Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dvnkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Fano manifolds whose elementary contractions are smooth \mathbb{P}^1 -fibrations

Gianluca Occhetta

with R. Muñoz, L.E. Solá Conde, K. Watanabe and J. Wiśniewski

Madrid, January 2014

Gianluca Occhetta

Motivation

Fano bundles

The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneou manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Motivation

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Gianluca Occhetta

Fano bundles

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Motivation

Fano bundles

The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneou manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Gianluca Occhetta

Motivation

Fano bundles

The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Fano bundles

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

A vector bundle \mathcal{E} on a smooth complex projective variety *X* is a Fano bundle iff $\mathbb{P}_X(\mathcal{E})$ is a Fano manifold.

Gianluca Occhetta

Motivation

Fano bundles

The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Fano bundles

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

A vector bundle \mathcal{E} on a smooth complex projective variety *X* is a Fano bundle iff $\mathbb{P}_X(\mathcal{E})$ is a Fano manifold.

If \mathcal{E} is a Fano bundle on X then X is a Fano manifold.

Gianluca Occhetta

Motivation

Fano bundles

The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Fano bundles

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

A vector bundle \mathcal{E} on a smooth complex projective variety *X* is a Fano bundle iff $\mathbb{P}_X(\mathcal{E})$ is a Fano manifold.

If \mathcal{E} is a Fano bundle on *X* then *X* is a Fano manifold.

Fano bundles of rank 2 on projective spaces and quadrics have been classified in the '90s (Ancona, Peternell, Sols, Szurek, Wiśniewski).

Gianluca Occhetta

Motivation

Fano bundles

The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Fano bundles

▲□▶▲□▶▲□▶▲□▶ □ のQで

A vector bundle \mathcal{E} on a smooth complex projective variety *X* is a Fano bundle iff $\mathbb{P}_X(\mathcal{E})$ is a Fano manifold.

If \mathcal{E} is a Fano bundle on X then X is a Fano manifold.

Fano bundles of rank 2 on projective spaces and quadrics have been classified in the '90s (Ancona, Peternell, Sols, Szurek, Wiśniewski).

Generalization: Classification of Fano bundles of rank 2 on (Fano) manifolds with $b_2 = b_4 = 1$ (Muñoz, _ , Solá Conde, 2012).

Gianluca Occhetta

Motivation

Fano bundles

The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Fano bundles

A vector bundle \mathcal{E} on a smooth complex projective variety *X* is a Fano bundle iff $\mathbb{P}_X(\mathcal{E})$ is a Fano manifold.

If \mathcal{E} is a Fano bundle on X then X is a Fano manifold.

Fano bundles of rank 2 on projective spaces and quadrics have been classified in the '90s (Ancona, Peternell, Sols, Szurek, Wiśniewski).

Generalization: Classification of Fano bundles of rank 2 on (Fano) manifolds with $b_2 = b_4 = 1$ (Muñoz, _ , Solá Conde, 2012).

Later the assumption $b_4 = 1$ was removed by Watanabe.

Gianluca Occhetta

Motivation

Fano bundles

The problem

Lie Algebras

Cartan decomposition Cartan matrix Dvnkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Varieties with two \mathbb{P}^1 -bundle structures

As a special case we have the classification of Fano manifolds of Picard number two with two \mathbb{P}^1 -bundle structures.

Gianluca Occhetta

Motivation

Fano bundles

The problem

Lie Algebras

Cartan decomposition Cartan matrix Dvnkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Varieties with two \mathbb{P}^1 -bundle structures

As a special case we have the classification of Fano manifolds of Picard number two with two \mathbb{P}^1 -bundle structures.

X	Y	Bundle
\mathbb{P}^1	\mathbb{P}^1	$\mathcal{O}\oplus\mathcal{O}$
\mathbb{P}^2	\mathbb{P}^2	$T_{\mathbb{P}^2}$
\mathbb{P}^3	\mathbb{Q}^3	\mathcal{N}
\mathbb{Q}^3	\mathbb{P}^3	S
\mathbb{Q}^5	$K(G_2)$	\mathcal{C}
$K(G_2)$	\mathbb{Q}^5	Q

Gianluca Occhetta

Motivation

Fano bundles

The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Varieties with two \mathbb{P}^1 -bundle structures

As a special case we have the classification of Fano manifolds of Picard number two with two \mathbb{P}^1 -bundle structures.

X	Y	Bundle
\mathbb{P}^1	\mathbb{P}^1	$\mathcal{O}\oplus\mathcal{O}$
\mathbb{P}^2	\mathbb{P}^2	$T_{\mathbb{P}^2}$
\mathbb{P}^3	\mathbb{Q}^3	\mathcal{N}
\mathbb{Q}^3	\mathbb{P}^3	S
\mathbb{Q}^5	$K(G_2)$	\mathcal{C}
$K(G_2)$	\mathbb{Q}^5	Q

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

• \mathcal{N} Null-correlation bundle;

Gianluca Occhetta

Motivation

Fano bundles

The problem

Lie Algebras

- Cartan decomposition Cartan matrix Dynkin diagrams
- Rational homogeneous manifolds
- RH manifolds Flag manifolds
- Homogeneous
- models
- Fibrations and reflections
- Dynkin diagram

Bott-Samelson varieties

- Construction
- Properties
- Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Varieties with two \mathbb{P}^1 -bundle structures

As a special case we have the classification of Fano manifolds of Picard number two with two \mathbb{P}^1 -bundle structures.

X	Y	Bundle
\mathbb{P}^1	\mathbb{P}^1	$\mathcal{O}\oplus\mathcal{O}$
\mathbb{P}^2	\mathbb{P}^2	$T_{\mathbb{P}^2}$
\mathbb{P}^3	\mathbb{Q}^3	\mathcal{N}
\mathbb{Q}^3	\mathbb{P}^3	S
\mathbb{Q}^5	$K(G_2)$	\mathcal{C}
$K(G_2)$	\mathbb{Q}^5	Q

- \mathcal{N} Null-correlation bundle;
- *S* spinor bundle;

Gianluca Occhetta

Motivation

Fano bundles

The problem

Lie Algebras

- Cartan decomposition Cartan matrix Dynkin diagrams
- Rational homogeneous manifolds
- RH manifolds Flag manifolds
- Homogeneous
- Fibrations an
- Dynkin diagram

Bott-Samelson varieties

- Construction
- Properties
- Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Varieties with two \mathbb{P}^1 -bundle structures

As a special case we have the classification of Fano manifolds of Picard number two with two \mathbb{P}^1 -bundle structures.

X	Y	Bundle
\mathbb{P}^1	\mathbb{P}^1	$\mathcal{O}\oplus\mathcal{O}$
\mathbb{P}^2	\mathbb{P}^2	$T_{\mathbb{P}^2}$
\mathbb{P}^3	\mathbb{Q}^3	\mathcal{N}
\mathbb{Q}^3	\mathbb{P}^3	S
\mathbb{Q}^5	$K(G_2)$	\mathcal{C}
$K(G_2)$	\mathbb{Q}^5	Q

- \mathcal{N} Null-correlation bundle;
- *S* spinor bundle;
- C Cayley bundle;

Gianluca Occhetta

Motivation

Fano bundles

The problem

Lie Algebras

- Cartan decomposition Cartan matrix Dynkin diagrams
- Rational homogeneous manifolds
- RH manifolds Flag manifolds
- Homogeneous
- models Fibrations and
- reflections
- Dynkin diagram
- Bott-Samelson varieties
- Construction
- Properties
- Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Varieties with two \mathbb{P}^1 -bundle structures

As a special case we have the classification of Fano manifolds of Picard number two with two \mathbb{P}^1 -bundle structures.

X	Y	Bundle
\mathbb{P}^1	\mathbb{P}^1	$\mathcal{O}\oplus\mathcal{O}$
\mathbb{P}^2	\mathbb{P}^2	$T_{\mathbb{P}^2}$
\mathbb{P}^3	\mathbb{Q}^3	\mathcal{N}
\mathbb{Q}^3	\mathbb{P}^3	S
\mathbb{Q}^5	$K(G_2)$	\mathcal{C}
$K(G_2)$	\mathbb{Q}^5	Q

- \mathcal{N} Null-correlation bundle;
- *S* spinor bundle;
- C Cayley bundle;
- Q universal quotient bundle.

Gianluca Occhetta

Motivation

Fano bundles

The problem

Lie Algebras

Cartan decomposition Cartan matrix Dvnkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Varieties with two \mathbb{P}^1 -bundle structures A different perspective

Gianluca Occhetta

Motivation

Fano bundles

The problem

Lie Algebras

Cartan decomposition Cartan matrix Dvnkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Varieties with two \mathbb{P}^1 -bundle structures A different perspective

Theorem

A Fano manifold with Picard number 2 and two \mathbb{P}^1 -bundle structures is isomorphic to a complete flag manifold of type $A_1 \times A_1, A_2, B_2$ or G_2 .

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Gianluca Occhetta

Motivation

Fano bundles

The problem

Lie Algebras

Cartan decomposition Cartan matrix Dvnkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Generalization

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

 Classify Fano manifolds whose elementary contractions are ^{¬1}-bundles (o ℙ¹-fibrations).

Gianluca Occhetta

Motivation

Fano bundles

The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Generalization

- Classify Fano manifolds whose elementary contractions are \mathbb{P}^1 -bundles (o \mathbb{P}^1 -fibrations).
- Understand the relation between ℙ¹-fibrations and homogeneity (if any).

Gianluca Occhetta

Motivation

Fano bundles

The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

- Construction
- Properties
- Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Generalization

▲□▶▲□▶▲□▶▲□▶ □ のQで

- Classify Fano manifolds whose elementary contractions are \mathbb{P}^1 -bundles (o \mathbb{P}^1 -fibrations).
- Understand the relation between ℙ¹-fibrations and homogeneity (if any).

Theorem

X Fano manifold whose elementary contractions are smooth \mathbb{P}^1 -fibrations such that *X* is not a product. If dim $X \neq 24$ then *X* is a complete flag manifold.

Gianluca Occhetta

Motivation

Fano bundles

The problem

Lie Algebras

Cartan decomposition Cartan matrix Dvnkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Lie algebras and complete flags

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Lie Algebras Cartan decomposition

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

G semisimple Lie group, \mathfrak{g} associated Lie algebra,

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dvnkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Lie Algebras Cartan decomposition

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

G semisimple Lie group, \mathfrak{g} associated Lie algebra,

 $\mathfrak{h}\subset\mathfrak{g}$ Cartan subalgebra (maximal abelian subalgebra).

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Lie Algebras Cartan decomposition

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

G semisimple Lie group, \mathfrak{g} associated Lie algebra,

 $\mathfrak{h}\subset\mathfrak{g}$ Cartan subalgebra (maximal abelian subalgebra).

The action of \mathfrak{h} on \mathfrak{g} defines an eigenspace decomposition, called Cartan decomposition of \mathfrak{g} :

$$\mathfrak{g}=\mathfrak{h}\oplus igoplus_{lpha\in\mathfrak{h}^ee\setminus\{0\}}\mathfrak{g}_lpha.$$

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Lie Algebras Cartan decomposition

▲□▶▲□▶▲□▶▲□▶ □ のQで

G semisimple Lie group, $\mathfrak g$ associated Lie algebra,

 $\mathfrak{h}\subset\mathfrak{g}$ Cartan subalgebra (maximal abelian subalgebra).

The action of \mathfrak{h} on \mathfrak{g} defines an eigenspace decomposition, called Cartan decomposition of \mathfrak{g} :

$$\mathfrak{g}=\mathfrak{h}\oplus igoplus_{lpha\in\mathfrak{h}^ee\setminus\{0\}}\mathfrak{g}_lpha.$$

The spaces \mathfrak{g}_{α} are defined by

$$\mathfrak{g}_{\alpha} = \left\{ g \in \mathfrak{g} \, | \, [h,g] = \alpha(h)g, \text{ for every } h \in \mathfrak{h} \right\},$$

and the elements $\alpha \in \mathfrak{h}^{\vee} \setminus \{0\}$ such that $\mathfrak{g}_{\alpha} \neq 0$ are called roots of \mathfrak{g} . The (finite) set Φ of such elements is called root system of \mathfrak{g} .

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Lie Algebras Cartan decomposition

G semisimple Lie group, $\mathfrak g$ associated Lie algebra,

 $\mathfrak{h}\subset\mathfrak{g}$ Cartan subalgebra (maximal abelian subalgebra).

The action of \mathfrak{h} on \mathfrak{g} defines an eigenspace decomposition, called Cartan decomposition of \mathfrak{g} :

$$\mathfrak{g}=\mathfrak{h}\oplus igoplus_{lpha\in\mathfrak{h}^ee\setminus\{0\}}\mathfrak{g}_lpha.$$

The spaces \mathfrak{g}_{α} are defined by

$$\mathfrak{g}_{\alpha} = \left\{ g \in \mathfrak{g} \, | \, [h,g] = \alpha(h)g, \text{ for every } h \in \mathfrak{h} \right\},$$

and the elements $\alpha \in \mathfrak{h}^{\vee} \setminus \{0\}$ such that $\mathfrak{g}_{\alpha} \neq 0$ are called roots of \mathfrak{g} . The (finite) set Φ of such elements is called root system of \mathfrak{g} .

A basis of \mathfrak{h}^{\vee} formed by elements of Φ such that the coordinates of every element of Φ are integers, all ≥ 0 or all ≤ 0 is a system of simple roots of \mathfrak{g} .

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Lie Algebras Weyl group

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

On the space \mathfrak{h}^{\vee} there is a symmetric bilinear form κ coming from the Killing form of \mathfrak{g} ; this form, restricted to the real vector space *E* generated by the roots is positive definite.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Lie Algebras Weyl group

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

On the space \mathfrak{h}^{\vee} there is a symmetric bilinear form κ coming from the Killing form of \mathfrak{g} ; this form, restricted to the real vector space *E* generated by the roots is positive definite.

The root system Φ is invariant with respect to the isometries of (E, κ) defined by:

$$\sigma_{\alpha}(x) = x - \langle x, \alpha \rangle \alpha$$
, where $\langle x, \alpha \rangle := 2 \frac{\kappa(x, \alpha)}{\kappa(\alpha, \alpha)}$.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Lie Algebras Weyl group

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

On the space \mathfrak{h}^{\vee} there is a symmetric bilinear form κ coming from the Killing form of \mathfrak{g} ; this form, restricted to the real vector space *E* generated by the roots is positive definite.

The root system Φ is invariant with respect to the isometries of (E, κ) defined by:

$$\sigma_{\alpha}(x) = x - \langle x, \alpha \rangle \alpha$$
, where $\langle x, \alpha \rangle := 2 \frac{\kappa(x, \alpha)}{\kappa(\alpha, \alpha)}$.

which are the reflections with respect to the roots.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson

varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Lie Algebras Weyl group

▲□▶▲□▶▲□▶▲□▶ □ のQで

On the space \mathfrak{h}^{\vee} there is a symmetric bilinear form κ coming from the Killing form of \mathfrak{g} ; this form, restricted to the real vector space *E* generated by the roots is positive definite.

The root system Φ is invariant with respect to the isometries of (E, κ) defined by:

$$\sigma_{\alpha}(x) = x - \langle x, \alpha \rangle \alpha$$
, where $\langle x, \alpha \rangle := 2 \frac{\kappa(x, \alpha)}{\kappa(\alpha, \alpha)}$.

which are the reflections with respect to the roots.

 $W \subset Gl(E)$ generated by $\{\sigma_{\alpha}, \alpha \in \Phi\}$ is the Weyl group of \mathfrak{g} .

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition
Cartan matrix

Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Lie Algebras Cartan matrix

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Given a set of simple roots $\{\alpha_1, \ldots, \alpha_n\}$ of \mathfrak{g} , the Cartan matrix di \mathfrak{g} is the matrix whose entries are the integers $\langle \alpha_i, \alpha_i \rangle$.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Lie Algebras Cartan matrix

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Given a set of simple roots $\{\alpha_1, \ldots, \alpha_n\}$ of \mathfrak{g} , the Cartan matrix di \mathfrak{g} is the matrix whose entries are the integers $\langle \alpha_i, \alpha_j \rangle$.

A and all its principal minors are positive definite and moreover

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational

manifolds RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Lie Algebras Cartan matrix

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Given a set of simple roots $\{\alpha_1, \ldots, \alpha_n\}$ of \mathfrak{g} , the Cartan matrix di \mathfrak{g} is the matrix whose entries are the integers $\langle \alpha_i, \alpha_j \rangle$.

A and all its principal minors are positive definite and moreover

• $a_{ii} = 2$ for every *i*,

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix

Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Lie Algebras Cartan matrix

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Given a set of simple roots $\{\alpha_1, \ldots, \alpha_n\}$ of \mathfrak{g} , the Cartan matrix di \mathfrak{g} is the matrix whose entries are the integers $\langle \alpha_i, \alpha_j \rangle$.

A and all its principal minors are positive definite and moreover

• $a_{ii} = 2$ for every *i*,

•
$$a_{ij} = 0$$
 iff $a_{ji} = 0$,

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix

Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Lie Algebras Cartan matrix

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Given a set of simple roots $\{\alpha_1, \ldots, \alpha_n\}$ of \mathfrak{g} , the Cartan matrix di \mathfrak{g} is the matrix whose entries are the integers $\langle \alpha_i, \alpha_j \rangle$.

A and all its principal minors are positive definite and moreover

• $a_{ii} = 2$ for every *i*,

•
$$a_{ij} = 0$$
 iff $a_{ji} = 0$,

• if
$$a_{ij} \neq 0$$
, $i \neq j$, then $a_{ij}, a_{ji} \in \mathbb{Z}^-$ and $a_{ij}a_{ji} = 1, 2$ or 3.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix

Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Lie Algebras Cartan matrix

▲□▶▲□▶▲□▶▲□▶ □ のQで

Given a set of simple roots $\{\alpha_1, \ldots, \alpha_n\}$ of \mathfrak{g} , the Cartan matrix di \mathfrak{g} is the matrix whose entries are the integers $\langle \alpha_i, \alpha_j \rangle$.

A and all its principal minors are positive definite and moreover

• $a_{ii} = 2$ for every *i*,

•
$$a_{ij} = 0$$
 iff $a_{ji} = 0$,

• if $a_{ij} \neq 0$, $i \neq j$, then $a_{ij}, a_{ji} \in \mathbb{Z}^-$ and $a_{ij}a_{ji} = 1, 2$ or 3.

In particular the possible 2×2 principal minors are (up to transposition)

$$\left(\begin{array}{cc}2&0\\0&2\end{array}\right)\quad \left(\begin{array}{cc}2&-1\\-1&2\end{array}\right)\quad \left(\begin{array}{cc}2&-1\\-2&2\end{array}\right)\quad \left(\begin{array}{cc}2&-1\\-3&2\end{array}\right)$$

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition
Cartan matrix

Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Lie Algebras Dynkin diagrams

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Set $D = \{1, ..., n\}$, where *n* is the number of simple roots of g. With the matrix *A* is associated a finite Dynkin diagram D, in the following way

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Lie Algebras Dynkin diagrams

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Set $D = \{1, ..., n\}$, where *n* is the number of simple roots of \mathfrak{g} . With the matrix *A* is associated a finite Dynkin diagram \mathcal{D} , in the following way

• \mathcal{D} is a graph whose set of nodes is D,

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Lie Algebras Dynkin diagrams

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Set $D = \{1, ..., n\}$, where *n* is the number of simple roots of \mathfrak{g} . With the matrix *A* is associated a finite Dynkin diagram \mathcal{D} , in the following way

• \mathcal{D} is a graph whose set of nodes is D,

• the nodes *i* and *j* are joined by $a_{ij}a_{ji}$ edges,

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Lie Algebras Dynkin diagrams

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Set $D = \{1, ..., n\}$, where *n* is the number of simple roots of \mathfrak{g} . With the matrix *A* is associated a finite Dynkin diagram \mathcal{D} , in the following way

- \mathcal{D} is a graph whose set of nodes is D,
- the nodes *i* and *j* are joined by $a_{ij}a_{ji}$ edges,
- if $|a_{ij}| > |a_{ji}|$ the edge is directed towards the node *i*.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Lie Algebras Dynkin diagrams

▲□▶▲□▶▲□▶▲□▶ □ のQで

Set $D = \{1, ..., n\}$, where *n* is the number of simple roots of g. With the matrix *A* is associated a finite Dynkin diagram D, in the following way

- \mathcal{D} is a graph whose set of nodes is D,
- the nodes *i* and *j* are joined by $a_{ij}a_{ji}$ edges,
- if $|a_{ij}| > |a_{ji}|$ the edge is directed towards the node *i*.

 $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 & -1 \\ -2 & 2 \end{pmatrix} \quad \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}$

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix

Dynkin diagrams

- Rational homogeneous manifolds
- RH manifolds Flag manifolds
- Homogeneous
- models Fibrations and
- reflections Dynkin diagram
- Bott-Samelson
- Construction
- Properties
- Uniqueness

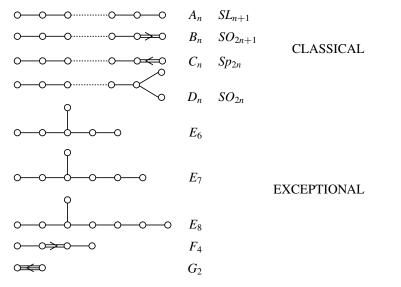
Campana-Peternell Conjecture

- Positivity of the tangent bundle
- Campana-Peternell Conjecture

Dynkin diagrams

of (semi)simple Lie algebras

э



Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Rational homogeneous manifolds

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Subgroups $P \subset G$ s.t. G/P is a projective variety are called parabolic.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Rational homogeneous manifolds

Subgroups $P \subset G$ s.t. G/P is a projective variety are called parabolic.

A parabolic subgroup is determined by the choice of a set of simple roots, i.e. by a subset $I \subset D$, and the corresponding variety is denoted by marking the nodes of I.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Rational homogeneous manifolds

Subgroups $P \subset G$ s.t. G/P is a projective variety are called parabolic.

A parabolic subgroup is determined by the choice of a set of simple roots, i.e. by a subset $I \subset D$, and the corresponding variety is denoted by marking the nodes of I.

Example

Set G = SL(4)

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

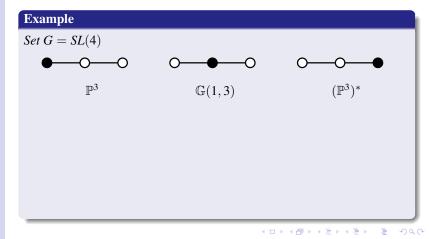
Positivity of the tangent bundle

Campana-Peternell Conjecture

Rational homogeneous manifolds

Subgroups $P \subset G$ s.t. G/P is a projective variety are called parabolic.

A parabolic subgroup is determined by the choice of a set of simple roots, i.e. by a subset $I \subset D$, and the corresponding variety is denoted by marking the nodes of I.



Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

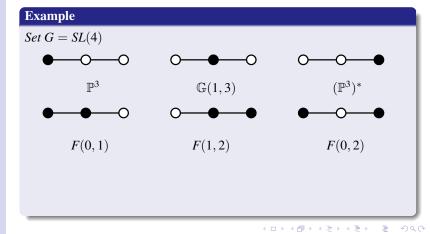
Positivity of the tangent bundle

Campana-Peternell Conjecture

Rational homogeneous manifolds

Subgroups $P \subset G$ s.t. G/P is a projective variety are called parabolic.

A parabolic subgroup is determined by the choice of a set of simple roots, i.e. by a subset $I \subset D$, and the corresponding variety is denoted by marking the nodes of *I*.



Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

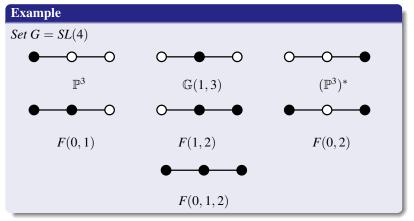
Positivity of the tangent bundle

Campana-Peternell Conjecture

Rational homogeneous manifolds

Subgroups $P \subset G$ s.t. G/P is a projective variety are called parabolic.

A parabolic subgroup is determined by the choice of a set of simple roots, i.e. by a subset $I \subset D$, and the corresponding variety is denoted by marking the nodes of I.



▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへ⊙

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Complete flag manifolds

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

A complete flag manifold G/B is a rational homogeneous manifolds s.t. in its Dynkin diagram all the nodes are marked. *B*, called Borel subgroup, is the smallest parabolic subgroup.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Complete flag manifolds

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

A complete flag manifold G/B is a rational homogeneous manifolds s.t. in its Dynkin diagram all the nodes are marked. *B*, called Borel subgroup, is the smallest parabolic subgroup.

If $\mathcal{D} = A_n$, then G/B is the manifold parametrizing complete flags of linear subspaces in \mathbb{P}^n .

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Complete flag manifolds

▲□▶▲□▶▲□▶▲□▶ □ のQで

A complete flag manifold G/B is a rational homogeneous manifolds s.t. in its Dynkin diagram all the nodes are marked. *B*, called Borel subgroup, is the smallest parabolic subgroup.

If $\mathcal{D} = A_n$, then G/B is the manifold parametrizing complete flags of linear subspaces in \mathbb{P}^n .

• Elementary contractions of G/B are \mathbb{P}^1 -bundles.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Complete flag manifolds

A complete flag manifold G/B is a rational homogeneous manifolds s.t. in its Dynkin diagram all the nodes are marked. *B*, called Borel subgroup, is the smallest parabolic subgroup.

If $\mathcal{D} = A_n$, then G/B is the manifold parametrizing complete flags of linear subspaces in \mathbb{P}^n .

- Elementary contractions of G/B are \mathbb{P}^1 -bundles.
- Every rational homogenous manifold is dominated by a complete flag manifold.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Complete flag manifolds

A complete flag manifold G/B is a rational homogeneous manifolds s.t. in its Dynkin diagram all the nodes are marked. *B*, called Borel subgroup, is the smallest parabolic subgroup.

If $\mathcal{D} = A_n$, then G/B is the manifold parametrizing complete flags of linear subspaces in \mathbb{P}^n .

- Elementary contractions of G/B are \mathbb{P}^1 -bundles.
- Every rational homogenous manifold is dominated by a complete flag manifold.
- If *f* : *Z* → *G*/*B* is a surjective morphism from a rational homogenous manifold, then *Z* = *G*/*B* × *Z*', and *f* is the projection.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Cartan matrix Geometric interpretation

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Cartan matrix Geometric interpretation

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

G/B complete flag manifold, with Dynkin diagram \mathcal{D} .

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Cartan matrix Geometric interpretation

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

G/B complete flag manifold, with Dynkin diagram \mathcal{D} .

• $p_i: G/B \to G/P^i$ elementary contraction corresponding to the unmarking of node *i*;

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

G/B complete flag manifold, with Dynkin diagram \mathcal{D} .

- $p_i: G/B \to G/P^i$ elementary contraction corresponding to the unmarking of node *i*;
- Γ_i fiber of p_i ;

Cartan matrix Geometric interpretation

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Cartan matrix Geometric interpretation

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

G/B complete flag manifold, with Dynkin diagram \mathcal{D} .

- $p_i: G/B \to G/P^i$ elementary contraction corresponding to the unmarking of node *i*;
- Γ_i fiber of p_i ;
- $-K_i = -K_{G/B} + p_i^* K_{G/P^i}$ relative anticanonical.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

G/B complete flag manifold, with Dynkin diagram \mathcal{D} .

• $p_i: G/B \to G/P^i$ elementary contraction corresponding to the unmarking of node *i*;

Cartan matrix

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Geometric interpretation

- Γ_i fiber of p_i ;
- $-K_i = -K_{G/B} + p_i^* K_{G/P^i}$ relative anticanonical.

The Cartan matrix of \mathcal{D} is the intersection matrix $-K_i \cdot C_i$.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dvnkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Fano manifolds whose elementary contractions are smooth \mathbb{P}^1 -fibrations

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Notation

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

X Fano manifold with Picard number n.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

X Fano manifold with Picard number *n*.

 $\pi_i: X \to X^i$ elementary contration.

Notation

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

X Fano manifold with Picard number n.

 $\pi_i: X \to X^i$ elementary contration.

 K_i relative canonical.

Notation

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

X Fano manifold with Picard number n.

 $\pi_i: X \to X^i$ elementary contration.

 K_i relative canonical.

 Γ_i fiber of π_i .

Notation

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Constructio

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Notation

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

X Fano manifold with Picard number n.

 $\pi_i: X \to X^i$ elementary contration.

 K_i relative canonical.

 Γ_i fiber of π_i .

$$D = \{1, \ldots, n\}.$$

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Lemma

 $\pi: M \to Y$ smooth \mathbb{P}^1 -fibration (M, Y smooth). Γ fiber, K relative canonical, D divisor on M, $l := D \cdot \Gamma$.

$$\begin{aligned} H^{i}(M,D) &\cong & H^{i+\text{sgn}(l+1)}(M,D+(l+1)K), \forall i \in \mathbb{Z}, \text{ se } l \neq -1 \\ H^{i}(M,D) &\cong & \{0\} \text{ for every } i \in \mathbb{Z}, \text{ if } l = -1. \end{aligned}$$

Reflection group

Relative duality

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Corollary

$$\chi(M,D) = -\chi(M,D + (l+1)K)$$

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Reflection group

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

For every contraction $\pi_i: X \to X$ let us consider the affine involution $r'_i: N^1(X) \to N^1(X)$

$$r'_i(D) := D + (D \cdot \Gamma_i + 1)K_i.$$

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Reflection group

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

For every contraction $\pi_i : X \to X$ let us consider the affine involution $r'_i : N^1(X) \to N^1(X)$

$$r'_i(D) := D + (D \cdot \Gamma_i + 1)K_i.$$

Setting $T(D) := D + K_X/2$ the maps $r_i := T^{-1} \circ r'_i \circ T$ are liner involutions of $N^1(X)$ given by

 $r_i(D) = D + (D \cdot \Gamma_i)K_i,$

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Reflection group

▲□▶▲□▶▲□▶▲□▶ □ のQで

For every contraction $\pi_i : X \to X$ let us consider the affine involution $r'_i : N^1(X) \to N^1(X)$

$$r'_i(D) := D + (D \cdot \Gamma_i + 1)K_i.$$

Setting $T(D) := D + K_X/2$ the maps $r_i := T^{-1} \circ r'_i \circ T$ are liner involutions of $N^1(X)$ given by

$$r_i(D) = D + (D \cdot \Gamma_i)K_i,$$

We have $r_i(K_i) = -K_i$ and r_i fixes pointwise the hyperplane

$$M_i := \{D | D \cdot \Gamma_i = 0\} \subset N^1(X).$$

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Reflection group

▲□▶▲□▶▲□▶▲□▶ □ のQで

For every contraction $\pi_i : X \to X$ let us consider the affine involution $r'_i : N^1(X) \to N^1(X)$

$$r'_i(D) := D + (D \cdot \Gamma_i + 1)K_i.$$

Setting $T(D) := D + K_X/2$ the maps $r_i := T^{-1} \circ r'_i \circ T$ are liner involutions of $N^1(X)$ given by

$$r_i(D) = D + (D \cdot \Gamma_i)K_i,$$

We have $r_i(K_i) = -K_i$ and r_i fixes pointwise the hyperplane

$$M_i := \{D|D \cdot \Gamma_i = 0\} \subset N^1(X).$$

Let $W \subset \operatorname{Gl}(N^1(X))$ be the group generated by the r_i 's.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneou manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Reflection group Finiteness

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dvnkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Reflection group Finiteness

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Let $\chi_X : N^1(X) \to \mathbb{R}$ be the polynomial (of degree $\leq \dim X$) such that

$$\chi_X(m_1,\ldots,m_n)=\chi(X,m_1K_1+\cdots+m_nK_n)$$

and let $\chi_X^T := \chi_X \circ T$.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Reflection group Finiteness

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Let $\chi_X : N^1(X) \to \mathbb{R}$ be the polynomial (of degree $\leq \dim X$) such that

$$\chi_X(m_1,\ldots,m_n)=\chi(X,m_1K_1+\cdots+m_nK_n)$$

and let $\chi_X^T := \chi_X \circ T$.

Lemma

For every \mathbb{R} -divisor D and every $r_i \quad \chi_X^T(D) = -\chi_X^T(r_i(D)).$

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Reflection group Finiteness

▲□▶▲□▶▲□▶▲□▶ □ のQで

Let $\chi_X : N^1(X) \to \mathbb{R}$ be the polynomial (of degree $\leq \dim X$) such that

$$\chi_X(m_1,\ldots,m_n)=\chi(X,m_1K_1+\cdots+m_nK_n)$$

and let $\chi_X^T := \chi_X \circ T$.

Lemma

For every \mathbb{R} -divisor D and every $r_i \quad \chi_X^T(D) = -\chi_X^T(r_i(D)).$

Corollary

For every \mathbb{R} -divisor D and every $w \in W$ $\chi_X^T(D) = \pm \chi_X^T(w(D))$.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Reflection group Finiteness

▲□▶▲□▶▲□▶▲□▶ □ のQで

Let $\chi_X : N^1(X) \to \mathbb{R}$ be the polynomial (of degree $\leq \dim X$) such that

$$\chi_X(m_1,\ldots,m_n)=\chi(X,m_1K_1+\cdots+m_nK_n)$$

and let $\chi_X^T := \chi_X \circ T$.

Lemma

For every \mathbb{R} -divisor D and every $r_i \quad \chi_X^T(D) = -\chi_X^T(r_i(D)).$

Corollary

For every \mathbb{R} -divisor D and every $w \in W$ $\chi_X^T(D) = \pm \chi_X^T(w(D))$.

Theorem

W is a finite group.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dvnkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Cartan matrix

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

there is a scalar product \langle , \rangle on $N^1(X)$, which is *W*-invariant. In particular the r_i 's are euclidean reflections.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Cartan matrix

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

there is a scalar product \langle , \rangle on $N^1(X)$, which is *W*-invariant. In particular the r_i 's are euclidean reflections.

Moreover

$$-D \cdot \Gamma_i = 2 \frac{\langle D, K_i \rangle}{\langle K_i, K_i \rangle}$$
, for every *i*.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Cartan matrix

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

there is a scalar product \langle , \rangle on $N^1(X)$, which is *W*-invariant. In particular the r_i 's are euclidean reflections.

Moreover

$$-D \cdot \Gamma_i = 2 \frac{\langle D, K_i \rangle}{\langle K_i, K_i \rangle}$$
, for every *i*.

The set

$$\Phi := \{ w(-K_i) | w \in W, \ i = 1, \dots, n \} \subset N^1(X),$$

is a root system, whose Weyl group is W.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Constructio

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Cartan matrix

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

there is a scalar product \langle , \rangle on $N^1(X)$, which is *W*-invariant. In particular the r_i 's are euclidean reflections.

Moreover

$$-D \cdot \Gamma_i = 2 \frac{\langle D, K_i \rangle}{\langle K_i, K_i \rangle}$$
, for every *i*.

The set

$$\Phi := \{ w(-K_i) | w \in W, \ i = 1, \dots, n \} \subset N^1(X),$$

is a root system, whose Weyl group is W.

The Cartan matrix A of this root system is the $n \times n$ matrix with entries $a_{ij} := -K_i \cdot \Gamma_j \in \mathbb{Z}$.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Cartan matrix

By the properties of root systems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Cartan matrix

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

By the properties of root systems

• $a_{ii} = 2$ for every *i*,

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Cartan matrix

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

By the properties of root systems

- $a_{ii} = 2$ for every *i*,
- $a_{ij} = 0$ iff $a_{ji} = 0$,

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

- Cartan decomposition Cartan matrix Dynkin diagrams
- Rational homogeneous manifolds
- RH manifolds
- Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

- Construction
- Properties
- Uniqueness

Campana-Peternell Conjecture

- Positivity of the tangent bundle
- Campana-Peternell Conjecture

Cartan matrix

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

By the properties of root systems

• $a_{ii} = 2$ for every i,

•
$$a_{ij} = 0$$
 iff $a_{ji} = 0$,

• se
$$a_{ij} \neq 0$$
, $i \neq j$, then $a_{ij}, a_{ji} \in \mathbb{Z}$ and $a_{ij}a_{ji} = 1, 2 \text{ o } 3$.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Cartan matrix

▲□▶▲□▶▲□▶▲□▶ □ のQで

By the properties of root systems

• $a_{ii} = 2$ for every *i*,

•
$$a_{ij} = 0$$
 iff $a_{ji} = 0$,

• se $a_{ij} \neq 0$, $i \neq j$, then $a_{ij}, a_{ji} \in \mathbb{Z}$ and $a_{ij}a_{ji} = 1, 2 \text{ o } 3$.

Using geometric properties of *X* one can show that a_{ij} with $i \neq j$ are nonpositive.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Cartan matrix

By the properties of root systems

• $a_{ii} = 2$ for every *i*,

•
$$a_{ij} = 0$$
 iff $a_{ji} = 0$,

• se $a_{ij} \neq 0$, $i \neq j$, then $a_{ij}, a_{ji} \in \mathbb{Z}$ and $a_{ij}a_{ji} = 1, 2 \text{ o } 3$.

Using geometric properties of *X* one can show that a_{ij} with $i \neq j$ are nonpositive.

$$S \longrightarrow X$$

$$s_j \left(\bigvee f_j \longrightarrow f_{\pi_i \mid \Gamma_j} X_i \right)$$

As a consequence we can show

Theorem

Every connected component of \mathcal{D} is one of the following: $A_n, B_n, C_n, D_n, E_6, E_7, E_8, F_4$, or G_2 .

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Homogeneous models

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

We associate with *X* a semi simple Lie group *G*, determined by \mathcal{D} .

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Homogeneous models

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

We associate with *X* a semi simple Lie group *G*, determined by \mathcal{D} . Given a Borel subgroup *B* we consider the morphism

 $\psi: N^1(X) \to N^1(G/B)$, defined by $\psi(K_i) = \overline{K}_i$.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Homogeneous models

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

We associate with *X* a semi simple Lie group *G*, determined by \mathcal{D} . Given a Borel subgroup *B* we consider the morphism

 $\psi: N^1(X) \to N^1(G/B)$, defined by $\psi(K_i) = \overline{K}_i$.

Proposition

- $\Lambda \subset \operatorname{Pic}(X)$ generated by the K_i 's.
 - dim $X = \dim G/B$;
 - $h^i(X,D) = h^i(G/B,\psi(D))$ for every $D \in \Lambda$, $i \in \mathbb{Z}$.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Bott-Samelson varieties

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

$$x \in X, \ell = (l_1, \ldots, l_r), l_i \in D$$
, and $\ell[s] := (l_1, \ldots, l_{r-s}).$

We introduce manifolds $Z_{\ell[s]}$, with morphisms $f_{\ell[s]} : Z_{\ell[s]} \to X$, called Bott-Samelson varieties associated with the subsequences $\ell[s]$, in the following way:

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Bott-Samelson varieties

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

$$x \in X, \ell = (l_1, \ldots, l_r), l_i \in D$$
, and $\ell[s] := (l_1, \ldots, l_{r-s}).$

We introduce manifolds $Z_{\ell[s]}$, with morphisms $f_{\ell[s]} : Z_{\ell[s]} \to X$, called Bott-Samelson varieties associated with the subsequences $\ell[s]$, in the following way:

If s = r we set $Z_{\ell[r]} := \{x\}$ and $f_{\ell[r]} : \{x\} \to X$ is the inclusion.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Bott-Samelson varieties

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

$$x \in X, \ell = (l_1, \ldots, l_r), l_i \in D$$
, and $\ell[s] := (l_1, \ldots, l_{r-s}).$

We introduce manifolds $Z_{\ell[s]}$, with morphisms $f_{\ell[s]} : Z_{\ell[s]} \to X$, called Bott-Samelson varieties associated with the subsequences $\ell[s]$, in the following way:

If s = r we set $Z_{\ell[r]} := \{x\}$ and $f_{\ell[r]} : \{x\} \to X$ is the inclusion.

If s < r we build $Z_{\ell[s]}$ on $Z_{\ell[s+1]}$ in the following way:

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

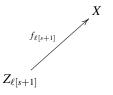
Bott-Samelson varieties

$$x \in X, \ell = (l_1, \ldots, l_r), l_i \in D$$
, and $\ell[s] := (l_1, \ldots, l_{r-s}).$

We introduce manifolds $Z_{\ell[s]}$, with morphisms $f_{\ell[s]} : Z_{\ell[s]} \to X$, called Bott-Samelson varieties associated with the subsequences $\ell[s]$, in the following way:

If s = r we set $Z_{\ell[r]} := \{x\}$ and $f_{\ell[r]} : \{x\} \to X$ is the inclusion.

If s < r we build $Z_{\ell[s]}$ on $Z_{\ell[s+1]}$ in the following way:



Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Bott-Samelson varieties

$$x \in X, \ell = (l_1, \ldots, l_r), l_i \in D$$
, and $\ell[s] := (l_1, \ldots, l_{r-s}).$

We introduce manifolds $Z_{\ell[s]}$, with morphisms $f_{\ell[s]} : Z_{\ell[s]} \to X$, called Bott-Samelson varieties associated with the subsequences $\ell[s]$, in the following way:

If s = r we set $Z_{\ell[r]} := \{x\}$ and $f_{\ell[r]} : \{x\} \to X$ is the inclusion.

If s < r we build $Z_{\ell[s]}$ on $Z_{\ell[s+1]}$ in the following way:



Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

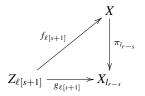
Bott-Samelson varieties

$$x \in X, \ell = (l_1, \ldots, l_r), l_i \in D$$
, and $\ell[s] := (l_1, \ldots, l_{r-s}).$

We introduce manifolds $Z_{\ell[s]}$, with morphisms $f_{\ell[s]} : Z_{\ell[s]} \to X$, called Bott-Samelson varieties associated with the subsequences $\ell[s]$, in the following way:

If s = r we set $Z_{\ell[r]} := \{x\}$ and $f_{\ell[r]} : \{x\} \to X$ is the inclusion.

If s < r we build $Z_{\ell[s]}$ on $Z_{\ell[s+1]}$ in the following way:



Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

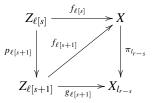
Bott-Samelson varieties

$$x \in X, \ell = (l_1, \ldots, l_r), l_i \in D$$
, and $\ell[s] := (l_1, \ldots, l_{r-s}).$

We introduce manifolds $Z_{\ell[s]}$, with morphisms $f_{\ell[s]} : Z_{\ell[s]} \to X$, called Bott-Samelson varieties associated with the subsequences $\ell[s]$, in the following way:

If s = r we set $Z_{\ell[r]} := \{x\}$ and $f_{\ell[r]} : \{x\} \to X$ is the inclusion.

If s < r we build $Z_{\ell[s]}$ on $Z_{\ell[s+1]}$ in the following way:



Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dvnkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

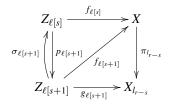
Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Bott-Samelson varieties

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()



Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Construction

Properties Uniqueness

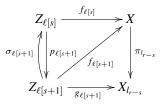
Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Bott-Samelson varieties

▲□▶▲□▶▲□▶▲□▶ □ ● ●



the map $f_{\ell[s+1]}$ factors via $Z_{\ell[s]}$, and gives a section $\sigma_{\ell[s+1]}$ di $p_{\ell[s+1]}$.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Construction

Properties Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternel Conjecture

Bott-Samelson varieties



the map $f_{\ell[s+1]}$ factors via $Z_{\ell[s]}$, and gives a section $\sigma_{\ell[s+1]}$ di $p_{\ell[s+1]}$.

In particular $p_{\ell[s+1]}$ is a \mathbb{P}^1 -bundle, given by the projectivization of an extension $\mathcal{F}_{\ell[s]}$ of $\mathcal{O}_{Z_{\ell[s+1]}}$ with $\mathcal{O}_{Z_{\ell[s+1]}}(f^*_{\ell[s+1]}(K_{l_{r-s}}))$:

$$0 \to \mathcal{O}_{Z_{\ell[s+1]}}(f^*_{\ell[s+1]}(K_{l_{r-s}})) \longrightarrow \mathcal{F}_{\ell[s]} \longrightarrow \mathcal{O}_{Z_{\ell[s+1]}} \to 0,$$

determined by $\zeta_{\ell[s]} \in H^1(Z_{\ell[s+1]}, f^*_{\ell[s+1]}(K_{l_{r-s}})).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々で

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Bott-Samelson varieties

Geometric interpretation

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The image of Z_{ℓ} in X is the set of points belonging to chains of rational curves $\Gamma_{l_1}, \Gamma_{l_2} \dots \Gamma_{l_r}$ starting from x.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decompositio Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Bott-Samelson varieties

Geometric interpretation

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The image of Z_{ℓ} in X is the set of points belonging to chains of rational curves $\Gamma_{l_1}, \Gamma_{l_2} \dots \Gamma_{l_r}$ starting from x.

In the homogeneous case such loci are the Schubert varieties.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Bott-Samelson varieties

Geometric interpretation

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The image of Z_{ℓ} in X is the set of points belonging to chains of rational curves $\Gamma_{l_1}, \Gamma_{l_2} \dots \Gamma_{l_r}$ starting from x.

In the homogeneous case such loci are the Schubert varieties.

Given $w \in W$, lits length $\lambda(w)$ is the minimum *t* such that $w = r_{i_1} \circ \cdots \circ r_{i_t}$; such an expression for *w* is called *reduced*. In *W* there exists a unique w_0 of length dim *X*, and all the other elements are shorter.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Bott-Samelson varieties

Geometric interpretation

The image of Z_{ℓ} in X is the set of points belonging to chains of rational curves $\Gamma_{l_1}, \Gamma_{l_2} \dots \Gamma_{l_r}$ starting from x.

In the homogeneous case such loci are the Schubert varieties.

Given $w \in W$, lits length $\lambda(w)$ is the minimum *t* such that $w = r_{i_1} \circ \cdots \circ r_{i_t}$; such an expression for *w* is called *reduced*. In *W* there exists a unique w_0 of length dim *X*, and all the other elements are shorter.

In the homogeneous case dim $f_{\ell}(Z_{\ell}) = \lambda(w(\ell))$; moreover, if $w(\ell)$ is reduced then $f_{\ell} : Z_{\ell} \to f(Z_{\ell})$ is birational.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Bott-Samelson varieties

Geometric interpretation

The image of Z_{ℓ} in X is the set of points belonging to chains of rational curves $\Gamma_{l_1}, \Gamma_{l_2} \dots \Gamma_{l_r}$ starting from x.

In the homogeneous case such loci are the Schubert varieties.

Given $w \in W$, lits length $\lambda(w)$ is the minimum *t* such that $w = r_{i_1} \circ \cdots \circ r_{i_t}$; such an expression for *w* is called *reduced*. In *W* there exists a unique w_0 of length dim *X*, and all the other elements are shorter.

In the homogeneous case dim $f_{\ell}(Z_{\ell}) = \lambda(w(\ell))$; moreover, if $w(\ell)$ is reduced then $f_{\ell} : Z_{\ell} \to f(Z_{\ell})$ is birational.

We show that the same properties hold in general.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Bott-Samelson varieties

Uniqueness

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

X, with connected diagram \mathcal{D} , G/B homogeneus model, ℓ sequence.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelsor varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Bott-Samelson varieties

Uniqueness

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

X, with connected diagram \mathcal{D} , G/B homogeneus model, ℓ sequence.

 $Z_{\ell}, \overline{Z}_{\ell}$ Bott-Samelson varieties of X and G/B

Let ℓ_0 be a list corresponding to the longest element in W: $w(\ell_0) = w_0$. If $Z_{\ell_0} \simeq \overline{Z}_{\ell_0}$, then $X \simeq G/B$.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Bott-Samelson varieties

Uniqueness

▲□▶▲□▶▲□▶▲□▶ □ のQで

X, with connected diagram \mathcal{D} , G/B homogeneus model, ℓ sequence.

 $Z_{\ell}, \overline{Z}_{\ell}$ Bott-Samelson varieties of X and G/B

Let ℓ_0 be a list corresponding to the longest element in W: $w(\ell_0) = w_0$. If $Z_{\ell_0} \simeq \overline{Z}_{\ell_0}$, then $X \simeq G/B$.

Proposizione

If $\mathcal{D} \neq F_4$, G_2 there exists $\ell = (l_1, \ldots, l_m)$ with $w(\ell) = w_0$ such that $Z_{\ell[s]} \simeq \overline{Z}_{\ell[s]}$ for every $s = 0, \ldots, m-1$.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Bott-Samelson varieties

Uniqueness

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Z_{ℓ} is defined by the extension

$$0 \to \mathcal{O}_{Z_{\ell[1]}}(f^*_{\ell[1]}(K_{l_r})) \longrightarrow \mathcal{F}_{\ell} \longrightarrow \mathcal{O}_{Z_{\ell[1]}} \to 0.$$

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Bott-Samelson varieties

Uniqueness

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Z_{ℓ} is defined by the extension

$$0 \to \mathcal{O}_{Z_{\ell[1]}}(f^*_{\ell[1]}(K_{l_r})) \longrightarrow \mathcal{F}_{\ell} \longrightarrow \mathcal{O}_{Z_{\ell[1]}} \to 0.$$

One shows easily that the following are equivalent

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decompositio Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Bott-Samelson varieties

Uniqueness

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Z_{ℓ} is defined by the extension

$$0 \to \mathcal{O}_{Z_{\ell[1]}}(f^*_{\ell[1]}(K_{l_r})) \longrightarrow \mathcal{F}_{\ell} \longrightarrow \mathcal{O}_{Z_{\ell[1]}} \to 0.$$

One shows easily that the following are equivalent

• $\mathcal{F}_{\ell} \simeq \mathcal{O}_{Z_{\ell[1]}}(f^*_{\ell[1]}(K_{l_r})) \oplus \mathcal{O}_{Z_{\ell[1]}};$

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decompositio Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Bott-Samelson varieties

Uniqueness

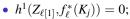
▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Z_{ℓ} is defined by the extension

$$0 \to \mathcal{O}_{Z_{\ell[1]}}(f^*_{\ell[1]}(K_{l_r})) \longrightarrow \mathcal{F}_{\ell} \longrightarrow \mathcal{O}_{Z_{\ell[1]}} \to 0.$$

One shows easily that the following are equivalent

• $\mathcal{F}_{\ell} \simeq \mathcal{O}_{Z_{\ell[1]}}(f^*_{\ell[1]}(K_{l_r})) \oplus \mathcal{O}_{Z_{\ell[1]}};$



Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decompositio Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Bott-Samelson varieties

Uniqueness

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Z_{ℓ} is defined by the extension

$$0 \to \mathcal{O}_{Z_{\ell[1]}}(f^*_{\ell[1]}(K_{l_r})) \longrightarrow \mathcal{F}_{\ell} \longrightarrow \mathcal{O}_{Z_{\ell[1]}} \to 0.$$

One shows easily that the following are equivalent

- $\mathcal{F}_{\ell} \simeq \mathcal{O}_{Z_{\ell[1]}}(f^*_{\ell[1]}(K_{l_r})) \oplus \mathcal{O}_{Z_{\ell[1]}};$
- $h^1(Z_{\ell[1]}, f_{\ell}^*(K_j)) = 0;$
- the index *j* does not appear in $\ell[1]$.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decompositio Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Bott-Samelson varieties

Uniqueness

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Z_{ℓ} is defined by the extension

$$0 \to \mathcal{O}_{Z_{\ell[1]}}(f^*_{\ell[1]}(K_{l_r})) \longrightarrow \mathcal{F}_{\ell} \longrightarrow \mathcal{O}_{Z_{\ell[1]}} \to 0.$$

One shows easily that the following are equivalent

- $\mathcal{F}_{\ell} \simeq \mathcal{O}_{Z_{\ell[1]}}(f^*_{\ell[1]}(K_{l_r})) \oplus \mathcal{O}_{Z_{\ell[1]}};$
- $h^1(Z_{\ell[1]}, f_{\ell}^*(K_j)) = 0;$
- the index *j* does not appear in $\ell[1]$.

So we have to show that if the index *j* appears in $\ell[1]$ then $h^1(Z_{\ell[1]}, f_{\ell}^*(K_j)) \leq 1$.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneou manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Special cases

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dvnkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

• G_2 : no expression (there are 2) of w_0 works. An (easy) ad hoc argument is possible.

Special cases

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dvnkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

• G₂: no expression (there are 2) of w_0 works. An (easy) ad hoc argument is possible.

• F₄: no expression (there are 2144892) of w₀ works. We are working on an ad hoc argument.

Special cases

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dvnkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Campana-Peternell Conjecture

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dvnkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Positivity of the tangent bundle

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

X smooth complex projective variety.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

...

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Positivity of the tangent bundle

X smooth complex projective variety.

Theorem (Mori (1979))

 T_X ample $\Leftrightarrow X = \mathbb{P}^m$.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Positivity of the tangent bundle

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

X smooth complex projective variety.

Theorem (Mori (1979))

 T_X ample $\Leftrightarrow X = \mathbb{P}^m$.

• T_X nef \Rightarrow ??

Gianluca Occhetta

Fano hundles The problem

Cartan matrix Dvnkin diagrams

RH manifolds Flag manifolds

reflections

Dynkin diagram

Properties

Positivity of the tangent bundle

Campana-Peternell Conjecture

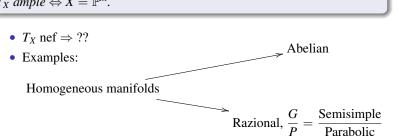
Positivity of the tangent bundle

X smooth complex projective variety.

Theorem (Mori (1979))

 T_X ample $\Leftrightarrow X = \mathbb{P}^m$.

▲□▶▲□▶▲□▶▲□▶ □ のQで



Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peterne Conjecture T_X

Positivity of the tangent bundle

X smooth complex projective variety.

Theorem (Mori (1979))

 T_X ample $\Leftrightarrow X = \mathbb{P}^m$.

• Examples:

Homogeneous manifolds

Theorem (Demailly, Peternell and Schneider (1994))

$$nef \Rightarrow \begin{cases} X \xleftarrow{\text{ frate }} X' \xrightarrow{F} A \\ A \text{ Abelian, } F \text{ Fano, } T_F \text{ nef} \end{cases}$$

▲□▶▲□▶▲□▶▲□▶ ■ のへ⊙

Abelian

Razional, $\frac{G}{P} = \frac{\text{Semisimple}}{\text{Parabolic}}$

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds

Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Campana-Peternell Conjecture

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Conjecture (Campana-Peternell (1991))

Every Fano manifold with nef tangent bundle is homogeneous.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Campana-Peternell Conjecture

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Conjecture (Campana-Peternell (1991))

Every Fano manifold with nef tangent bundle is homogeneous.

Definition

A CP-manifold is a Fano manifold with nef tangent bundle.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Campana-Peternell Conjecture

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Conjecture (Campana-Peternell (1991))

Every Fano manifold with nef tangent bundle is homogeneous.

Definition

A CP-manifold is a Fano manifold with nef tangent bundle.

Results:

 \checkmark dim *X* = 3 [Campana Peternell(1991)]

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Campana-Peternell Conjecture

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Conjecture (Campana-Peternell (1991))

Every Fano manifold with nef tangent bundle is homogeneous.

Definition

A CP-manifold is a Fano manifold with nef tangent bundle.

- \checkmark dim *X* = 3 [Campana Peternell(1991)]
- \checkmark dim *X* = 4 [CP (1993), Mok (2002), Hwang (2006)]

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Campana-Peternell Conjecture

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Conjecture (Campana-Peternell (1991))

Every Fano manifold with nef tangent bundle is homogeneous.

Definition

A CP-manifold is a Fano manifold with nef tangent bundle.

- \checkmark dim *X* = 3 [Campana Peternell(1991)]
- \checkmark dim *X* = 4 [CP (1993), Mok (2002), Hwang (2006)]
- \mathbf{V} dim X = 5 e $\rho_X > 1$ [Watanabe (2012)]

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Campana-Peternell Conjecture

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Conjecture (Campana-Peternell (1991))

Every Fano manifold with nef tangent bundle is homogeneous.

Definition

A CP-manifold is a Fano manifold with nef tangent bundle.

- \checkmark dim *X* = 3 [Campana Peternell(1991)]
- \checkmark dim X = 4 [CP (1993), Mok (2002), Hwang (2006)]
- \checkmark dim X = 5 e $\rho_X > 1$ [Watanabe (2012)]
- \checkmark *T_X* big e 1-ample [Solá-Conde Wiśniewski (2004)]

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Campana-Peternell Conjecture

Conjecture (Campana-Peternell (1991))

Every Fano manifold with nef tangent bundle is homogeneous.

Definition

A CP-manifold is a Fano manifold with nef tangent bundle.

Results:

- \checkmark dim *X* = 3 [Campana Peternell(1991)]
- \checkmark dim X = 4 [CP (1993), Mok (2002), Hwang (2006)]
- \checkmark dim X = 5 e $\rho_X > 1$ [Watanabe (2012)]
- \checkmark T_X big e 1-ample [Solá-Conde Wiśniewski (2004)]
- The above results are based on detailed classifications of the manifolds satisfying the required properties;

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Campana-Peternell Conjecture

Conjecture (Campana-Peternell (1991))

Every Fano manifold with nef tangent bundle is homogeneous.

Definition

A CP-manifold is a Fano manifold with nef tangent bundle.

- \checkmark dim *X* = 3 [Campana Peternell(1991)]
- \checkmark dim *X* = 4 [CP (1993), Mok (2002), Hwang (2006)]
- \checkmark dim X = 5 e $\rho_X > 1$ [Watanabe (2012)]
- \checkmark T_X big e 1-ample [Solá-Conde Wiśniewski (2004)]
- The above results are based on detailed classifications of the manifolds satisfying the required properties;
- homogeneity is checked a posteriori.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dvnkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Campana-Peternell Conjecture A possible strategy

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

In the paper in which the conjecture is introduced, Campana and Peternell proposed the following approach:

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Campana-Peternell Conjecture A possible strategy

In the paper in which the conjecture is introduced, Campana and Peternell proposed the following approach:

1 Prove the conjecture for CP-manifolds with Picard number one.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections

Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Campana-Peternell Conjecture A possible strategy

In the paper in which the conjecture is introduced, Campana and Peternell proposed the following approach:

1 Prove the conjecture for CP-manifolds with Picard number one.

Show that, given a CP-manifold X and a contraction f : X → Y, from the homogeneity of Y and of the fibers of f one can reconstruct the homogeneity of X.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Campana-Peternell Conjecture A possible strategy

In the paper in which the conjecture is introduced, Campana and Peternell proposed the following approach:

- 1 Prove the conjecture for CP-manifolds with Picard number one.
- Show that, given a CP-manifold X and a contraction f : X → Y, from the homogeneity of Y and of the fibers of f one can reconstruct the homogeneity of X.

▲□▶▲□▶▲□▶▲□▶ □ のQで

The Picard number one case turned out to be very difficult.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Campana-Peternell Conjecture A possible strategy

In the paper in which the conjecture is introduced, Campana and Peternell proposed the following approach:

- 1 Prove the conjecture for CP-manifolds with Picard number one.
- Show that, given a CP-manifold X and a contraction f : X → Y, from the homogeneity of Y and of the fibers of f one can reconstruct the homogeneity of X.

The Picard number one case turned out to be very difficult.

A possible alternative strategy is:

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Campana-Peternell Conjecture A possible strategy

In the paper in which the conjecture is introduced, Campana and Peternell proposed the following approach:

- 1 Prove the conjecture for CP-manifolds with Picard number one.
- Show that, given a CP-manifold X and a contraction f : X → Y, from the homogeneity of Y and of the fibers of f one can reconstruct the homogeneity of X.

The Picard number one case turned out to be very difficult.

A possible alternative strategy is:

• Prove the conjecture for CP-manifolds with "maximal" Picard number.

Gianluca Occhetta

Motivation

Fano bundles The problem

Lie Algebras

Cartan decomposition Cartan matrix Dynkin diagrams

Rational homogeneous manifolds

RH manifolds Flag manifolds

Homogeneous models

Fibrations and reflections Dynkin diagram

Bott-Samelson varieties

Construction

Properties

Uniqueness

Campana-Peternell Conjecture

Positivity of the tangent bundle

Campana-Peternell Conjecture

Campana-Peternell Conjecture A possible strategy

In the paper in which the conjecture is introduced, Campana and Peternell proposed the following approach:

- 1 Prove the conjecture for CP-manifolds with Picard number one.
- Show that, given a CP-manifold X and a contraction f : X → Y, from the homogeneity of Y and of the fibers of f one can reconstruct the homogeneity of X.

The Picard number one case turned out to be very difficult.

A possible alternative strategy is:

- Prove the conjecture for CP-manifolds with "maximal" Picard number.
- Show that any CP-manifold is dominated by a CP-manifold with "maximal" Picard number.