
Geometry over fields

ABSTRACT. This notes provide a short summary of the main results contained in Chapter 3 of the book

Geometry: Euclid and Beyond, by Robin Hartshorne.

1. The Cartesian plane over a field

DEFINITION 1.1. A field is a set F with two operations, + and ·, such that

(1) (F,+) is an abelian group; we denote by 0 its identity element.

(2) Setting F∗ = F \ {0}, then (F∗, ·) is an abelian group; we denote by 1 its identity

element.

(3) The distributive law holds:

a(b + c) = ab + ac ∀a, b, c ∈ F.

DEFINITION 1.2. The cartesian plane over the field F, denoted by ΠF is the set F2 of ordered

pairs of elements of F, which are called the points of ΠF. A line is a subset of ΠF defined

by a linear equation ax + by + c = 0, with a, b, c ∈ F such that (a, b) 6= (0, 0). If b 6= 0 the

line can be written as y = mx + q, and m is called the slope of the line. If b = 0, then we

say that the slope of the line is ∞.

PROPOSITION 1.3. For any field F, the cartesian plane ΠF satisfies Hilbert’s axioms (I1), (I2), (I3)

and (P).

PROOF. The usual formula for finding the line by two points in the real cartesian plane

works in any field, so, given two points, we can always find a (unique) line passing by

them, and (I1) holds.
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Since any field F has at least the two distinct elements 0, 1, by putting x = 0, 1 if the line

has the form y = mx + b, or by putting y = 0, 1, if the line is x = c, we obtain two points

on any line, and (I2) holds.

(13) says that there exist three noncollinear points. Indeed, we can always take (0,0), (0,1),

(1,0), and we can see easily that these do not lie on any line.

In the plane ΠF, we see immediately that two lines are parallel if and only if they have the

same slope. So given a line `, let its slope be m. Then the familiar ”point-slope” formula

of analytic geometry shows that there is a unique line of slope m passing through a given

point A. This will be the unique parallel to ` passing by A, so (P) holds in the stronger

form, and ΠF is an affine plane. �

2. Ordered fields and betweenness

DEFINITION 2.1. An ordered field (F, P) is a pair where F is a field, and P ⊂ F - called the

subset of positive elements, satisfies:

(1) If a, b ∈ P, then a + b ∈ P and ab ∈ P.

(2) ∀a ∈ F one and only one of the following holds: a ∈ P, a = 0, −a ∈ P.

Some straightforward properties of an ordered field are listed in the following proposition:

PROPOSITION 2.2. If (F, P) is an ordered field, then

a) 1 ∈ P.

b) F has characteristic zero.

c) For every a 6= 0, a2 ∈ P

PROOF. In any field, 1 6= 0, so either 1 ∈ P or −1 ∈ P. In the second case, by property

(1) we have (−1)(−1) = 1 ∈ P, contradicting property (2).

Take x ∈ P; then the sum x + x + x + · · ·+ x = nx is also in P for any n. In particular, such

a sum is never zero, so F has characteristic 0.

Finally, if a 6= 0 then either a ∈ P or −a ∈ P. If a ∈ P, then a2 ∈ P by property (1). If

−a ∈ P, then (−a)(−a) = a2 ∈ P, again by property (1). �
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REMARK 2.3. It is easy to show that, if (F, P) is an ordered field, then the relation defined

as a > b if and only if a− b ∈ P is a strict total order on F. Clearly an element a ∈ P if and

only if a > 0.

PROPOSITION 2.4 (15.3). If F is a field, and if there is a notion of betweenness in the Cartesian

plane ΠF satisfying Hilbert’s axioms (B1)-(B4), then F is an ordered field. Conversely, if (F, P) is

an ordered field, we can define betweenness in ΠF so as to satisfy (B1)-(B4).

The idea of the proof is the following: if ΠF has a notion of betweenness as above we

define P ⊂ F to be the set

{a ∈ F | (a, 0) is on the same side of (0, 0) as (1, 0) in the line y = 0}.

Conversely, if F is an ordered field, given A = (a1, a2), B = (b1, b2) and C = (c1, c2) then

A ∗ B ∗ C if one of the following holds:

• a1 < b1 < c1;

• a1 > b1 > c1;

• a1 = b1 = c1 and a2 < b2 < c2 or a2 > b2 > c2.

Equivalently A ∗ B ∗ C if and only if there exists λ ∈ F with 0 < λ < 1 such that

λai + (1− λ)ci = bi i = 1, 2.

3. Congruences of segments and angles

Given an ordered field (F, P) and points A = (a1, a2), B = (b1, b2) in ΠF we can define

dist2(A, B) = (a1 − b1)
2 + (a2 − b2)

2,

and thus a relation of congruence of segments:

AB ∼= CD if and only if dist2(A, B) = dist2(C, D).

PROPOSITION 3.1. The relation of congruence of segments just defined satisfies Hilbert’s axioms

(C2)-(C3).

PROOF. The validity of (C2) follows directly from the definition. To prove (C3), as-

sume that we have A ∗ B ∗ C and D ∗ E ∗ F with AB ' DE and BC ' EF. There exist λ,µ

with 0 < λ < 1 and 0 < µ < 1 such that

λai + (1− λ)ci = bi i = 1, 2.
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µdi + (1−µ) fi = ei i = 1, 2.

From the congruence of segments we get

(1− λ)2[(a1 − c1)
2 + (a2 − c2)

2] = (1−µ)2[(d1 − f1)
2 + (d2 − f2)

2]

λ2[(a1 − c1)
2 + (a2 − c2)

2] = µ2[(d1 − f1)
2 + (d2 − f2)

2]

From which we get (
1− λ
λ

)2
=

(
1−µ
µ

)2
.

Let us notice that, if x, y ∈ P and x2 = y2 then x = y. In fact we can write 0 = x2 − y2 =

(x− y)(x + y) and the second factor cannot be zero since it belongs to P. It follows then

that λ = µ, hence

dist2(A, C) = [(a1 − c1)
2 + (a2 − c2)

2] = [(d1 − f1)
2 + (d2 − f2)

2] = dist2(D, F). �

REMARK 3.2. We cannot expect (C1) to hold in the Cartesian plane on every ordered

field: take for instance F = Q, A = (0, 0), B = (1, 0) and the ray r originating at (0, 0) and

passing by (1, 1). The point E on
−→
CD such that OE ' AB has coordinates (

√
2/2,
√

2/2),

so it is not in ΠQ.

Given an angle α, defined by two rays r, r′ with a common point, lying on lines `, `′, of

slopes m, m′, we say thatα is a right angle if either mm′ = −1 or, up to exchange the lines,

(m, m′) = (0, ∞). We say thatα is an acute angle if it is contained in the interior of a right

angle, an obtuse angle if it contains a right angle in its interior.

We define the tangent ofα in the following way:

tanα :=



∞ if α is a right angle

∣∣∣∣ m′ −m
1 + mm′

∣∣∣∣ if α is an acute angle

−
∣∣∣∣ m′ −m
1 + mm′

∣∣∣∣ if α is an obtuse angle

with the conventions ∞−m
1 +∞ ·m =

1
m

m′ −∞
1 +∞ ·m′ = − 1

m′
.
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We say that two anglesα and β are congruent if and only if tanα = tanβ.

PROPOSITION 3.3. The relation of congruence of angles just defined satisfies Hilbert’s axioms

(C4)-(C5).

PROOF. Suppose we are given an angle α and a ray emanating from a point A with

slope m We must find a line passing through A with slope m′ such that

tan(α) = ∓
∣∣∣∣ m−m′

1 + mm′

∣∣∣∣
where the sign is adjusted according to whetherα is acute or obtuse. This gives equations

that are linear in m′, and so can be solved in F and (C4) holds. The validity of (C5) is clear

from the definition. �

3.1. Pytagorean fields.

DEFINITION 3.4. A field F is called Pythagorean if for every a ∈ F there exists b ∈ F such

that b2 = 1 + a2.

EXAMPLE 3.5. The field Q of rational numbers is not Pythagorean (take, for instance, a = 1).

PROPOSITION 3.6 (16.1 - 17.2 - 17.1). If F is a Pythagorean, ordered field, then the relations of

congruence of segments and angles defined above in ΠF satisfy Hilbert’s axioms (C1)-(C6).

In order to prove (C6), we use the fact that it is equivalent to (ERM) - see section 5.

COROLLARY 3.7. If F is a Pythagorean, ordered field, then ΠF is an Hilbert plane satisfying (P).

4. Euclidean fields and planes

DEFINITION 4.1. An ordered field (F, P) is called Euclidean if for every a ∈ P there exists

b ∈ F such that b2 = a.

REMARK 4.2. Clearly, an Euclidean field is also a Pythagorean field. The converse does

not hold, but there are no easy counterexamples.

PROPOSITION 4.3 (16.2). If F is an ordered field and ΠF is the Cartesian plane over F then the

following are equivalent:

(1) F is Euclidean;

(2) ΠF satisfies the circle-circle intersection property (E);
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(3) ΠF satisfies the line-circle intersection property (LCI) (see Proposition 11.6).

DEFINITION 4.4. An Euclidean plane is an Hilbert plane satisfying (P) and (E).

COROLLARY 4.5. If F is an ordered Euclidean field and ΠF is the Cartesian plane over F then ΠF

is an Euclidean plane.

THEOREM 4.6 (10.4 - 11.8 - 12.1 - 12.3 - 12.4 - 12.5). Euclid’s propositions contained in Books

I-IV are valid in an Euclidean plane.

5. Archimedean fields

DEFINITION 5.1. An ordered field F is called Archimedean if, for every a ∈ F there exists

n ∈ N such that n · 1 > a.

DEFINITION 5.2. An Hilbert plane Π satisfies (A) if, given two segments AB and CD, there

exists n ∈ N such that nAB > CD where nAB is a segment obtained by adding n copies of

the segment AB.

It can be shown that

PROPOSITION 5.3 (15.4 -15.5). An ordered field is Archimedean if and only if ΠF, the cartesian

plane over F, satisfies (A). Moreover, in this case, F is isomorphic (as an ordered field) to a subfield

of R.

EXAMPLE 5.4. Let us give an example of a non-Archimedean field. Set F := R(t), the quotient

field of R[t], the ring of polynomials in one variable with real coefficients. An elementϕ of F can

be written as a quotient of two polynomials f (t), g(t), with g(t) 6≡ 0; considering it as a function

ϕ(t), defined over R minus the zeroes of g, we can define P ⊂ F as follows:

ϕ ∈ P ⇐⇒ ∃x0 ∈ R t.c. ϕ(t) > 0 ∀t > x0.

It is straightforward to verify that P satisfies properties (1) and (2) in Definition 2.1, so it defines

an order in F.

Tale nowϕ(t) = t; it is clear that t− n ∈ P for every n ∈ N, so t > n ∀n ∈ N, hence F is not

Archimedean.
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6. Rigid motions and SAS

DEFINITION 6.1. Let Π be a geometry consisting of the undefined notions of points, lines,

betweenness and congruence of line segments and angles, which may or may not satisfy

various of Hilbert’s axioms. A rigid motion of Π is a bijectionϕ : Π→ Π such that:

(1) ϕ sends lines into lines.

(2) ϕ preserves betweenness of collinear points.

(3) For any two points A, B we have AB 'ϕ(A)ϕ(B).

(4) For any angleα, we haveα 'ϕ(α).

It is clear that the composition of two rigid motions is again a rigid motion, and it is not

difficult to show that the inverse of a rigid motion is again a rigid motion, hence the set of

rigid motions of Π is a group with respect to composition.

Let Π be a geometry consisting of the undefined notions of point, line, betweenness, and

congruence of line segments and angles. Then Π satisfies (ERM) if

(1) For any two points A, A′ ∈ Π, there is a rigid motionϕ s.t. ϕ(A) = A′.

(2) For any three points O, A, A′, there is a rigid motionϕ s.t. ϕ(O) = O andϕ sends

the ray
−→
OA to the ray

−→
OA′.

(3) For any line `, there is a rigid motion ϕ s.t. ϕ(P) = P for all P ∈ ` and ϕ inter-

changes the two sides of `.

It can be shown that

PROPOSITION 6.2 (17.1, 17.4). Let Π be a geometry satisfying (I1)-(I3), (B1)-(B4), (C1)-(C5).

Then Π satisfies (C6) if and only if it satisfies (ERM).

PROOF. We saw in the classroom this proof, which can be found on the textbook, com-

bining the proofs of Propositions 17.1 and 17.4. �
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