COGNOME	NOME	Matr.	
L			

Analisi Matematica 2 1 luglio 2015

Esercizio 1 (7 punti)

Per quali valori del parametro $\alpha \in \mathbf{R}$ il campo vettoriale $F : \mathbf{R}^2 \to \mathbf{R}$

$$F(x,y) = (x^2 - \alpha y, y^2 + 2x)$$

è conservativo? Per tale valore di α si determini un potenziale $U: \mathbf{R}^2 \to \mathbf{R}$. Si calcoli inoltre, per ogni valore di α , il lavoro di F lungo l'arco di parabola passante per i punti $(0,1),\,(1,0)$ e (2,1).

Soluzione:

Esercizio 2 (8 punti)

Sia $T \subset \mathbf{R}^2$ il triangolo (pieno) di vertici (0,0), (-1,-2) e (1,-1) e $f: \mathbf{R}^2 \to \mathbf{R}$ la funzione definita da $f(x,y) = x^2 + y^2 + 2y$. Calcolare il massimo ed il minimo assoluto di f su T. Soluzione:

Esercizio 3 (7 punti) Si calcoli il flusso del campo vettoriale F(x,y,z)=(x,y,1) attraverso la superficie $\Sigma=\{(x,y,z)\in\mathbf{R}^3:x\geq 0,y\geq 0,z\geq 0,x+y+z=1\}$ orientata in modo che il versore normale \hat{n} soddisfi la diseguaglianza $\hat{n}\cdot\hat{e}_z>0$.

Soluzione:

Esercizio 4 (8 punti)

Sia Ω la parte del cilindro $C=\{(x,y,z)\in {\bf R}^3, x^2+z^2\leq 1\}$ compresa tra i piani y=0 e x+y+z=1:

$$\Omega = \{(x, y, z) \in \mathbf{R}^3, x^2 + z^2 \le 1, y \ge 0, x + y + z \le 1\}$$

- 1. Rappresentare graficamente la retta intersezione tra i piani y=0 e x+y+z=1
- 2. Rappresentare graficamente la proiezione di Ω sul piano y=0
- 3. Calcolare l'integrale triplo della funzione f(x,y,z)=x+z sull'insieme Ω

Soluzione: