Primi esercizi su curve e integrali di linea

1. Si forniscano almeno due parametrizzazioni per la semicirconferenza

$$\gamma := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 4, y < 0\}$$

2. Si forniscano almeno due parametrizzazioni per la semicirconferenza

$$\gamma := \{(x, y) \in \mathbb{R}^2 \mid (x - 1)^2 + (y - 3)^2 = 1, x \ge 1\}$$

- 3. Si fornisca una parametrizzazione per le seguenti curve:
 - (a) l'ellisse $\gamma = \{(x, y) \in \mathbb{R}^2 \mid \frac{(x-1)^2}{9} + \frac{y^2}{4} = 1\}$
 - (b) $\gamma = \{(x,y) \in \mathbb{R}^2 \mid \frac{x^2}{9} + \frac{y^2}{4} = 1, x \ge 0\}$
 - (c) $\gamma = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1, y \ge x\}$
 - (d) la retta in \mathbb{R}^3 intersezione dei piani z = 2x + y e z = -x + 3y
 - (e) la curva in \mathbb{R}^3 intersezione del piano x+y+z=0 con la superficie $x^2+y=0$
 - (f) la curva in \mathbb{R}^3 intersezione del piano z=1 con la superficie sferica $x^2+y^2+z^2=4$
 - (g) la curva in \mathbb{R}^3 intersezione del piano x+z=0 con la superficie sferica $x^2+y^2+z^2=1$
- 4. Si consideri la curva piana $\gamma \subset \mathbf{R}^2$ descritta in forma forma parametrica dalla mappa $\alpha:[0,2\pi]\to\mathbb{R}^2$:

$$\alpha(\theta) = ((\cos \theta)^2, \cos \theta \sin \theta), \quad \theta \in [0, 2\pi].$$

- Calcolare la lunghezza di γ .
- Descrivere e rappresentare graficamente la curva γ
- la funzione α è iniettiva? Motivare la risposta.
- 5. Si calcoli la lunghezza della curva piana, grafico della funzione $y = \cosh(x)$, con $x \in [0, 5]$.
- 6. Si calcoli la lunghezza della curva γ , parametrizzata da:

$$\alpha(t) = (t, t^2/3, 2t^3/27)$$
 $t \in [0, 3]$

7. Si calcoli la lunghezza della curva γ , parametrizzata da:

$$\alpha(t) = (\cos^3 t, \sin^3 t) \qquad t \in [0, 2\pi]$$

8. Si calcoli la lunghezza della curva espressa in coordinate polari da

$$\alpha(\theta) = (e^{\theta} \cos \theta, e^{\theta} \sin \theta) \qquad \theta \in [0, 2\pi]$$

9. Si calcoli la lunghezza della curva espressa in coordinate polari da

$$\alpha(\theta) = ((1 + \cos \theta) \cos \theta, (1 + \cos \theta) \sin \theta)$$
 $\theta \in [0, 2\pi]$

10. Si calcoli l'integrale di line
a $\int_{\gamma}fds,$ dove γ è la curva parametrizzata da

$$\alpha(t) = \left(e^t \cos t, e^t \sin t, t\right) \qquad t \in [0, \sqrt{2}/2]$$

e
$$f(x, y, z) = x^2 + y^2$$

11. Si calcoli l'integrale di line
a $\int_{\gamma}fds,$ dove γ è la curva parametrizzata da

$$\alpha(t) = \left(\frac{1}{2} - \frac{t^2}{2}, t, \frac{1}{2} + \frac{t^2}{2}\right) \qquad t \in [0, \sqrt{2}/2]$$

e
$$f(x, y, z) = (2y^2 + 1)^{-3/2}$$

12. Si calcolino le coordinate del baricentro della curva (cardioide) descritta da:

$$\alpha(\theta) = ((1 + \cos \theta) \cos \theta, (1 + \cos \theta) \sin \theta)$$
 $\theta \in [0, 2\pi]$

nell'ipotesi che la densità lineare di massa sia costante.