Finite Fields and Symmetric Cryptography

Andrea Caranti

Dipartimento di Matematica, Università degli Studi di Trento, via Sommarive 14, I-38050 Povo (Trento), Italy
E-mail address: caranti@science.unitn.it
URL: http://science.unitn.it/~caranti/
Contents

Introduction 5
 Why these notes are not in Italian 5
 Goal 5
 Notes from the author to the author 5
 Contribution of Sandro Mattarei 5

Chapter 1. Finite Fields 7
 1.1. Background 7
 1.2. Simple extension 7
 1.3. Galois theory 8
 1.4. Irreducible polynomials 9
 1.5. Linear Functions 9

Chapter 2. The Moebius function 13
 2.1. Definition 13
 2.2. Moebius inversion 13
 2.3. Irreducible polynomials 14

Chapter 3. Linear and affine functions 17
 3.1. Linear and affine transformations 17
 3.2. The dihedral groups 17
 3.3. Cryptanalysis of linear transformations 18
 3.4. The probability of generating a finite vector space 18
 3.5. Cryptanalysis of affine transformations 19

Chapter 4. AES 21
 4.1. Rijndael and AES 21
 4.2. Generalities 21
 4.3. S-boxes 22

Chapter 5. Differential cryptanalysis 23
 5.1. A single-round alternating block cipher 23
 5.2. What if there are more rounds? 25
 5.3. How small can the difference propagation probabilities be? 25

Chapter 6. Nonlinearity 27
 6.1. Correlation 27
 6.2. Distance from affine functions 27
 6.3. A scalar product 28
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.</td>
<td>Parities</td>
<td>28</td>
</tr>
<tr>
<td>6.5.</td>
<td>Parseval’s identity</td>
<td>30</td>
</tr>
<tr>
<td>6.6.</td>
<td>Inversion in a finite field</td>
<td>30</td>
</tr>
<tr>
<td>7.1.</td>
<td>What we are trying to avoid</td>
<td>33</td>
</tr>
<tr>
<td>7.2.</td>
<td>Notation and statement</td>
<td>33</td>
</tr>
<tr>
<td>7.3.</td>
<td>AES</td>
<td>34</td>
</tr>
<tr>
<td>7.4.</td>
<td>Proof</td>
<td>35</td>
</tr>
<tr>
<td>7.5.</td>
<td>Additive subgroups of finite fields containing their inverses</td>
<td>36</td>
</tr>
<tr>
<td>7.6.</td>
<td>Equations of degree two in characteristic two</td>
<td>37</td>
</tr>
<tr>
<td>8.1.</td>
<td>The singleton bound</td>
<td>39</td>
</tr>
<tr>
<td>8.2.</td>
<td>Circulant matrices</td>
<td>39</td>
</tr>
<tr>
<td>8.3.</td>
<td>Circulant matrices in characteristic dividing n</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>41</td>
</tr>
</tbody>
</table>
Introduction

Why these notes are not in Italian

I started writing these notes for a course on “Campi finiti e crittografia simmetrica” I gave in Trento in 2005/06. Sandro Mattarei and I have written extensive notes of other courses, but this is the first time I write them up in English, and not in Italian. These notes will thus turn handy in 2009/10, when the start with the new Laurea Magistrale in English.

I did not do much in 2005/07, but in 2007/08 I wrote some more, and I plan to do the same in 2008/09, when I am writing this. This means that at time these notes might look disconnected, when I have written A but not B or, God forbid, B but not A.

Goal

The goal of the course is to give an overview of the basic theory of finite fields, and show the role they play in the construction of Rijndael/AES [DR02].

Notes from the author to the author

This is a Things to do list

• In Moebius, mention polynomials when speaking of the convolution product.
• Write up the singleton bound.
• Perhaps give the referee’s proof of you-know-what?

Contribution of Sandro Mattarei

May 2011: Sandro Mattarei has added the section on Differential cryptanalysis.
CHAPTER 1

Finite Fields

1.1. Background

A finite field E has order p^n, for a suitable prime p. Here p is the characteristic of E (and thus E contains the field $F = \mathbb{F}_p$ with p elements), and $|E : F| = n$.

Write $q = p^n$. The elements of E are roots of $f = x^q - x \in F[x]$.

Given p and n, a field of order q can be constructed as the splitting field of f over F. This is unique up to (F-)isomorphisms. Write $\text{GF}(q)$ for it.

1.2. Simple extension

One proves, as in [Ser73], that a finite subgroup of the multiplicative group of a field is cyclic.

We first show that

\[n = \sum_{d \mid n} \varphi(d), \]

where φ is the Euler function.

One method is to define a function φ via these formulas, and show that it coincides with Euler’s φ. This approach is similar to that for the Moebius function (see Chapter 2).

In another approach, we count the number $X(d)$ of elements of order d in a cyclic group $\langle a \rangle$ of order n. We first prove that the order of a^k (with $0 \leq k < n$, say) is

\[a^k \equiv 1 \pmod{n}. \]

This follows from the fact that if $(a^k)^t = 1$, then $n \mid kt$, so $n/(n,k) \mid t$ and $t = s \cdot n/(n,k)$. The smallest such t for $s = 1$ is $n/(n,k)$, and in fact $(a^k)^{n/(n,k)} = (a^{n/(n,k)})^k = 1$.

So the order of a^k is n when $(n,k) = 1$. Thus $X(n) = \varphi(n)$.

Now we prove the following strong converse of Lagrange’s theorem for $\langle a \rangle$.

Theorem 1.2.1. A cyclic group $\langle a \rangle$ of order n has exactly one subgroup of order d for $d \mid n$, and this subgroup is cyclic.

Proof. Clearly $\langle a^{n/d} \rangle$ is such a subgroup, as the element $a^{n/d}$ has order d. Now let H be a subgroup of $\langle a \rangle$ of order d. Let $a^k \in H$, so that $(a^k)^d = 1$. It follows that $n \mid kd$, so that $n/(n,d) \mid k$, and thus a^k is a power of $a^{n/d}$, and thus $a^k \in \langle a^{n/d} \rangle$, and $H \subseteq \langle a^{n/d} \rangle$. Because they have the same order d, they are thus equal. \square
Now to see what is $X(d)$, we note that if $x \in \langle a \rangle$ has order d, then $\langle x \rangle = \langle a^{n/d} \rangle$ by the theorem above, so $X(d)$ is the number of elements of order d in a cyclic group $\langle a^{n/d} \rangle$ of order d, and $X(d) = \varphi(d)$ as above.

Since clearly $n = \sum d|n X(d)$ in any finite group of order n, we get (1.2.1).

Teorema 1.2.2. Let G be a group of finite order n, with the property that if d divides n, then

\[
\left| \{ a \in G : a^d = 1 \} \right| \leq d.
\]

Here G is cyclic.

Note that (1.2.2) holds if G is a finite multiplicative subgroup of L^*, where L is a field. This is because the left-hand side is the set of the roots in L of the polynomial $x^d - 1$, of degree d.

Proof. In fact, let $X(d)$ be the number of elements of G of order d, for $d | n$. It might be that $X(d) = 0$. If $X(d) \neq 0$, and $a \in G$ has order d, then the d elements of $\langle a \rangle$ are exactly the elements of the set in (1.2.2). Any $b \in G$ of order d must therefore lie in $\langle a \rangle$, as $b^d = 1$. Thus there are $\varphi(d)$ elements of order d in G here. We have

$$n = \sum_{d|n} \varphi(d) \leq \sum_{d|n} X(d) = n.$$

Therefore equality holds, $X(d) = \varphi(d)$ for all $d | n$, in particular $X(n) = \varphi(n) \neq 0$. \hfill \Box

Going back to finite fields, it follows that E is a simple extension of F, that is, $E = F[\alpha]$ for some $\alpha \in E$. This follows from the fact E^* is cyclic, $E^* = \langle \alpha \rangle$, for some α.

Note that the minimal polynomial of α over F has degree n, as $|F[\alpha] : F| = |E : F| = n$, and it is irreducible. This over $F = \mathbb{F}_p$ there are irreducible polynomials of any degree. (Note that irreducible polynomials over \mathbb{R} have degree 1 or 2 only.)

Note that give a finite field E of order $q = p^n$, there might be elements α for which $E = F[\alpha]$, but that are not primitive, that is, they do not have order $q - 1$, or $\langle \alpha \rangle < E^*$, as the following example shows.

Example 1.2.3. Let $p = 2$, so that $F = \mathbb{F}_2 = \{0, 1\}$. The polynomial $x^4 + x^3 + x^2 + x + 1 \in F[x]$ is irreducible. Thus is α one of its roots, $F[\alpha]$ is a field E of order 2^4. But $\alpha^5 = 1$, as it follows from the identity $x^5 - 1 = (x - 1) \cdot (x^4 + x^3 + x^2 + x + 1)$.

1.3. Galois theory

Let $q = p^n$, and E and F as usual. Let $f = x^q - x \in F[x]$.

Since E/F is the splitting field of f, which has distinct roots, E/F is a Galois extension. Its Galois group G is cyclic, generated by the Frobenius morphism

$$\sigma(a) = a^p.$$

The subgroups of G are of the form $\langle \sigma^d \rangle$, for $d | n$. Such a subgroup is associated, via the Galois correspondence, to a subfield K such that $|K : F| =
\[|G| / |\langle \sigma^d \rangle| = d, \] so that \(K \) is a field of order \(p^d \). In fact by the Galois correspondence \(K = \{ a \in E : \sigma^d(a) = a \} = \{ a \in E : a^{p^d} \} - a = 0. \)

It follows that \(\mathbb{GF}(p^d) \subseteq \mathbb{GF}(p^n) \) if and only if \(d \) divides \(n \). This follows also (without any appeal to Galois theory) from the elementary fact that the polynomial \(x^{p^d} - x \) divides \(x^{p^n} - x \) iff \(d \mid n \).

1.4. Irreducible polynomials

We have seen above that over \(F = \mathbb{F}_p \) field) there are irreducible polynomials of all degrees. This is true over any finite field \(E \). In fact, let \(E \) have order \(p^n \), and fix \(k \). Consider the field \(L \) of order \(p^{nk} \). It contains \(E \), by what we have just seen, and \(L = \mathbb{F}[\alpha] = \mathbb{E}[\alpha] \) for some \(\alpha \). Now

\[nk = |L : F| = |L : E| \cdot |E : F| = |E[\alpha] : E| \cdot n. \]

It follows that \(|E[\alpha] : E| = k \), so that the minimal polynomial \(f \in E[x] \) of \(\alpha \) over \(E \) has degree \(k \).

Using Galois theory, one can show that \(f = x^q - x \in F[x] \) (for \(q = p^n \)) is the product of all irreducible polynomials in \(F[x] \) of degree dividing \(n \). In fact, it is a matter of degrees that if an irreducible polynomial divides \(x^q - x \), then its degree divides \(n \). Conversely, let \(g \in F[x] \) be an irreducible polynomial of degree \(d \mid n \). Let \(\alpha \) be a root of \(g \). Then \(L = F[\alpha] \) is a field of order \(p^d \), and as such is contained in \(E \), the field of order \(q \), which is the splitting field of \(f \). Since \(E/F \) is a Galois extension, and contains a root \(\alpha \) of the irreducible polynomial \(g \in F[x] \), all the roots of \(g \) are in \(E \), and they are distinct. Thus \(g \mid x^q - x \), as required.

See Chapter 2 for a formula for the number of irreducible polynomials.

1.5. Linear Functions

Let \(E = \mathbb{GF}(p^n) \), where \(p \) is a prime, and \(F = \mathbb{GF}(p) \). There are \(p^{n^2} \) functions \(E \to E \) which are linear (over \(F \)). The elements of the Galois group, that is the maps

\[\varphi^i : x \mapsto x^{p^i}, \]

for \(0 \leq i < n \) are all linear.

Lemma 1.5.1 (Dedekind). Let \(E \) be a field. If \(\varphi_1, \ldots, \varphi_m \) are distinct isomorphisms \(E \to E \), then they are linearly independent over \(E \).

[This proof, due to E. Artin, actually shows more: distinct homomorphisms of a monoid \(G \) to a field \(E \) are linearly independent over \(E \).]

Proof. Suppose \(\sum_{i=1}^m a_i \varphi_i = 0 \). May assume all \(a_i \neq 0 \) (say \(a_1 = 1 \)), and there is no nontrivial relation with some of the \(a_i = 0 \). Since \(\varphi_1 \neq \varphi_2 \), let \(x_0 \) be
such that \(\varphi_1(x_0) \neq \varphi_2(x_0) \). We have, for all \(x \in E \),
\[
\sum_{i=1}^{m} a_i \varphi_i(x) = 0
\]
\[
\sum_{i=1}^{m} a_i \varphi_i(x_0) = \sum_{i=1}^{m} a_i \varphi_i(x_0) \varphi(x) = 0
\]
\[
\sum_{i=1}^{m} a_i \varphi_1(x_0) \varphi_i(x) = 0,
\]
where the last one is obtained multiplying by \(\varphi_1(x_0) \) the first one. Subtracting the last two, we get
\[
\sum_{i=2}^{m} a_i (\varphi_1(x_0) - \varphi_i(x_0)) \varphi_i(x) = 0.
\]
The first coefficient is zero, but the second one is not, as \(a_i (\varphi_1(x_0) - \varphi_2(x_0)) \neq 0 \). This contradicts our initial assumption. \(\square \)

Thus the \(\varphi_i \) are independent, and thus their linear combinations
\[
\sum_{i=0}^{n-1} a_i \varphi_i : x \mapsto a_0 x + a_1 x^p + \cdots + a_{n-1} x^{p^{n-1}},
\]
with \(a_i \in E \) are distinct linear maps. And there are \(|E|^n = p^{n^2} \) of them, so they are all the linear maps.

Which of these map \(E \to F? \) By Galois theory, we need
\[
a_0 x + a_1 x^p + a_2 x^{p^2} + \cdots + a_{n-1} x^{p^{n-1}} =
\]
\[
= (a_0 x + a_1 x^p + a_2 x^{p^2} + \cdots + a_{n-1} x^{p^{n-1}})^p =
\]
\[
= a_0^p x + a_1^p x^p + a_2^p x^{p^2} + \cdots + a_{n-1}^p x^{p^{n-1}}.
\]
for all \(x \). Thus \(a_1 = a_0^p, \ a_2 = a_1^p = a_0^{p^2}, \) and thus \(a_i = a_i^p \) so that the linear functions \(E \to F \) are of the form
\[
\sum_{i=0}^{n-1} a_i^p \varphi_i : x \mapsto a x + a^p x^p + \cdots + a^{p^{n-1}} x^{p^{n-1}} = \text{tr}(ax)
\]
for \(a \in E \). In fact there are \(|E^*| = |E| \) of them.

Here \(\text{tr} : E \to F \) is the trace map,
\[
\text{tr}(x) = \sum_{g \in \text{Gal}(E/F)} g(x),
\]
itself a linear function \(E \to F \).

In another approach, start with the trace. By Dedekind’s Lemma, it is nonzero, that is, it does not have constant value 0. In particular, if \(c \neq 0 \), then \(cx \) takes all the values in \(E \) as \(x \in E \), so \(x \mapsto \text{tr}(cx) \) is also nonzero. It follows that all functions \(E \to F \) given by \(x \mapsto \text{tr}(ax) \) are distinct, for \(a \in E \). This is because if
for all $x \in E$ we have $\text{tr}(ax) = \text{tr}(bx)$, that is, $\text{tr}((a - b)x) = 0$, and so $a - b = 0$. But these are precisely $|E|$ functions, and thus all of them.
CHAPTER 2

The Moebius function

2.1. Definition

Let \(\mathbb{N}^* \) be the set of positive integers. define a function \(\mu : \mathbb{N}^* \to \mathbb{Z} \) via

\[
\sum_{d|n} \mu(d) = \begin{cases}
1 & \text{if } n = 1, \\
0 & \text{if } n > 1.
\end{cases}
\]

- \(\mu \) is uniquely determined by the previous formula, that is, there is a unique function \(\mu \) that satisfies the formula for all \(n \).

 Clearly \(\mu(1) = 1 \). Proceed by induction on \(n \). If the values \(\mu(d) \) are known, for \(d < n \), then the value of \(\mu(n) \) is uniquely determined by (2.1.1).

- \(\mu \) is multiplicative, that is \(\mu(nm) = \mu(n) \cdot \mu(m) \) if \((n, m) = 1 \).

Let \((n, m) = 1 \). We may clearly assume \(n, m > 1 \). Assume by induction that \(\mu(x) \) is multiplicative for \(x < nm \). Now every divisor \(d \) of \(nm \) can be written as \(d = ef \), where \(e \mid n, f \mid m \), thus \((e, f) = 1 \), so that we have

\[
-\mu(nm) = \sum_{d|nm, d\neq nm} \mu(d) = \sum_{e,f|n,m,ef\neq nm} \mu(e)\mu(f)
= \sum_{e|n} \mu(e) \sum_{f|m, ef \neq nm} \mu(f) - \mu(n)\mu(m)
= -\mu(n)\mu(m)
\]
as \(n, m > 1 \).

- Show that

\[
\mu(n) = \begin{cases}
1 & \text{if } n = 1, \\
0 & \text{if } n \text{ is divisible by the square of a prime,} \\
(-1)^k & \text{if } n \text{ is the product of } k \text{ distinct primes.}
\end{cases}
\]

Proceeding by induction on \(k \), one shows the formula to hold for \(n = p^k \), where \(p \) is a prime. Then use the previous item

\(\mu \) is called the Moebius function.

2.2. Moebius inversion

We have the important
Theorem 2.2.1 (Moebius Inversion). Let $f : \mathbb{N}^* \to \mathbb{C}$ be a function, and let
\[
g(n) = \sum_{d|n} f(n).
\]
Then
\[
f(n) = \sum_{d|n} \mu(n/d) g(d).
\]

We compute
\[
\sum_{d|n} \mu(n/d) g(d) = \sum_{d,e,de=n} \mu(e) g(d) = \sum_{d,e,de=n} \mu(e) \sum_{k|d} f(k).
\]

What’s the coefficient on $f(k)$ in the previous formula, for a given k? It’s
\[
\sum_{d,e,de=n,k|d} \mu(e) = \sum_{e,e|n/k} \mu(e) = \begin{cases} 1 & \text{if } k = n, \\ 0 & \text{if } k \neq n. \end{cases}
\]

A probably more enlightening approach requires to introduce the convolution of two functions f, g as $f * g(n) = \sum_{d,e,de=n} f(d) g(e)$. One shows it is commutative and associative. Define the constant function 1, which evaluates to 1 for all n, and the Dirac delta as
\[
\delta_a(n) = \begin{cases} 1 & \text{if } n = a, \\ 0 & \text{if } n \neq a. \end{cases}
\]

One shows
\begin{itemize}
 \item $\delta_1 = 1 * \mu$ (this is the formula (2.1.1) that defines μ),
 \item $\delta_a * \delta_b = \delta_{ab}$,
 \item $\delta_1 * f = f$.
\end{itemize}

Finally, $\mu * (f * 1) = f * (\mu * 1) = f * \delta_1 = f$.

2.3. Irreducible polynomials

What is the number of irreducible polynomials of degree n over $F = \mathbb{F}_p$? Write $q = p^n$, and let E be the field with q elements.

We first count the primitive ones, that is, those whose roots have order $q - 1$. There are $\varphi(q - 1)$ such roots, and thus $\varphi(q - 1)/n$ such polynomials.

Now we know that $x^q - x$ is the product of all irreducible polynomials in $F[x]$ of degree d dividing n. Write $P(d)$ for the product of the irreducible polynomials of degree d. Then
\[
x^q - x = \prod_{d|n} P(d).
\]

Using a multiplicative version of Theorem 2.2.1, we obtain
\[
P(n) = \prod_{d|n} (x^{q^d} - x)^{\mu(n/d)}.
\]
For example,

\[P(6) = \frac{(x^{p^6} - x) \cdot (x^p - x)}{(x^{p^2} - x) \cdot (x^{p^3} - x)}. \]

The meaning is that we first take out from \(x^{p^6} - x \) the irreducible polynomials of degree dividing 2 and 3, but then we have removed those of degree 1 twice, so we need to compensate.

As for the number of polynomials, write \(Q(n) \) for the number of irreducible polynomials in \(F[x] \) of degree \(d \). Then (2.3.1) says

\[p^n = \prod_{d|n} Q(d), \]

and this by Theorem 2.2.1

\[Q(n) = \prod_{d|n} \mu(n/d) Q(d). \]
CHAPTER 3

Linear and affine functions

To be added: Very much to be written

3.1. Linear and affine transformations

To be added: Includes the one-dimensional case, the representation in matrices (notice how many parameters we need).

Let $V = V(n, F)$ be a vector space of dimension d over the field F. If $F = GF(q)$, we write $V = V(n, q)$. We also think usually of $V = F^n$, if a basis is chosen implicitly or explicitly.

A(n F-)linear map $V \rightarrow V$ is the usual thing, while $f : V \rightarrow V$ is affine if $xf = xa + b$, where a is linear and $b \in V$. (Note that we write maps on the right here.) We write $f = f_{a,b}$. Thus $f_{1,0}$ is the identity map. Note that two such maps compose as

$$xf_{a,b} \circ f_{c,d} = (xa + b)f_{c,d} = xac + bc + d = xf_{ac,bc+d}.$$

Note that $f_{c,d}$ is the inverse of $f_{a,b}$ if $ac = 1$, so that a is invertible and $c = a^{-1}$, and $d = -ba^{-1}$.

3.2. The dihedral groups

Let A be either \mathbb{Z} or $\mathbb{Z}/n\mathbb{Z}$. For $a \in A$ invertible and $b \in B$, define $f_{a,b} : A \rightarrow A$ by $xf_{a,b} = xa + b$. Clearly these maps form a group. Consider the subset

$$\{ f_{a,b} : a \in \{1, -1\}, b \in A \}.$$

This is clearly a group, the dihedral group.

When $A = \mathbb{Z}$, this is the group of congruences of \mathbb{Z}. In fact for $a = 1$ we have the translations, while for $a = -1$ we have the reflections.

Note first that $f_{-1,0} : x \mapsto -x$ is the reflection around 0.

If $b = 2c$ is even, then

$$xf_{-1,b} = -x + 2c = -(x - c) + c,$$

so $f_{-1,b}$ is a reflection around the point c on \mathbb{Z}. If $b = 2c + 1$ is odd, then

$$xf_{-1,b} = -x + 2c + 1 = -(x - (c + \frac{1}{2})) + c + \frac{1}{2},$$

so it is a reflection around the non-integer $c + 1/2$.

For instance, in the first case, note that

$$f_{-1,b} = f_{1,c}^{-1} \circ f_{-1,0} \circ f_{1,c}.$$

So $f_{-1,b}$ is obtained by a change of coordinates (conjugation) from $f_{-1,0}$.
If $A = \mathbb{Z}/n\mathbb{Z}$, it is the group of congruences of a regular n-gon, whose vertices are labelled consecutively $0, 1, \ldots, n - 1$, where we mean classe modulo n. For $a = 1$ we have rotations, while for -1 we have reflections. If n is odd we have only one type of reflections, with respect to an axis that goes through a vertex and its opposed side. This is because 2 is invertible in A, so that $b = 2c$ for some c, and
\[xf_{-1,b} = -x + 2c = -(x - c) + c \]
is the reflection through the axis passing through the vertex c and the opposing side. (Note $cf_{-1,b} = c$) If $n = 2m$ is even, we have two cases. If $b = 2c$, then $f_{-1,b}$ is as above, a reflection through the vertices c and $m + c$. (In fact we have also $(m + c)f_{-1,b} = -(m + c - c) + c = -m + c = m + c$) If $b = 2c + 1$, then $f_{-1,b}$ does not fix any vertex (check) and it is a reflection through an axis going through the middle points of two opposite sides.

In the case $A = \mathbb{Z}$, note that $f_{-1,0}$ and $f_{-1,1}$ are involutions (they have period two), while their product $f_{-1,0} \circ f_{-1,1} = f_{1,1}$ is a translation by 1, and thus has infinite period. In the case $A = \mathbb{Z}/n\mathbb{Z}$, the composition is a rotation of $2\pi/n$, so it has period n.

3.3. Cryptanalysis of linear transformations

Our space is $V = V(d, q)$.

Suppose the encryption is done with a linear function $f = f_{a,0}$, and we the possibility of a chosen plaintext attack. This means we, the attacker, can choose which plaintexts to encrypt. Clearly we choose a basis e_i of V, which has d elements, and this allows us to reconstruct a, as e_if is the i-th row of a, regarded as a matrix.

In a given plaintext attack, we only observe x_if, where the values of x_1, x_2, \ldots are random. For this, we need the results of the next section.

3.4. The probability of generating a finite vector space

Let $V = V(n, q)$. Let v_i be a random sequence of elements of V. Eventually we will get a basis out of it. Here’s a proof one can no doubt improve upon. Let $\varepsilon > 0$. The probability that v_1 is 0 is $1/q^n$. So the probability that after t_1 attempts we are always getting zero is $1/q^{nt_1}$. This is less than ε when
\[t_1 > -\frac{\log_q(\varepsilon)}{n}. \]
So with these many attempts we have a probability $1 - \varepsilon$ to have hit a nonzero vector. The probability that the next vector is dependent on the first one we have thus obtained is q/q^n. So we get that the probability of failing after t_2 further attempts is less than ε when
\[t_2 > -\frac{\log_q(\varepsilon)}{n - 1}. \]
The result is that after
\[t_1 + t_2 + \ldots + t_n > -\log_q(\varepsilon) \left(\frac{1}{n} + \frac{1}{n - 1} + \cdots + \frac{1}{2} + 1 \right) \]
attempts we have obtained a basis with probability at least \((1 - \varepsilon)^n > 1 - n\varepsilon\). Note that

\[
\gamma = \lim_{n \to \infty} \left(\left(\sum_{k=1}^{n} \frac{1}{k} \right) - \log(n) \right)
\]

is the Euler-Mascheroni constant \(\approx 0.5772\).

3.5. Cryptanalysis of affine transformations

Here \(f = f_{a,b}\).

In a chosen plaintext situation, we first compute \(0f_{a,b} = b\), and then we are in the case of a linear function.

In the given plaintext situation, we start with a differential cryptanalysis approach. That is, given \(u, v \in V\), we compute \(uf - vf = (u - v)f_{a,0}\), where now \(f_{a,0}\) is linear. So once we have enough vectors so that their pairwise differences form a basis for \(V\), we are have found \(f_{a,0}\), and thus we find easily \(b\) too.

There is only one thing to be noticed. Even if we have \(n + 1\) vectors \(v_i\), such that every subset of \(n\) vectors is a basis, it might be that their differences is not a basis. This happens when there is a relation of the form

\[
\sum_{i=1}^{n+1} a_i v_i, \quad \text{with} \quad \sum_{i=1}^{n+1} a_i = 0.
\]

To be added: to be polished
CHAPTER 4

AES

I have just started writing this chapter, so it is very tentative, and contains notes to myself for further development. Blanket reference is [DR02].

4.1. Rijndael and AES

Rijndael is the name of the cryptosystem Joan Daemen and Vincent Rijmen proposed for the Advanced Encryption System (AES) competition. A version of Rijndael was then adopted as AES.

To be added: Spell the differences

We will be discussing mainly AES, spelling out the differences to Rijndael occasionally.

4.2. Generalities

AES is a symmetric (or secret key) cryptosystem. That is, the two parties who use it to communicate have to share a secret (private) key beforehand. A public key cryptosystem like RSA might be used to exchange the private key; from then on, AES is used.

AES is a block cryptosystem. A message is split up in blocks of 128 bits, and every block is processed separately.

AES must run also in situations in which memory and processing power are limited, such as on a smart card. To minimize the length of the code, AES is an iterated cryptosystem. That is, a simple function (which would not offer any security by itself, but which has a short code) is iterated several times, until security is achieved. (Think of the way we shuffle a deck of cards: we repeat several times a simple shuffling operation, until the cards are well mixed [Dia98].) This simple function is called a round.

Thus, when we submit a plaintext block to AES, it undergoes several transformations, until we get the final ciphertext. Each intermediate state in the process is called - ehm - the state. The plaintext, the ciphertext and all intermediate states are all elements of a vector space $V = V(128, 2)$ of dimension 128 over the field $F = \mathbb{F}_2$ with two elements.

To be added: Simple examples to illustrate?

In turn, every round is composed of several simpler functions. One of them involves the round key. Starting from the master key, one different key for each round is calculated. In round i, the round key k_i is simply used by addition, that is, the state x is mapped to $x + k_i$.

21
4.3. S-boxes

All components of AES but one are affine functions. (In cryptography, one often says linear, when a mathematician would say affine.) This one has to be a permutation γ of V, a set with 2^{128} elements. How does one write down such a beast? The idea is to split

$$V = \bigoplus_{i=1}^{16} V_i,$$

where each V_i has dimension 8. The permutation γ is then defined as

$$v\gamma = \sum_{i=1}^{16} v_i \gamma_i,$$

where $v = \sum_{i=1}^{16} v_i$, with $v_i \in V_i$, and γ_i is a permutation of V_i. Each V_i is taken to be the additive group of $\mathbf{GF}(2^8)$, and then one takes

$$u\gamma_i = \begin{cases} 0 & \text{if } u = 0, \\ u^{-1} & \text{otherwise.} \end{cases}$$

This function is chosen (see [Nyb94]) because it is very much non-linear, see Chapter 6.

To be added: To be continued
CHAPTER 5

Differential cryptanalysis

A key-alternating block cipher consists of the alternated application of key-independent round transformations and simple key additions (XOR). Note that the algorithm must start and end with a key addition, because the round transformations are assumed to be given by fixed known functions: if we omit the first key addition, say, then anyone knows how a message goes through the first round transformation, which therefore becomes useless. The round transformation itself may consist of several components. In principle it may be a single big S-box, but in practice, for example in Rijndel’s structure, it consists of smaller S-boxes and affine maps, whose function is to spread the effect of the small S-boxes through the whole state.

We will describe a chosen-plaintext cryptanalytic attack based on consideration of how a fixed difference of input messages produces few or many possible differences of the corresponding output messages.

5.1. A single-round alternating block cipher

For simplicity, start considering the following simple encryption scheme: binary addition of a key K_1, followed by a key-independent S-box, and then addition of another key, K_2.

Because of this structure, the S-box used must be given by a bijective function f (contrary to the DES, for example, where non-injective S-boxes were used). Thus, a plaintext x, belonging to a vector space V over the finite field \mathbb{F}_p, will produce the ciphertext $y = f(x + K_1) + K_2$, again an element of V. In what follows, plaintexts will always be considered in pairs x, x^*, and their difference will be denoted by x', with similar notation for the corresponding ciphertexts y, y^*, with difference y'. Here we mean that $x' = x^* - x$, because in what follows the characteristic p may well be an odd prime p, but because $p = 2$ in concrete applications this difference may as well be written as a sum. (In this respect, note that the inverted pair x^*, x shares the same difference with x, x^* when $p = 2$, but not otherwise: this will have consequences.)

Part of the idea of differential cryptanalysis is to separate the contributions of the two keys, with the aim of discovering one of them, by considering a large set of input pairs x_i, x_i^* with a common fixed difference $x' = x_i^* - x_i$, following the results of each pair through the various steps of encryption, and paying attention to how the corresponding differences propagate through each step. In particular, a difference passes unchanged through any translation (i.e. addition of a fixed value), such as a key addition: $(x^* + K_1) - (x + K_1) = x^* - x = x'$. This means that the first key K_1 has no influence on the differences $y' = y^* - y$ registered at
the output of our scheme. Next, a difference goes through a linear function g in a unique way (hence fully predictable if g is known): $g(x^*) - g(x) = g(x^* - x) = x'$, independently of the specific pair x, x^* with the given difference.

Thus, if our f is a linear, or possibly affine function, one can predict exactly which output difference y' will result from enciphering any pair with fixed difference x', because that is independent of x and of both keys K_1 and K_2. Hence, looking at how differences propagate in case of an an affine S-box function f will not give us any clue about what the keys are. But this is a silly case, where there is really only one key $f(K_1) - f(0) + K_2$, as we see by writing $y = f(x + K_1) + K_2 = f(x) + (f(K_1) - f(0) + K_2)$, and so this scheme holds no secret.

As soon as f is not affine, however, there will be at least one difference x' at the input of the S-box which may produce at least two (and generally many) possible differences y' at the output, depending on the specific input pair x, x^* with the difference x' considered. Hence the set of all possible inputs $x \in V$ to the S-box (hence after the first key addition) can be split into several subsets, according to the value of $y' = f(x + x') - f(x)$. To the sizes of these subsets there correspond the probabilities

$$\text{Prob}(x', y') := \frac{1}{|V|} \cdot |\{x \in V: f(x + x') - f(x) = y'\}|,$$

which can be computed because the S-box is known. (Remember that the S-box here is simply the function f, and does not include the initial addition of K_1 or the final addition of K_2.) Thus, $\text{Prob}(x', y')$ is the probability that a difference x' at the input of the S-box produces a difference y' at the output. Clearly $\sum_{x' \in V} \text{Prob}(x', y') = 1$ for all $y' \in V$, and $\sum_{y' \in V} \text{Prob}(x', y') = 1$ for all $x' \in V$. For an affine S-box a given x' would completely determined a corresponding y', and so $\text{Prob}(x', y')$ would be 1 for that specific y', and 0 for any other y'. On the contrary, for an optimal S-box these probabilities $\text{Prob}(x', y')$, for the given x' and as y' varies, should be rather uniformly small. I will explain the reason later.

Now suppose we feed the cryptosystem a pair x and x^*, with difference x'. Adding to both the unknown key K_1 leaves their difference unchanged, $(x^* + K_1) - (x + K_1) = x'$. The difference

$$y' := (f(x^* + K_1) + K_2) - (f(x + K_1) + K_2)$$

of two outputs of the cryptosystem does not depend on the second unknown key K_2 either. Assume now that $\text{Prob}(x', y') < 1$. Because the S-box is known, and assuming that it is reasonably small (recall that the strength of iterated block ciphers should be due to iteration, and right now we are artificially studying just one step of the iteration), we might be able to get a complete list of all pairs z, z^* with difference $z' = x' = z^* - z$, which fed to the S-box result in the output difference $f(z^*) - f(z) = y'$. (In characteristic two each inverted pair z^*, z will appear together with z, z^*.) Note that because $0 < \text{Prob}(x', y') < 1$ these are a proper part of all possible pairs of elements of V. But then their differences $z - x$ with the x under consideration must include the correct value of the key K_1. Hence we have gained information on the key K_1, finding that it belongs to a certain
subset of all possible keys. Now we may repeat the procedure, say with a different pair \(x, x^*\) having the same difference \(x'\) but giving a different \(y'\). Depending on the value of the new \(\text{Prob}(x', y')\) we may find a different subset of possible values for \(K_1\), which will therefore belong to the intersection with the previous set. Eventually one will find the correct value of \(K_1\), and at that point \(K_2\) will be easy to obtain, based on a single encryption: \(K_2 = (f(x + K_1) + K_2) - f(x + K_1)\).

(At this stage it appears the attack works marginally better if \(\text{Prob}(x', y')\) happens to be small but, on the contrary, the attacker will need high values of \(\text{Prob}(x', y')\) to be able to attack several rounds, see below.)

A few words about the amount of work involved in this attack.

5.2. What if there are more rounds?

To attack an alternating block cipher made of several rounds the idea is to try to break only the key of the last round, say (or some round in between), by statistically following trails of differences (differential trails) with high probabilities in the remaining rounds. Thus, very roughly speaking, one tries to isolate the contribution of the key of just one round, by exploiting its nonlinearity as explained above, but at the same time the fact that the remaining rounds are close to linear (and so their keys have little effect), not in general but with respect to particular differences which propagate with high enough probabilities \(\text{Prob}(x', y')\), \(\text{Prob}(y', z')\), etc., from one round to the next.

5.3. How small can the difference propagation probabilities be?

The above shows that to be safe against differential cryptanalysis we need all difference propagation probabilities \(\text{Prob}(x', y')\) through the S-boxes to be rather small.

Hence when the prime \(p\) is odd the ideal S-box would have \(\text{Prob}(x', y') = 1/|V| = p^{-n}\) for most \(y' \in V\). (It cannot possibly occur for all \(y' \in V\) because \(\text{Prob}(x', 0) = 0\).) This means, in particular, that these probabilities would mostly be nonzero, and so almost each possible output difference \(y'\) would be produced by some pair \(x, x + x'\), that is to say, the map \(x \mapsto y'\) would be almost bijective. However, when \(p = 2\) the pairs \(x, x + x'\) and \(x + x', x\) produce the same output difference \(f(x + x') - f(x) = f(x) - f(x + x')\) (which would be opposite for \(p > 2\)). Thus the values of \(\text{Prob}(x', y')\), which are multiples of \(1/|V| = p^{-n}\) in odd characteristic, must be multiples of \(2/|V| = 2^{-n+1}\) in characteristic two. Hence the best S-box for \(p = 2\) would be one for which most of the probabilities \(\text{Prob}(x', y')\) take the value \(2/|V|\) or close to it (with the necessary exception of \(\text{Prob}(x', 0) = 0\)). Consequently, the set of \(y'\) which can possibly occur starting from \(x'\) would be almost half the size of \(V\). It is very easy to see (see a later chapter) that the inversion map in \(\mathbb{F}_{2^n}\) (used in the S-box of Rjindael with \(n = 8\)) achieves precisely this.
CHAPTER 6

Nonlinearity

6.1. Correlation

A rielaboration of [DR02, Chap. 7] in terms of group theory.

Let $V = \mathbb{F}_2^n$. Suppose you have two binary Boolean functions $f, g : V \rightarrow \mathbb{F}_2$. Their Hamming distance $d(f, g)$ is simply the number of points on which they differ. On average, you will expect them to coincide on about half of the points. That is, if you take two random Boolean functions, the bets are they will have the same value on half of the points, that is, the probability

$$1 - \frac{d(f, g)}{2^n}$$

that they coincide is likely to be $1/2$.

So you measure their correlation as

$$C(f, g) = 2 \cdot (1 - \frac{d(f, g)}{2^n}) - 1 = 1 - \frac{d(f, g)}{2^{n-1}}.$$

We have used the linear function $\lambda : \mathbb{R} \rightarrow \mathbb{R}$ given by $\lambda(x) = 2x - 1$, which maps the interval $[0, 1]$ onto $[-1, 1]$.) So correlation 0 means they behave as your favourite pair of average random Boolean functions. Correlation 1 means $f = g$. Correlation -1 means that $g(x) = 1 + f(x)$ for all x, or g evaluates to 0 on the points where f evaluates to 1 and viceversa. Any correlation different from 0 means that the knowledge of f tells you some information about g as well.

We can reformulate the above as

$$d(f, g) = 2^{n-1}(1 - C(f, g)).$$

6.2. Distance from affine functions

We will be interested in the (minimum) distance of such a function f from the set of affine Boolean functions. Now an affine, nonlinear function $V \rightarrow \mathbb{F}_2$ is of the form $x \mapsto g(x) + 1$, with g linear. We have $d(f, g + 1) = 2^n - d(f, g) = 2^n - 2^{n-1} + 2^{n-1}C(f, g)) = 2^{n-1}(1 + C(f, g))$. So the distance of f from affine functions is

$$\min \left\{ 2^{n-1}(1 \pm C(f, g)) : g \text{ linear} \right\} =
\begin{cases}
\{ 2^{n-1}(1 + \min C(f, g)) : g \text{ linear} \} & \text{if } C(f, g) \geq 0 \\
\{ 2^{n-1}(1 - \max C(f, g)) : g \text{ linear} \} & \text{if } C(f, g) < 0
\end{cases}$$

27
Since \(\min C(f, g) = -\max(-C(f, g)) \), we get that the distance of \(f \) from affine functions is

\[
2^{n-1}(1 - \max \{ |C(f, g)| : g \text{ \{}linear\} }).
\]

6.3. A scalar product

If \(f \) is a Boolean function (that is, a function with values 0, 1), we may represent it via a \(C \)-valued function \(\hat{f}(x) = (-1)^{f(x)} \), that is, the function \(\hat{f} : V \to C \) such that

\[
\hat{f}(x) = \begin{cases}
1 & \text{if } f(x) = 0, \\
-1 & \text{if } f(x) = 1.
\end{cases}
\]

(We will see soon why we might want to do that.) Clearly

\[
\hat{f} + \hat{g}(x) = (-1)^{f(x)+g(x)} = (-1)^{f(x)}(-1)^{g(x)} = \hat{f}(x) \cdot \hat{g}(x).
\]

We now define a scalar (better: Hermitian) product among functions \(\varphi, \psi : V \to C \) via

\[
\langle \varphi, \psi \rangle = \frac{1}{|V|} \sum_{x \in V} \varphi(x) \overline{\psi(x)}.
\]

This is bilinear (well, to be more precise, in the second variable...), and visibly nondegenerate: just note that

\[
\langle \varphi, \varphi \rangle = \frac{1}{2^n} \sum_{x \in V} |\varphi(x)|^2 > 0,
\]

if \(\varphi \neq 0 \). Consider now Boolean functions \(f, g \). If \(K = \{ x \in V : f(x) \neq g(x) \} \), so that \(d(f, g) = |K| \), we have

\[
2^n \left\langle \hat{f}, \hat{g} \right\rangle = \sum_{x \in V} \hat{f}(x) \hat{g}(x) = \sum_{x \in V} (-1)^{f(x)+g(x)}
\]

\[
= \sum_{x \in K} (-1) + \sum_{x \in V \backslash K} 1 = -d(f, g) + (2^n - d(f, g))
\]

\[
= 2^n - 2d(f, g) = 2^n C(f, g).
\]

In other words

\[
C(f, g) = \left\langle \hat{f}, \hat{g} \right\rangle.
\]

In particular the norm \(\left\langle \hat{f}, \hat{f} \right\rangle = 1 \) for Boolean functions \(f \).

6.4. Parities

The dual space \(V^* \) of \(V \) is the vector space of all linear maps \(V \to \mathbb{F}_2 \). A choice of a basis \(v_i \) on \(V \) gives a dual basis \(v_i^* \in V^* \) (where \(v_i^*(v_j) = \delta(i, j) \)). We will write elements \(v \in V \) and \(V^* \) as vectors in \(\mathbb{F}_2^n \), with respect to such a pair of bases.

If \(w \in V^* \) (regarded, as we said, as an element of \(\mathbb{F}_2^n \)), as a linear function \(V \to \mathbb{F}_2 \) acts as \(x \mapsto x \cdot w \) (where \(\cdot \) represent the row-by-row product of \(x \) and
6.4. Parities

Let \(x \in V \) be also regarded as an element of \(\mathbb{F}_2^n \). Their hats are the functions called parities

\[
\pi_w : V \to \{1, -1\}
\]
\[
x \mapsto (-1)^{x \cdot w}.
\]

Note that \(\pi_x(y) = \pi_y(x) \).

We claim that every binary Boolean function (in the hat form), that is, every function \(V \to \mathbb{C} \), can be written as a linear combination of these. Note that the space of functions \(V \to \mathbb{C} \) is a vector space over \(\mathbb{C} \) of dimension \(2^n \) over \(\mathbb{C} \).

This is a special case of a rather more general fact from the theory of group representation theory and discrete Fourier transforms. Let \(G \) be a finite abelian (commutative) group. Then its (linear) characters are the group morphisms from \(G \) into the multiplicative group \(\mathbb{C}^\times \) of the nonzero complex numbers. If \(G \) is our \(V \) above, such a morphism \(\phi \) satisfies

\[
\phi(x + y) = \phi(x)\phi(y),
\]

thus we have for all \(v \in V \)

\[
1 = \phi(0) = \phi(2v) = \phi(v + v) = \phi(v)\phi(v) = \phi(v)^2,
\]

so that \(\phi(v) \in \{1, -1\} \). And in fact these characters are exactly the parities above. This is because a parity is a character, and conversely, if \(\phi \) is a character, then we can write \(\phi(x) = (-1)^{\psi(x)} \) for a unique \(\psi : V \to \mathbb{F}_2 \), and \(\psi \) is linear, as

\[
(-1)^{\psi(x+y)} = \phi(x + y) = \phi(x)\phi(y) = (-1)^{\psi(x)}(-1)^{\psi(y)} = (-1)^{\psi(x) + \psi(y)}.
\]

Note now that two distinct parities are orthogonal, as we have

\[
\langle \pi_v, \pi_w \rangle = \frac{1}{2^n} \sum_{x \in V} (-1)^{x \cdot v}(-1)^{x \cdot w} = \delta(v, w).
\]

In fact, if \(v = w \) all the summands are 1. If \(u = v + w \neq 0 \), the sum is zero instead. This is because \(x \mapsto x \cdot u \) is a linear map \(V \to \mathbb{F}_2 \). It has value 0 on its kernel, which is a subspace of \(V \) of codimension one, and thus with \(2^n/2 \) elements, and value 1 on the remaining \(2^n/2 \) elements.

If these parities are orthogonal, they must be linearly independent, and thus they are a basis of the space of \(\mathbb{C} \)-valued functions on \(V \). Let us find how to write any (hat) function in terms of the parities.

The coefficients will be of course just the scalar products of a \(\hat{f} \) with the parities, that is, the coefficient of \(\hat{f} \) with respect to the parity \(\pi_w \) will be

\[
F(w) = C(f, \pi_w) = \langle \hat{f}, \pi_w \rangle = \frac{1}{2^n} \sum_{x \in V} (-1)^{f(x) + x \cdot w}.
\]

This function \(F : V^\ast \to \mathbb{C} \) is called the Walsh-Hadamard transform of \(f \), or equivalently \(\hat{f} \). It is a special case of a Fourier transform.
Reciprocally, we have
\[C(F, \pi_y) = \langle F, \pi_y \rangle = \frac{1}{2^n} \sum_{w \in V} F(w)\pi_y(w) \]
\[= \frac{1}{2^n} \sum_{w \in V} F(w)(-1)^{y \cdot w} \]
\[= \frac{1}{2^{2n}} \sum_{w \in V} \left((-1)^{y \cdot w} \sum_{x \in V} (-1)^{f(x) + x \cdot w} \right) \]
\[= \frac{1}{2^{2n}} \sum_{x \in V} \left((-1)^{f(x)} \sum_{w \in V} (-1)^{(x+y) \cdot w} \right) \]
\[= \frac{1}{2^n} \sum_{x \in V} ((-1)^{f(x)} \langle \pi_x, \pi_y \rangle) \]
\[= \frac{1}{2^n} \sum_{x \in V} ((-1)^{f(x)} \delta(x, y)) = \frac{1}{2^n} \hat{f}(y). \]

So indeed
\[\hat{f}(y) = \sum_{w \in V} F(w)\pi_y(w) \]
a function is determined by its correlations (scalar products) with the parities.

6.5. Parseval’s identity

We note Parseval’s identity, which will turn handy later

\[1 = \langle \hat{f}, \hat{f} \rangle = \left\langle \sum_{v \in V} F(v)\pi_v, \sum_{w \in V} F(w)\pi_w \right\rangle = \sum_{v,w \in V} F(v)F(w)\delta(v,w) = \sum_{v \in V} F(v)^2. \]

Now \(F(v) \) is the correlation of \(f \) with the linear function \(\pi_v \). So if \(M = \max \{|C(f, g)| : g \text{ linear} \} \), we obtain \(1 \leq |V| M^2 \), that is
\[(6.5.1) \quad M \geq \frac{1}{2^{n/2}}. \]

6.6. Inversion in a finite field

Now suppose \(V = E = GF(2^n) \). So each linear function \(E \to \mathbb{F}_2 \) is of the form \(x \mapsto \text{tr}(ax) \) for a suitable \(a \in E \).

What’s the correlation of a (hat) function \(\hat{f} \) with such a linear function? It is
\[C(f, \text{tr}(a \cdot)) = \langle \hat{f}, \text{tr}(a \cdot) \rangle = \frac{1}{2^n} \sum_{x \in V} (-1)^{f(x) + \text{tr}(ax)}. \]
Consider the case when \(f(x) \) is a component of inversion, that is, \(f(x) = \text{tr}(bx^{-1}) \) for some \(b \in E^* \). Rescaling, we have to evaluate a Kloosterman sum

\[
\sum_{x \in E^*} (-1)^{\text{tr}(x+bx^{-1})}
\]

Using for instance [CU57] we get

\[
\left| \sum_{x \in E^*} (-1)^{\text{tr}(x+bx^{-1})} \right| \leq 2 \cdot 2^{n/2},
\]

that is,

\[
|C(f, \text{tr}(a \cdot))| \leq \frac{2}{2^{n/2}},
\]

which is within a factor 2 of the bound (6.5.1), and thus the distance of inversion from the affine functions is given, according to (6.2.1), by

\[
2^{n-1}(1 - \max \{ |C(f, g)| : g \text{ linear} \}) \geq 2^{n-1}(1 - \frac{2}{2^{n/2}}) = 2^{n-1} - 2^{n/2}.
\]
CHAPTER 7

Truncated differential cryptanalysis of AES

Warning! This part is taken from [CDVSV04], and needs some adjustments.

7.1. What we are trying to avoid

Suppose $T : V \rightarrow V$ is a cryptographic transformation. (Of course $T = T_k$ depends on the key.) Here V has dimension n (say even) over \mathbb{F}_2. Brute force would require searching through all 2^n elements of V.

But suppose there is a subspace W of V, of dimension $n/2$, such that if $x, y \in V$, and $x - y \in W$, then $T(x) - T(y) \in W$. This means that T sends a coset $x + W$ of W into another such coset. In fact if $y = x + w \in x + W$, so that $w \in W$, we have $y - x \in W$, so $T(y) - T(x) \in W$, and $T(y) \in T(x) + W$. In other words $T(x + W) \subseteq T(x) + W$, and thus $T(x + W) = T(x) + W$, because T is a bijection, and the two sets have the same number $|W|$ of elements.

So the cryptanalyst builds a quick membership test (sifting) for elements of W, and a set R, of size $2^{n/2}$, such that

$$\{ x + W : x \in V \} = \{ r + W : r \in R \}.$$

Given a ciphertext c_0, the cryptanalyst searches through R until he finds $r_0 \in R$ such that $c_0 \in T(r_0) + W$, that is, $c_0 - T(r_0) \in W$. So $c_0 \in T(r_0 + W)$. The cryptanalyst now searches through W until he finds $w_0 \in W$ such that $c_0 = T(r_0 + w_0)$. So $p_0 = r_0 + w_0$ is the plaintext, and it has taken $2 \cdot 2^{n/2}$ attempts to find it.

(Note. Some arguments are more general, valid also over any (infinite) field and for subspaces of arbitrary dimension.)

7.2. Notation and statement

Recall

Lemma 7.2.1. $\mathbf{GF}(p^n) \subseteq \mathbf{GF}(p^m)$ if and only if n divides m.

We are staying close to the notation of [DR02]. We assume $\rho = \gamma \lambda$, where γ and λ are permutations. Here γ is a bricklayer transformation, consisting of a number of S-boxes. The message space V is written as a direct sum

$$V = V_1 \oplus \cdots \oplus V_m,$$

where each V_i has the same dimension m over $\mathbf{GF}(2)$. For $v \in V$, we will write $v = v_1 + \cdots + v_m$, where $v_i \in V_i$. Also, we consider the projections $\pi_i : V \rightarrow V_i$, which map $v \mapsto v_i$. We have

$$v \gamma = v_1 \gamma_1 + \cdots + v_m \gamma_m,$$
where the γ_i are S-boxes, which we allow to be different for each V_i.

λ is a linear mixing layer.

In AES the S-boxes are all equal, and consist of inversion in the field $\text{GF}(2^8)$ with 2^8 elements (see later in this paragraph), followed by an affine transformation. The latter map thus consists of a linear transformation, followed by a translation. When interpreting AES in our scheme, we take advantage of the well-known possibility of moving the linear part of the affine transformation to the linear mixing layer, and incorporating the translation in the key addition (see for instance [MR02]). Thus in our scheme for AES we have $m = 8$, we identify each V_i with $\text{GF}(2^8)$, and we take $x\gamma_i = x^{2^8-2}$, so that γ_i maps nonzero elements to their inverses, and zero to zero. As usual, we abuse notation and write $x\gamma_i = x^{-1}$.

Note, however, that with this convention $xx^{-1} = 1$ only for $x \neq 0$.

Our result, for a key-alternating block cipher as described earlier in this section, is the following.

Theorem 7.2.2. Suppose the following hold:

1. $0\gamma = 0$ and $\gamma^2 = 1$, the identity transformation.
2. There is $1 \leq r < m/2$ such that for all i
 - for all $0 \neq v \in V_i$, the image of the map $V_i \to V_i$, which maps $x \mapsto (x + v)\gamma_i + x\gamma_i$, has size greater than 2^{m-r-1}, and
 - there is no subspace of V_i, invariant under γ_i, of codimension less than or equal to 2^r.
3. No sum of some of the V_i (except $\{0\}$ and V) is invariant under λ.

Then there is no subspace $U \neq \{0\},V$ of U such that if an input difference is in U, so is the corresponding output difference.

7.3. AES

We note immediately

Lemma 7.3.1. AES satisfies the hypotheses of Theorem 7.2.2.

Proof of Lemma 7.3.1. Condition (1) is clearly satisfied.

So is (3), by the construction of the mixing layer. In fact, suppose $U \neq \{0\}$ is a subspace of V which is invariant under λ. Suppose, without loss of generality, that $U \supseteq V_1$. Because of MixColumns [DR02, 3.4.3], U contains the whole first column of the state. Now the action of ShiftRows [DR02, 3.4.2] and MixColumns on the first column shows that U contains four whole columns, and considering (if the state has more than four columns) once more the action of ShiftRows and MixColumns one sees that $U = V$.

The first part of Condition (2) is also well-known to be satisfied, with $r = 1$ (see [Nyb94] but also [DR06]). We recall the short proof for convenience. For $a \neq 0$, the map $\text{GF}(2^8) \to \text{GF}(2^8)$, which maps $x \mapsto (x + a)^{-1} + x^{-1}$, has image of size $2^7 - 1$. In fact, if $b \neq a^{-1}$, the equation

$$ (7.3.1) \quad (x + a)^{-1} + x^{-1} = b $$
has at most two solutions. Clearly \(x = 0, a \) are not solutions, so we can multiply by \(x(x + a) \) obtaining the equation

\[
(7.3.2) \quad x^2 + ax + ab^{-1} = 0,
\]

which has at most two solutions. If \(b = a^{-1} \), equation (7.3.1) has four solutions. Two of them are \(x = 0, a \). Two more come from (7.3.2), which becomes

\[
x^2 + ax + a^2 = a^2 \cdot ((x/a)^2 + x/a + 1) = 0.
\]

By Lemma 7.2.1, \(\text{GF}(2^8) \) contains \(\text{GF}(4) = \{0, 1, c, c^2\} \), where \(c, c^2 \) are the roots of \(y^2 + y + 1 = 0 \). Thus when \(b = a^{-1} \) equation (7.3.1) has the four solutions \(0, a, ac, ac^2 \). It follows that the image of the map \(x \mapsto (x + a)^{-1} + x^{-1} \) has size

\[
2^8 - 4 - \frac{4}{4} = 27 - 1,
\]
as claimed.

As to the second part of Condition (2), one could just use GAP [GAP05] to verify that the only nonzero subspaces of \(\text{GF}(2^8) \) which are invariant under inversion are the subfields. According to Lemma 7.2.1, the largest proper one is thus \(\text{GF}(2^4) \), of codimension \(4 > 2 = 2r \). However, this follows from the more general Theorem 7.5.1, which we give in the Appendix. \(\square \)

7.4. Proof

Proof of Theorem 7.2.2. Suppose, by way of contradiction, that there is a subspace \(U \neq \{0\}, V \) of \(V \) such that if \(v, v + u \in V \) are two messages whose difference \(u \) lies in the subspace \(U \), then the output difference also lies in \(U \), that is

\[
(v + u) \rho + v \rho \in U.
\]

Since \(\lambda \) is linear, we have

Fact 1. For all \(u \in U \) and \(v \in V \) we have

\[
(7.4.1) \quad (v + u) \gamma + v \gamma \in U \lambda^{-1} = W,
\]

where \(W \) is also a linear subspace of \(V \), with \(\dim(W) = \dim(U) \).

Setting \(v = 0 \) in (7.4.1), and because of Condition (1), we obtain

Fact 2. \(U \gamma = W \) and \(W \gamma = U \).

Now if \(U \neq \{0\} \), we will have \(U \pi_i \neq \{0\} \) for some \(i \). We prove some increasingly stronger facts under this hypothesis.

Fact 3. Suppose \(U \pi_i \neq \{0\} \) for some \(i \). Then \(W \cap V_i \neq \{0\} \).

Let \(u \in U \), with \(u_i \neq 0 \). Take any \(0 \neq v_i \in V_i \). Then \((u + v_i) \gamma + v_i \gamma \in W \), and also \(u \gamma \in W \), by Fact 2. It follows that \(u \gamma + (u + v_i) \gamma + v_i \gamma \in W \). The latter vector has all nonzero components but for the one in \(V_i \), which is \(u_i \gamma_i + (u_i + v_i) \gamma_i + v_i \gamma_i \in W \cap V_i \). If the latter vector is zero for all \(v_i \in V_i \), then the image of the map \(V_i \rightarrow V_i \), which maps \(v_i \mapsto (v_i + u_i) \gamma_i + v_i \gamma_i \), is \(\{u_i \gamma_i\} \), of size 1. This contradicts the first part of Condition (2).

Clearly \((W \cap V_i) \gamma = U \cap V_i \). It follows
FACT 4. Suppose $U \pi_i \neq \{0\}$ for some i. Then $U \cap V_i \neq \{0\}$.

Finally we obtain

FACT 5. Suppose $U \pi_i \neq \{0\}$ for some i. Then $U \supseteq V_i$.

According to Fact 4, there is $0 \neq u_i \in U \cap V_i$. By the first part of Condition (2) the map $V_i \to V_i$, which maps $x \mapsto (x + u_i)\gamma_i + x\gamma_i$, has image of size $> 2^{m-r-1}$.

Since this image is contained in the linear subspace $W \cap V_i$, it follows that the latter has size at least 2^{m-r}, that is, codimension at most r in V_i. The same holds for $U \cap V_i = (W \cap V_i)\gamma$. Thus the linear subspace $U \cap W \cap V_i$ has codimension at most $2r$ in V_i. In particular, it is different from $\{0\}$, as $m > 2r$. From Fact 2 it follows that $U \cap W \cap V_i$ is invariant under γ. By the second part of Condition (2) we have $U \cap W \cap V_i = V_i$, so that $U \supseteq V_i$ as claimed.

From Fact 5 we obtain immediately

FACT 6. U is a direct sum of some of the V_i, and $W = U$.

The second part follows from the fact that $W = U\gamma$, and $V_i\gamma = V_i$ for all i.

Since $U = W\lambda$ by (7.4.1), we obtain $U = U\lambda$, with $U \neq \{0\}, V$. This contradicts Condition (3), and completes the proof.

The proof of Theorem 7.2.2 can be adapted to prove a slightly more general statement, in which Conditions (1) and (2) are replaced with

(1') $0\gamma = 0$ and $\gamma^s = 1$, for some $s > 1$.

(2') There is $1 \leq r < m/s$ such that for all i
- for all $0 \neq v \in V_i$, the image of the map $V_i \to V_i$, which maps $x \mapsto (x + v)\gamma_i + x\gamma_i$, has size greater than 2^{m-r-1}, and
- there is no proper subspace of V_i, invariant under γ_i, of codimension less than or equal to sr.

7.5. Additive subgroups of finite fields containing their inverses

We are grateful to Sandro Mattarei (see [Mat05], and also [GGSZ04], for more general results) for the following

THEOREMA 7.5.1. Let F be a field of characteristic two. Suppose $U \neq 0$ is an additive subgroup of F which contains the inverses of each of its nonzero elements. Then U is a subfield of F.

PROOF. Hua’s identity, valid in any associative (but not necessarily commutative) ring A, shows

\[(7.5.1)\quad a + ((a - b^{-1})^{-1} - a^{-1})^{-1} = aba\]

for $a, b \in A$, with $a, b, ab - 1$ invertible.

First of all, $1 \in U$. This is because U has even order, and each element different from $0, 1$ is distinct from its inverse.

Now (7.5.1) for $b = 1$, and $a \in U \setminus \{0, 1\}$ shows that for $a \in U$, also $a^2 \in U$.

(This is clearly valid also for $a = 0, 1$.) It follows that any $c \in U$ can be represented in the form $c = a^2$ for some $a \in U$. Now (7.5.1) shows that U is closed under products, so that U is a subring, and thus a subfield, of F. \[\square\]
7.6. Equations of degree two in characteristic two

Suppose we have the equation $x^2 + ux + v = 0$ over a finite field F of characteristic two, and order 2^n. Clearly the usual formula for the solutions does not work, as we cannot divide by two, and in fact completing the square does not work here: if we substitute $x + a$ to x, we get $x^2 + ux + v + a^2 + au$, with no gain.

Now if $u = 0$ we get one solution, as the function $x \mapsto x^2$ is an isomorphism here. So assume $u \neq 0$. Substitute ux to x to get $u^2x^2 + u^2x + v = 0$, and divide by u^2 to get $x^2 + x + vu^{-2} = 0$. The function $x \mapsto x^2 + x$ is a substitute in characteristic two of the usual “square root” function. It is linear over \mathbb{F}_2. Its kernel is $\{0, 1\}$, so its image has size $|F|/2$. If $b = a^2 + a$ is in the image, then $b^2 = a^4 + a^2, \ldots, b^{2^{n-1}} = a^{2^n} + a^{2^{n-1}} = a + a^{2^{n-1}}$, so that $\text{tr}(b) = b + b^2 + \cdots + b^{2^{n-1}} = 0$. It follows that the image of $x \mapsto x^2 + x$ is the kernel of the trace function $\text{tr} : F \to \mathbb{F}_2$, which has indeed order $|F|/2$. We obtain

Theorem 7.6.1. Consider the equation $x^2 + ux + v = 0$ over the finite field F of characteristic two.

1. If $u = 0$, the equation has one double solution.
2. If $u \neq 0$, the equation has two distinct solutions in F if and only if $\text{tr}(vu^{-2}) = 0$.
CHAPTER 8

Codes

8.1. The singleton bound

To be written.

8.2. Circulant matrices

Let \(A = \mathbb{C}[x]/(x^n - 1)\). Every element of \(A\) can be represented uniquely as the class of a polynomial of degree \(< n\), so that \(A\) has basis \(1, x, \ldots, x^{n-1}\) over \(\mathbb{C}\). Let \(c = c_0 + c_1x + \cdots + c_{n-1}x^{n-1} \in A\), and consider the linear function \(\varphi_c : A \to A\) that maps \(a \mapsto ac\). With respect to the standard basis, the matrix of \(c\) is circulant

\[
\begin{bmatrix}
 c_0 & c_1 & c_2 & \cdots & c_{n-3} & c_{n-2} & c_{n-1} \\
 c_{n-1} & c_0 & c_1 & c_2 & \cdots & c_{n-3} & c_{n-2} \\
 c_{n-2} & c_{n-1} & c_0 & c_1 & c_2 & \cdots & c_{n-3} \\
 & & & \ddots & \ddots & \ddots & \ddots \\
 c_1 & c_2 & c_3 & \cdots & c_{n-2} & c_{n-1} & c_0
\end{bmatrix}
\]

This is better understood if \(A\) is mapped onto \(B = \mathbb{C}^n\) via \(a \mapsto [a(\omega^i)]_{0 \leq i < n}\), where \(\omega\) is a primitive \(n\)-th root of 1. (This is well defined on \(A\), because the \(\omega^i\) are precisely the roots of \(x^n - 1\).) Since \(a \cdot c(z) = a(z) \cdot c(z)\), with respect to the canonical basis of \(B\) multiplication by \(c\) becomes multiplication by the scalar matrix which has \(c(\omega^i)\) on the diagonal. So these are the eigenvalues of \(\varphi_c\), we see that \(\varphi_c\) is invertible if no \(\omega^i\) is a root of \(c\), etc.

8.3. Circulant matrices in characteristic dividing \(n\)

Here part of the arguments fail, as those matrices are not diagonalizable, in general. In a sense the worst case is when \(n\) is a power of the characteristic, as in the case we need in the MixColumns step of Rijndael.

Nevertheless, consider \(A = F[x]/(x^4 + 1)\), where \(F = GF(2^8)\), and \(c = (\alpha + 1)x^3 + x^2 + x + \alpha\), where \(\alpha\) is a root of \(m = x^8 + x^4 + x^3 + x + 1\), the Rijndael polynomial. We have \(c(1) = 1\), so \(\varphi_c\) is invertible with inverse \(\varphi_{c^3}\), as \(c = (x+1)q+1\) for some \(q\), \(c^3c = c^4 = (x^4 + 1)q^4 + 1 \equiv 1 \pmod{x^4 + 1}\). We compute

\[
c^3 = (\alpha^3 + \alpha + 1)x^3 + (\alpha^3 + \alpha^2 + 1)x^2 + (\alpha^3 + 1)x + \alpha^3 + \alpha^2 + \alpha,
\]

and find its four coefficients are nonzero.

39
Bibliography

