Geometry over fields

ABSTRACT. This notes provide a short summary of the main results contained in Chapter 3 of the book

Geometry: Euclid and Beyond, by Robin Hartshorne.

1. The Cartesian plane over a field
DEFINITION 1.1. A field is a set F with two operations, 4+ and -, such that

(1) (F, +) is an abelian group; we denote by 0 its identity element.
(2) Setting F* = F\ {0}, then (F*,-) is an abelian group; we denote by 1 its identity
element.

(3) The distributive law holds:
a(b+c) =ab+ac Va,b,c € F.

DEFINITION 1.2. The cartesian plane over the field F, denoted by ITr is the set F2 of ordered
pairs of elements of F, which are called the points of TTr. A line is a subset of TTr defined
by a linear equation ax + by + ¢ = 0, with a, b, ¢ € F such that (a,b) # (0,0). If b # 0 the
line can be written as y = mx + g, and m is called the slope of the line. If b = 0, then we

say that the slope of the line is oco.

PROPOSITION 1.3. For any field F, the cartesian plane T satisfies Hilbert’s axioms (I1), (12), (I3)
and (P).

PROOF. The usual formula for finding the line by two points in the real cartesian plane
works in any field, so, given two points, we can always find a (unique) line passing by

them, and (I1) holds.
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Since any field F has at least the two distinct elements 0, 1, by putting x = 0, 1 if the line
has the form y = mx + b, or by putting y = 0, 1, if the line is x = ¢, we obtain two points
on any line, and (I2) holds.

(13) says that there exist three noncollinear points. Indeed, we can always take (0,0), (0,1),
(1,0), and we can see easily that these do not lie on any line.

In the plane TTr, we see immediately that two lines are parallel if and only if they have the
same slope. So given a line /, let its slope be m. Then the familiar “"point-slope” formula
of analytic geometry shows that there is a unique line of slope m passing through a given
point A. This will be the unique parallel to ¢ passing by A, so (P) holds in the stronger

form, and TTf is an affine plane. O

2. Ordered fields and betweenness

DEFINITION 2.1. An ordered field (F, P) is a pair where F is a field, and P C F - called the

subset of positive elements, satisfies:

(1) Ifa,b € P,thena+b € P and ab € P.
(2) Va € F one and only one of the following holds: a€ P, a=0, —acP.

Some straightforward properties of an ordered field are listed in the following proposition:

PROPOSITION 2.2. If (F, P) is an ordered field, then

a) 1eP.
b) F has characteristic zero.

c) Foreverya # 0,a*> € P

PROOF. In any field, 1 # 0, so either 1 € P or —1 € P. In the second case, by property
(1) we have (—1)(—1) = 1 € P, contradicting property (2).

Take x € P; then the sum x +x + x + - - - +x = nxis also in P for any n. In particular, such

a sum is never zero, so F has characteristic 0.

Finally, if 2 # 0 then eithera € P or —a € P. If a € P, then a®> € P by property (1). If
—a € P, then (—a)(—a) = a® € P, again by property (1). O
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REMARK 2.3. It is easy to show that, if (F, P) is an ordered field, then the relation defined
asa > bifand only if a — b € P is a strict total order on F. Clearly an element a € P if and

only ifa > 0.

PROPOSITION 2.4 (15.3). If F is a field, and if there is a notion of betweenness in the Cartesian
plane T satisfying Hilbert’s axioms (B1)-(B4), then F is an ordered field. Conversely, if (F, P) is
an ordered field, we can define betweenness in TTg so as to satisfy (B1)-(B4).

The idea of the proof is the following: if TTr has a notion of betweenness as above we

define P C F to be the set

{a € F | (a,0) is on the same side of (0,0) as (1,0) in the line y = 0}.
Conversely, if F is an ordered field, given A = (a1,a,), B = (b1,by) and C = (c1, ¢2) then
A * B x C if one of the following holds:

e a1 < by <cy;

® a1 > Dby >cq;

e g1 =by=ciand ay, < by < cpora, > by > cy.
Equivalently A x B x C if and only if there exists A € F with 0 < A < 1 such that

Aa;+ (1 —A)c; = b; i=1,2.
3. Congruences of segments and angles
Given an ordered field (F, P) and points A = (a3,4;), B = (b1, by) in TTp we can define
dist?(A, B) = (a1 — b1)?> + (ay — by)?,
and thus a relation of congruence of segments:
AB=CD ifandonlyif dist>(A,B) = dist*(C,D).

PROPOSITION 3.1. The relation of congruence of segments just defined satisfies Hilbert's axioms
(C2)-(C3).

PROOF. The validity of (C2) follows directly from the definition. To prove (C3), as-
sume that we have A * B+ C and D * E  F with AB ~ DE and BC ~ EF. There exist A, u
with0 < A < 1and 0 < p < 1 such that

Aai+(1—/\)ci:bi i=1,2.



pdi + (1 —p)fi =e; i=1,2.

From the congruence of segments we get
(1= A)?[(a1 = c1)* + (a2 = 2)’] = (1 = w)*[(dr = 1) + (d2 = f2)?]

A?[(ay —c1)* + (a2 — 2)*] = p?[(d1 — f1)* + (d2 — f2)?]

From which we get
1-A\>  [(1-p\?
A N u '

Let us notice that, if x, y € P and x> = y? then x = y. In fact we can write 0 = x? — y? =
(x —y)(x + y) and the second factor cannot be zero since it belongs to P. It follows then

that A = p, hence
diStZ(A, C) = [(LZ1 — C1)2 + (ﬂz - Cz)z] = [(dl - f1)2 + (dz - fz)z] = diStZ(D, F). ]

REMARK 3.2. We cannot expect (C1) to hold in the Cartesian plane on every ordered
field: take for instance F = Q, A = (0,0), B = (1,0) and the ray r originating at (0,0) and
passing by (1,1). The point E on CD such that OF ~ AB has coordinates (V2/2,4/2/2),

so it is not in ﬂ@.

Given an angle «, defined by two rays 7, ' with a common point, lying on lines ¢, ¢/, of
slopes m, m’, we say that « is a right angle if either mm’ = —1 or, up to exchange the lines,
(m,m") = (0, 00). We say that « is an acute angle if it is contained in the interior of a right
angle, an obtuse angle if it contains a right angle in its interior.

We define the tangent of « in the following way:

00 if @ is a right angle
/
—_ if « is an acute angle
= | — i
tana : Jp— g

m —-m| .. .
— |———| if «ais an obtuse angle
1+ mm!
with the conventions
0o —m 1 m' — oo 1

1+00-m m 14+oo-m'  m"
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We say that two angles o and 3 are congruent if and only if tan & = tan 3.

PROPOSITION 3.3. The relation of congruence of angles just defined satisfies Hilbert's axioms
(C4)-(C5).

PROOF. Suppose we are given an angle o and a ray emanating from a point A with
slope m We must find a line passing through A with slope m’ such that
m—m'

tan(e) = F |30

where the sign is adjusted according to whether « is acute or obtuse. This gives equations
that are linear in 7', and so can be solved in F and (C4) holds. The validity of (C5) is clear

from the definition. O

3.1. Pytagorean fields.

DEFINITION 3.4. A field F is called Pythagorean if for every a € F there exists b € F such
that b? = 1+ a?.

EXAMPLE 3.5. The field Q of rational numbers is not Pythagorean (take, for instance, a = 1).

PROPOSITION 3.6 (16.1 - 17.2 - 17.1). If F is a Pythagorean, ordered field, then the relations of
congruence of segments and angles defined above in T satisfy Hilbert’s axioms (C1)-(C6).

In order to prove (C6), we use the fact that it is equivalent to (ERM) - see section 5.
COROLLARY 3.7. If F is a Pythagorean, ordered field, then T is an Hilbert plane satisfying (P).

4. Euclidean fields and planes

DEFINITION 4.1. An ordered field (F, P) is called Euclidean if for every a € P there exists
b € F such that b? = a.

REMARK 4.2. Clearly, an Euclidean field is also a Pythagorean field. The converse does

not hold, but there are no easy counterexamples.

PROPOSITION 4.3 (16.2). If F is an ordered field and TI is the Cartesian plane over F then the

ollowing are equivalent:
8 q
(1) F is Euclidean;

(2) T satisfies the circle-circle intersection property (E);



(3) Tr satisfies the line-circle intersection property (LCI) (see Proposition 11.6).
DEFINITION 4.4. An Euclidean plane is an Hilbert plane satisfying (P) and (E).

COROLLARY 4.5. If F is an ordered Euclidean field and T is the Cartesian plane over F then TTp

is an Euclidean plane.

THEOREM 4.6 (10.4 - 11.8 - 12.1 - 12.3 - 12.4 - 12.5). Euclid’s propositions contained in Books

I-1V are valid in an Euclidean plane.

5. Archimedean fields

DEFINITION 5.1. An ordered field F is called Archimedean if, for every a € F there exists
n € Nsuchthatn-1 > a.

DEFINITION 5.2. An Hilbert plane TT satisfies (A) if, given two segments AB and CD, there
exists n € N such that nAB > CD where nAB is a segment obtained by adding 1 copies of
the segment AB.

It can be shown that

PROPOSITION 5.3 (15.4 -15.5). An ordered field is Archimedean if and only if T1f, the cartesian
plane over F, satisfies (A). Moreover, in this case, F is isomorphic (as an ordered field) to a subfield

of R.

EXAMPLE 54. Let us give an example of a non-Archimedean field. Set F := R(t), the quotient
field of R[t], the ring of polynomials in one variable with real coefficients. An element @ of F can
be written as a quotient of two polynomials f(t), g(t), with g(t) # O; considering it as a function
@(t), defined over R minus the zeroes of g, we can define P C F as follows:

pelP << dxpeR tc @(t)>0 Vt>x

It is straightforward to verify that P satisfies properties (1) and (2) in Definition 2.1, so it defines
an order in F.
Tale now @(t) = t; it is clear that t —n € P for everyn € N,sot > n Vn € N, hence F is not

Archimedean.
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6. Rigid motions and SAS

DEFINITION 6.1. Let IT be a geometry consisting of the undefined notions of points, lines,
betweenness and congruence of line segments and angles, which may or may not satisfy

various of Hilbert’s axioms. A rigid motion of T is a bijection ¢ : TT — TT such that:

(1) @ sends lines into lines.
(2) @ preserves betweenness of collinear points.
(3) For any two points A, B we have AB ~ ¢(A)¢(B).

(4) For any angle o, we have o ~ ¢ ().

It is clear that the composition of two rigid motions is again a rigid motion, and it is not
difficult to show that the inverse of a rigid motion is again a rigid motion, hence the set of

rigid motions of 1T is a group with respect to composition.

Let TT be a geometry consisting of the undefined notions of point, line, betweenness, and

congruence of line segments and angles. Then TT satisfies (ERM) if

(1) For any two points A, A’ € T1, there is a rigid motion @ s.t. p(A) = A’.
y P g

(2) For any three points O, A, A’, there is a rigid motion ¢ s.t. ¢(O) = O and ¢ sends
the ray OA to the ray OA'.
(3) For any line /, there is a rigid motion ¢ s.t. @(P) =P for all P € ¢ and ¢ inter-

changes the two sides of /.

It can be shown that

PROPOSITION 6.2 (17.1, 17.4). Let TT be a geometry satisfying (I11)-(I3), (B1)-(B4), (C1)-(C5).
Then T1 satisfies (C6) if and only if it satisfies (ERM).

PROOF. We saw in the classroom this proof, which can be found on the textbook, com-

bining the proofs of Propositions 17.1 and 17.4. O
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