU $q = e^{i\pi/r}$: $j \leq \frac{r}{2} - 1$

$U(\text{spin}(4)) \cong U(\mathfrak{su}(2)) \oplus U(\mathfrak{su}(2))$

$U_{q,q'}(\text{spin}(4)) \cong U_q(\mathfrak{su}(2)) \oplus U_{q'}(\mathfrak{su}(2))$

Spin networks: graphs \longrightarrow ribbon graphs.
Regularization

Application of q-deformation.

- For q a root of unity (ROU) the number of irreps is finite. Partition function Z is automatically finite.
Regularization
Application of q-deformation.

- For q a root of unity (ROU) the number of irreps is finite. Partition function Z is automatically finite.
- At a ROU q, this model is regularized. Constructed by Turaev and Viro as a state sum for 3-manifold invariants (1992).

DFKR model (Barrett-Crane variation due to De Pietri, Freidel, Krasnov & Rovelli, 1999) — also divergent, discovered from numerical investigation (2002).

At a ROU q, this model is regularized.
Regularization

Application of q-deformation.

- For q a root of unity (ROU) the number of irreps is finite. Partition function Z is automatically finite.
- At a ROU q, this model is regularized. Constructed by Turaev and Viro as a state sum for 3-manifold invariants (1992).
- DFKR model (Barrett-Crane variation due to De Pietri, Freidel, Krasnov & Rovelli, 1999) — also divergent, discovered from numerical investigation (2002).
- At a ROU q, the DFKR model is also regularized.
Cosmological Constant

Application of q-deformation.

In Loop Quantum Gravity, $SU(2)$ spin networks are embedded in a spatial slice.

- The spin network basis describes states of quantum spatial geometry.

$\langle |K; \Lambda \rangle$ — approximates deSitter space, a vacuum with positive Cosmological Constant, $\Lambda > 0$.

Smolin (1995) argues that invariance under large gauge transformations discretizes the CC, $\Lambda \sim 1/r$.

Expansion coefficients give topological link and graph invariants:

$\langle |K \rangle \sim \langle | \rangle^q$
Cosmological Constant

Application of q-deformation.

In Loop Quantum Gravity, $SU(2)$ spin networks are embedded in a spatial slice.

- The spin network basis describes states of quantum spatial geometry.

- Kodama state $|\mathcal{K}; \Lambda\rangle$ — approximates deSitter space, a vacuum with positive Cosmological Constant, $\Lambda > 0$.

- Smolin (1995) argues that invariance under large gauge transformations discretizes the CC, $\Lambda \sim 1/r$.
Cosmological Constant

Application of q-deformation.

In Loop Quantum Gravity, $SU(2)$ spin networks are embedded in a spatial slice.

- The spin network basis describes states of quantum spatial geometry.

- Kodama state $|\mathcal{K}; \Lambda \rangle$ — approximates deSitter space, a vacuum with positive Cosmological Constant, $\Lambda > 0$.

- Smolin (1995) argues that invariance under large gauge transformations discretizes the CC, $\Lambda \sim 1/r$.

- Expansion coefficients give topological link and graph invariants:

$$\langle \mathcal{K} \rangle \sim \langle \mathcal{B} \rangle_q$$

- With precisely $q = \exp(i\pi/r)$!
Ingredients for q-deformation have been in the literature for some time.
Ingredients for \(q\)-deformation have been in the literature for some time.

A special family of deformations (Yetter, 1999):

\[
U_{q,q^{-1}}(\text{spin}(4)) \cong U_q(\mathfrak{su}(2)) \oplus U_{q^{-1}}(\mathfrak{su}(2)).
\]

BC vertex still rotationally invariant, ribbon structure trivial.
Ingredients for q-deformation have been in the literature for some time.

A special family of deformations (Yetter, 1999):

$$U_{q,q^{-1}}(\text{spin}(4)) \cong U_q(\mathfrak{su}(2)) \oplus U_{q^{-1}}(\mathfrak{su}(2)).$$

BC vertex still rotationally invariant, ribbon structure trivial.

Intersection structure of $10j$ symbol (only non-planar spin network) fixed from the Crane-Yetter model (1994)
Ingredients for q-deformation have been in the literature for some time.

A special family of deformations (Yetter, 1999):

$$U_{q,q^{-1}}(\text{spin}(4)) \cong U_q(\mathfrak{su}(2)) \oplus U_{q^{-1}}(\mathfrak{su}(2)).$$

BC vertex still rotationally invariant, ribbon structure trivial.

Intersection structure of $10j$ symbol (only non-planar spin network) fixed from the Crane-Yetter model (1994):

Retains permutation symmetry.

Computer Simulation

How?

- Implement $U_q(\mathfrak{su}(2))$ spin network evaluations — $|q| > 1$ numerically unstable! But ROU q is OK.
Computer Simulation

How?

- Implement $U_q(\mathfrak{su}(2))$ spin network evaluations — $|q| > 1$ numerically unstable! But ROU q is OK.

tetrahedral network vs. q
Computer Simulation

- Implement $U_q(\text{su}(2))$ spin network evaluations — $|q| > 1$ numerically unstable! But ROU q is OK.

- Evaluate partition function and observables using importance sampling (Metropolis algorithm):

$$\langle O \rangle = \frac{1}{Z} \sum_F O(F)A(F).$$
Computer Simulation

- Implement $U_q(\mathfrak{su}(2))$ spin network evaluations — $|q| > 1$ numerically unstable! But ROU q is OK.

- Evaluate partition function and observables using importance sampling (Metropolis algorithm):

$$\langle O \rangle = \frac{1}{Z} \sum_O O(F)A(F).$$

- Elementary move — add closed bubble in dual skeleton.
Computer Simulation

How?

- Implement $U_q(\mathfrak{su}(2))$ spin network evaluations — $|q| > 1$ numerically unstable! But ROU q is OK.

- Evaluate partition function and observables using importance sampling (Metropolis algorithm):

$$\langle O \rangle = \frac{1}{Z} \sum_F O(F) A(F).$$

- Elementary move — add closed bubble in dual skeleton.

- Works well since $A(F) \geq 0$ when $q = 1$ or ROU, in the absence of boundaries.
Models

Perez-Rovelli (2000):

\[A_F(f) = i \bigcirc \bullet, \quad A_E(e) = \frac{j_1 j_2 j_3 j_4}{j_1 j_2 j_3 j_4}. \]

DFKR (2000):

\[A_F(f) = i \bigcirc \bullet, \quad A_E(e) = \begin{bmatrix} j_1 & j_2 & j_3 & j_4 \end{bmatrix}^{-1}. \]

Baez-Christensen (2002):

\[A_F(f) = 1, \quad A_E(e) = \begin{bmatrix} j_1 & j_2 & j_3 & j_4 \end{bmatrix}^{-1}. \]
Observables

Spin foam observables depend on face spin labels:

spin avg. \(J(F) = \frac{1}{|\Delta_2|} \sum_{f \in \Delta_2} \lfloor j(f) \rfloor \),

spin var. \((\delta J)^2(F) = \frac{1}{|\Delta_2|} \sum_{f \in \Delta_2} \left(\lfloor j(f) \rfloor - \langle J \rangle \right)^2 \),

area avg. \(A(F) = \frac{1}{|\Delta_2|} \sum_{f \in \Delta_2} \sqrt{\lfloor j(f) \rfloor \lfloor j(f) + 1 \rfloor} \),

spin corr. \(C_d(F) = \frac{1}{N_d} \sum_{\text{dist}(f,f')=d} \frac{\lfloor j(f) \rfloor \lfloor j(f') \rfloor - \langle J \rangle^2}{\langle (\delta J)^2 \rangle} \).

Quantum half integers \(\lfloor j \rfloor = j \) when \(q = 1 \), but \(\lfloor j \rfloor \sim \sin(2j\pi/r) \) when \(q = e^{i\pi/r} \).
Observables Discontinuous as $r \to \infty$

So What?
Single Spin Distribution

So What?

SSD — frequency of occurrence of j.

BA — $A(F)$, where F contains minimal bubble.
SSD — frequency of occurrence of j.

BA — $\mathcal{A}(F)$, where F contains minimal bubble.

For PR and BCh, bubbles dominate!
Single Spin Distribution

- So What?

(a) Probability distribution for different bubble amplitudes:
- `bubble amplitude $r = 50` (dashed line)
- `bubble amplitude $q = 1$` (solid line)
- Spin distribution $r = 50$ (open circles)
- Spin distribution $q = 1$ (solid circles)

(b) Graph showing:
- j vs. $(j(j+1))^{1/2}$ (solid line)
- $|j|$ (dashed line)
- $(|j|)(|j+1|)^{1/2}$ (dotted line)

- SSD — frequency of occurrence of j.
- BA — $A(F)$, where F contains minimal bubble.
- For PR and BCh, bubbles dominate!
- Not for DFKR.
Spin Correlation

Consistent with isolated bubble hypothesis.
Summary and Outlook

- Computer simulation of q-Barrett-Crane models now possible and practical, for modest sized triangulations.

- Observables show a discontinuity as $q \to 1$ through roots of unity. At odds with cosmological constant interpretation.

- BC models show strong dependence on edge and face amplitudes.

Outlook

- Simulations with $|q| \sim 1$.
- Spin correlation on larger triangulations.
- Lorentzian signature.

Thank you for your attention!
Summary and Outlook

- Computer simulation of q-Barrett-Crane models now possible and practical, for modest sized triangulations.
- Observables show a discontinuity as $q \to 1$ through roots of unity. At odds with cosmological constant interpretation.

Outlook

- Simulations with $|q| \sim 1$.
- Spin correlation on larger triangulations.
- Lorentzian signature.

Thank you for your attention!
Summary and Outlook

- Computer simulation of q-Barrett-Crane models now possible and practical, for modest sized triangulations.
- Observables show a discontinuity as $q \to 1$ through roots of unity. At odds with cosmological constant interpretation.
- BC models show strong dependence on edge and face amplitudes.

Thank you for your attention!
Summary and Outlook

▶ Computer simulation of q-Barrett-Crane models now possible and practical, for modest sized triangulations.
▶ Observables show a discontinuity as $q \to 1$ through roots of unity. At odds with cosmological constant interpretation.
▶ BC models show strong dependence on edge and face amplitudes.

▶ Outlook
 ▶ Simulations with $|q| \sim 1$.
 ▶ Spin correlation on larger triangulations.
 ▶ Lorentzian signature.
Summary and Outlook

▶ Computer simulation of q-Barrett-Crane models now possible and practical, for modest sized triangulations.
▶ Observables show a discontinuity as $q \rightarrow 1$ through roots of unity. At odds with cosmological constant interpretation.
▶ BC models show strong dependence on edge and face amplitudes.

▶ Outlook
 ▶ Simulations with $|q| \sim 1$.
 ▶ Spin correlation on larger triangulations.
 ▶ Lorentzian signature.

Thank you for your attention!