COGNOME	NOME	Matr.
	Analisi Matematica 2	
	18 dicembre 2014	
` = '	d coli il flusso del campo vettoriale $F(x, \cdot)$	
	$\mathbf{R}^3: x^2 + y^2 + z^2 = 1, x \le 1/2$, orient lianza $\hat{n}(x, y, z) \cdot (x, y, z) > 0$.	ata in modo tale che il versore

Risultato: Calcoli:

Esercizio 2 (8 punti)

Si consideri la curva γ intersezione fra la superficie cilindrica di equazione $x^2 + y^2 = 2$ ed il piano di equazione x + y + z = 0.

- 1. Si fornisca una parametrizzazione di γ .
- 2. Si calcoli la circuitazione del campo vettoriale F(x,y,z)=(y,z,x) lungo γ utilizzando la parametrizzazione ricavata al punto 1
- 3. Riguardando γ come bordo della superficie Σ intersezione del cilindro $x^2+y^2\leq 2$ e del piano di equazione x+y+z=0, si calcoli il flusso del campo rot (F) su Σ e si verifichi la validità del teorema del rotore.

Risultato:		
Calcoli:		

Esercizio 3 (7 punti)

Determinare per quali valori del parametro $\alpha \in \mathbf{R}$ il campo vettoriale $F:\mathbf{R}^3 \to \mathbf{R}$

$$F(x, y, z) = (\cos(zy), -zx\sin(zy) - 2z, 2ze^{z^2} - \alpha y - xy\sin(zy))$$

è conservativo. Per tale valore di α , calcolare un potenziale U e il lavoro di F lungo la curva γ di parametrizzazione $\alpha(t) = (t\cos t, t\sin t, t^2), \qquad t \in [0, \pi].$

()	(,	, ,,	- L / J

Risultato:

Calcoli:

Esercizio 4 (8 punti)

Sviluppare in serie di Fourier la funzione $f: \mathbf{R} \to \mathbf{R}$ di periodo $T = 2\pi$ definita da:

$$f(x) = \begin{cases} 0 & \text{per } x \in [-\pi, 0) \\ e^{-x} & \text{per } x \in [0, \pi) \end{cases}$$

Calcolare in oltre la somma della serie $\sum_{n=1}^{\infty} \frac{1-e^{-\pi}(-1)^n}{n^2+1}.$

Risultato:			

Calcoli: