Monads and Vector Bundles on Quadrics

Francesco Malaspina

X denotes a nonsingular subcanonical, irreducible ACM projective variety. A monad on X, is a complex of three vector bundles

$$0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$$

such that α is injective and β is surjective.

Throughout the note we often use the Horrocks correspondence between a bundle E ($n \geq 3$) and the corresponding minimal monad (see [Ho] or [BH]).

We have a theorem about monads for rank r bundles (see [Ml2]):

Theorem 1. On X of dimension n with $n > 3$, any minimal monad

$$0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0,$$

such that A or C are not zero, for a rank r ($r \geq 2$) bundle with $H^2_*(E) = H^{n-2}_*(E) = H^2_*(\wedge^2 E) = H^2_*(\wedge^2 E^\vee) = 0$, must satisfy the following conditions:

1. $H^1_*(\wedge^2 B) \neq 0$, $\beta_0(H^1_*(\wedge^2 B)) \geq \beta_0(H^0_*(S_2 C))$ and

 $$\beta_{0j}(H^1_*(\wedge^2 B)) \geq \beta_{0j}(H^0_*(S_2 C)) \quad \forall j \in \mathbb{Z}, \text{ if } C \text{ is not zero}.$$

2. $H^1_*(\wedge^2 B^\vee) \neq 0$, $\beta_0(H^1_*(\wedge^2 B^\vee)) \geq \beta_0(H^0_*(S_2 A^\vee))$ and

 $$\beta_{0j}(H^1_*(\wedge^2 B^\vee)) \geq \beta_{0j}(H^0_*(S_2 A^\vee)) \quad \forall j \in \mathbb{Z}, \text{ if } A \text{ is not zero}.$$

3. $H^2_*(\wedge^2 B) = H^2_*(\wedge^2 B^\vee) = 0$.

Remark 2. If $r = 2, 3$ we don’t need the hypothesis $H^2_*(\wedge^2 E) = H^2_*(\wedge^2 E^\vee) = 0$

By using monads we can improve Ottaviani’s criterion on quadrics (see [Ot1]) in the case of bundle with a small rank (see [Ml1]):

Theorem 3. Let E a vector bundle on Q_n ($n > 3$).

If n is odd and rank $E < n - 1$, or if n is even and rank $E < n$, then the following conditions are equivalent:
1. \mathcal{E} splits into a direct sum of line bundles.

2. $H_1^1(Q, \mathcal{E} \otimes \Sigma) = H_2^2(Q, \mathcal{E}) = \cdots = H_2^{n-2}(Q, \mathcal{E}) = 0$.

3. $H_2^2(Q, \mathcal{E}) = \cdots = H_2^{n-2}(Q, \mathcal{E}) = H_n^1(Q, \mathcal{E} \otimes \Sigma) = 0$.

4. There exists an integer j, $2 \leq j \leq n-2$ such that $H_2^2(Q, \mathcal{E}) = \cdots = H_j(Q, \mathcal{E} \otimes \Sigma) = \cdots = H_n^{n-2}(Q, \mathcal{E}) = 0$.

Remark 4. This means that for instance a rank two bundle \mathcal{E} on Q_4 splits if and only if $H_2^2(Q, \mathcal{E} \otimes \Sigma) = 0$.

This theorem is the equivalent on Q_n of a result by Kumar, Peterson and Rao on \mathbb{P}^n (see [KPR]).

Let us study more carefully the rank 2 bundles on Q_n ($n > 3$) without inner cohomology (i.e. $H_2^2(\mathcal{E}) = \cdots = H_2^{n-2}(\mathcal{E}) = 0$).

We have the following result (see [Ml1]):

Theorem 5. For an indecomposable rank 2 bundle \mathcal{E} on Q_4 with $H_1^1(\mathcal{E}) \neq 0$ and $H_2^2(\mathcal{E}) = 0$, the only possible minimal monad with A or C different from zero is (up to a twist)

$$0 \rightarrow \mathcal{O} \rightarrow \mathcal{S}'(1) \oplus S''(1) \rightarrow \mathcal{O}(1) \rightarrow 0,$$

and such a monad exists. We denote by $Z_4(1)$ the homology of our monad.

Remark 6. We can say then that there exist only three rank 2 bundles without inner cohomology in Q_4. They are \mathcal{S}, \mathcal{S}' and Z_4 that is associated, by the Serre correspondence, to two disjoint planes, one in Λ and one in Λ'.

Corollary 7. In higher dimension we have:

1. For an indecomposable rank 2 bundle \mathcal{E} on Q_5 with $H_2^2(\mathcal{E}) = 0$ and $H_3^3(\mathcal{E}) = 0$, the only possible minimal monad with A or C not zero is (up to a twist)

$$0 \rightarrow \mathcal{O} \rightarrow \mathcal{S}_5(1) \rightarrow \mathcal{O}(1) \rightarrow 0,$$

and such a monad exists. We denote by $Z_5(1)$ the homology of our monad. Z_5 is a Cayley bundle (see [Ot2] for generalities on Cayley bundles).

2. For $n > 5$, no indecomposable bundle of rank 2 in Q_n exists with $H_2^2(\mathcal{E}) = \cdots = H_n^{n-2}(\mathcal{E}) = 0$.

As a conclusion, the Kumar-Peterson-Rao theorem tells us that in \mathbb{P}^n with $n > 3$ there are no rank 2 bundles without inner cohomology while in Q_n with $n > 3$ there are 4 of them: precisely 3 in Q_4 and 1 in Q_5.

It is surprising that this classification of rank 2 bundle on \mathbb{P}^n and Q_n ($n > 3$) exactly agrees with the classification by Ancona, Peternell and Wisniewski of rank 2 Fano bundles (see [APW]).
Corollary 8. If \mathcal{E} is a rank 2 bundle on \mathbb{P}^n and \mathcal{Q}_n ($n > 3$), then

$$
\mathcal{E} \text{ is a Fano bundle} \iff \mathcal{E} \text{ is without inner cohomology}.
$$

We can also classify rank three bundles without inner cohomology (see [Ml2]):

We call \mathcal{G}_4 and \mathcal{P}_4 the rank three bundles on \mathcal{Q}_4 which are the kernel and the cokernel of the monad (1).

We call \mathcal{G}_5 and \mathcal{P}_5 the rank three bundles on \mathcal{Q}_5 which are the kernel and the cokernel of the monad (2).

Theorem 9. On \mathcal{Q}_n ($n > 3$) the only rank 3 bundles without inner cohomology are the following:

1. for $n = 4$, the ACM bundles $\mathcal{S}' \oplus \mathcal{O}(a)$ and $\mathcal{S}'' \oplus \mathcal{O}(a)$, \mathcal{G}_4, \mathcal{P}_4 and $\mathcal{Z}_4 \oplus \mathcal{O}(a)$.

2. For $n = 5$, \mathcal{G}_5, \mathcal{P}_5 and $\mathcal{Z}_5 \oplus \mathcal{O}(a)$.

References

