Fano manifolds
and P -fibrations

Gianluca
Occhetta

Motivation
Fano bundles

‘The problem

Lie Algebras

o Fano manifolds whose elementary

contractions are smooth P'-fibrations

homogeneous
manifolds
RH manifolds

Flag manifolds

Gianluca Occhetta

Homogeneous
models

e with R. Mufioz, L.E. Sol4d Conde, K. Watanabe and J. Wi$niewski

Dynkin diagram

Bott-Samelson .

varieties Madrld, January 2014
Construction

Properties

Uniqueness

Campana-

Peternell

Conjecture

Positivity of the

Campana-Peternell
Conjecture



Motivation

Q>



Fano bundles

(O> aEFr < =»

«E>

Q>



Fano manifolds
and P -fibrations

Gianluca

s Fano bundles

Motivation
Fano bundles

‘The problem
Lie Algebras

crmacmein A vector bundle £ on a smooth complex projective variety X is a Fano

Cartan matrix

. bundle iff Py (&) is a Fano manifold.

Rational
homogeneous
manifolds

RH manif

lds
Flag manifolds
Homogeneous
models

Fibrations and
reflections

Dynkin diagram
Bott-Samelson
varieties
Construction
Properties
Uniqueness
Campana-
Peternell
Conjecture
Positivity of the
tangent bundle

Campana-Peternell
Conjecture



Fano manifolds
and P -fibrations

Glanluca Fano bundles

Occhetta

Motivation
Fano bundles

The problem
Lie Algebras . . . .
crmacmein A vector bundle £ on a smooth complex projective variety X is a Fano
B bundle iff Px (&) is a Fano manifold.

Dynkin diagrams

Rational
homogeneous

T If £ is a Fano bundle on X then X is a Fano manifold.

RH manifolds

Flag manifolds

Homogeneous
models

Fibrations and
reflections
Dynkin diagram

Bott-Samelson

varieties
Construction
Properties
Uniqueness

Campana-

Peternell

Conjecture

Positivity of the
4 bundle
Campana-Peternell
Conjecture



Fano manifolds
and P! -fibrations

G Fano bundles

Fano bundles

The problem

crmacmein A vector bundle £ on a smooth complex projective variety X is a Fano
bundle iff Px (&) is a Fano manifold.

If £ is a Fano bundle on X then X is a Fano manifold.

RH manifolds

Flag manifolds

Fano bundles of rank 2 on projective spaces and quadrics have been
classified in the 90s (Ancona, Peternell, Sols, Szurek, Wisniewski).

Fibrations and
reflections

Dynkin diagram

Construction
Properties

Uniqueness

Positivity of the




Fano manifolds
and P! -fibrations

Gianluca
Occhetta

Fano bundles

The problem

RH manifolds

Flag manifolds

Fibr:
reflections

ions and

Dynkin diagram

Fano bundles

A vector bundle £ on a smooth complex projective variety X is a Fano
bundle iff Px (&) is a Fano manifold.

If £ is a Fano bundle on X then X is a Fano manifold.

Fano bundles of rank 2 on projective spaces and quadrics have been
classified in the 90s (Ancona, Peternell, Sols, Szurek, Wisniewski).

Generalization: Classification of Fano bundles of rank 2 on (Fano)
manifolds with b, = by = 1 (Muifioz, _, Sola Conde, 2012).



Fano manifolds
and P! -fibrations

Gianluca
Occhetta

Fano bundles

The problem

RH manifolds

Flag manifolds

Fano bundles

A vector bundle £ on a smooth complex projective variety X is a Fano
bundle iff Px (&) is a Fano manifold.

If £ is a Fano bundle on X then X is a Fano manifold.

Fano bundles of rank 2 on projective spaces and quadrics have been
classified in the 90s (Ancona, Peternell, Sols, Szurek, Wisniewski).

Generalization: Classification of Fano bundles of rank 2 on (Fano)
manifolds with b, = by = 1 (Muifioz, _, Sola Conde, 2012).

Later the assumption by = 1 was removed by Watanabe.



Fano manifolds
and P -fibrations

Gianluca

iantuea Varieties with two P!-bundle structures

Motivation

Fano bundles

The problem As a special case we have the classification of Fano manifolds of Picard
/s number two with two P'-bundle structures.

Cartan decomposition
Cartan matrix
Dynkin diagrams

Rational

homogeneous

manifolds
RH manifolds

Flag manifolds

Homogeneous
models

Fibrations and
reflections

Dynkin diagram
Bott-Samelson
varieties
Construction
Properties
Uniqueness
Campana-
Peternell
Conjecture

Positivity of the

tangent bundle

Campana-Peternell
Conjecture



Fano manifolds
and P! -fibrations

Gianluca

raniuea Varieties with two P!-bundle structures

Fano bundles

The problem As a special case we have the classification of Fano manifolds of Picard
number two with two P'-bundle structures.

Cartan decomposition

X Y Bundle
P! P! 00O
P? P? Tp2
S P’ Q N
Q? P3 S
Q@ | K(Gy) C
K(G) | @ Q




Fano manifolds
and P! -fibrations

Gianluca

raniuea Varieties with two P!-bundle structures

Fano bundles

— As a special case we have the classification of Fano manifolds of Picard
number two with two P'-bundle structures.

Cartan decomposition

X Y Bundle

P! P! 00O
RH fold: ]P)2 IP)Z T]Pz
Flag n‘mnih;l(h IPS Q3 N

QS IP;3 S

3
; Q K(G,) C

Dynkin diagranm K(G,) Q Q

o N Null-correlation bundle;

Construction

Properties

Uniqueness




Fano manifolds
and P! -fibrations

Gianluca Varieties with two P'-bundle structures

Fano bundles

— As a special case we have the classification of Fano manifolds of Picard
number two with two P'-bundle structures.

Cartan decomposition

X Y Bundle
P! P! 0w 0
P? P? Tp2
et P3 Q N
08 P3 S
e Q@ [K(G)| ¢C
Dynkin disgram K(G,) @5 Q

o N Null-correlation bundle;

e S spinor bundle;

Construction

Properties

Uniqueness

Positivity of the

tangent bundle

ternell

Conjecture



Fano manifolds
and P! -fibrations

Gianluca Varieties with two P'-bundle structures

Fano bundles

— As a special case we have the classification of Fano manifolds of Picard
number two with two P'-bundle structures.

Cartan decomposition

Dynkin diagrams X Y Bundle
P! Pl 1080
P? P? Tp2

RH manifolds

Flag manifolds IP?) Q?)
QS IP;3
Fibrations and QS K(G2 )

reflections

Dynkin diagram K ( G2 ) @5

o e N Null-correlation bundle;

provets ¢ S spinor bundle;

Uniqueness

Q|| »| =

e C Cayley bundle;

Positivity of the
tangent bundle
Campana-Peternell
Conjecture



Fano manifolds
and P! -fibrations

Gianluca Varieties with two P'-bundle structures

Fano bundles

— As a special case we have the classification of Fano manifolds of Picard
number two with two P'-bundle structures.

X Y Bundle
P! P! O0a0
P? P? Tp2
ey P? Q@ N
Q’ P3 S
Q | K(Gy) C
KGy | @ | ©
o N Null-correlation bundle;
e S spinor bundle;
e C Cayley bundle;

Q universal quotient bundle.




Fano manifolds
and P -fibrations

Glaniuen Varieties with two P! -bundle structures
A different perspective

Motivation
Fano bundles
‘The problem

Lie Algebras
Cartan decomposition
Cartan matrix

Dynkin diagrams

Rational
homogeneous
manifolds

RH manifolds
Flag manifolds
Homogeneous

models

Fibrations and
reflections

Dynkin diagram

Bott-Samelson
varieties

Construction
Properties
Uniqueness

Campana-

Peternell

Conjecture
Positivity of the
tangent bundle

Campana-Peternell
Conjecture




Fano manifolds
and P -fibrations

Sianluea Varieties with two P!-bundle structures

A different perspective

Motivation
Fano bundles
The problem

Lie Algebras
Cartan decomposition
Cartan matrix
Dynkin diagrams

Rational

homogeneous

manifolds

RH manifolds Theorem

Flag manifolds
Homogeneous
models

Fibrations and
reflections

Dynkin diagram
Bott-Samelson
varieties

Construction

Properties

Uniqueness
Campana-
Peternell
Conjecture

Positivity of the
tangent bundle

Campana-Peternell
Conjecture

u]
]

I

w
i
N)
yel
)



Fano manifolds
and P -fibrations

Gianluca
Occhetta

Motivation
Fano bundles

‘The problem

Lie Algebras
Cartan decomposition
Cartan matrix
Dynkin diagrams

Rational

homogeneous
manifolds

RH manif

lds
Flag manifolds
Homogeneous
models

Fibrations and
reflections

Dynkin diagram
Bott-Samelson
varieties

Construction

Properties

Uniqueness
Campana-
Peternell
Conjecture

Positivity of the

tangent bundle

Campana-Peternell
Conjecture

Generalization

o Classify Fano manifolds whose elementary contractions are
P'-bundles (o P!-fibrations).



Fano manifolds
and P! -fibrations

P Generalization

Motivation
Fano bundles

‘The problem

Classify Fano manifolds whose elementary contractions are
Coran desompiion P!-bundles (o P'-fibrations).

Cartan matrix

Lie Algebras

Dynkin diagrams

Rational

homogencous e Understand the relation between P'-fibrations and homogeneity (if

manifolds
RH manifolds an}’) .

Flag manifolds
Homogeneous
models

Fibrations and
reflections

Dynkin diagram
Bott-Samelson
varieties

Construction

Properties

Uniqueness
Campana-
Peternell
Conjecture

Positivity of the
4 bundle
na-Peternell
Conjecture



Fano manifolds
and P -fibrations

s Generalization

Motivation
Fano bundles

‘The problem

Lic Algebras Classify Fano manifolds whose elementary contractions are
A P'-bundles (o P!-fibrations).

Cartan matrix
Dynkin diagrams
Rational

homogeneous e Understand the relation between P'-fibrations and homogeneity (if

manifolds
i it any).

Flag manifolds

Homogeneous
models

Fibrations and
reflections o
Theorem
Dynkin diagram
Bott-Samelson
varieties
Construction
Properties

Uniqueness

Campana-

Peternell

Conjecture
Positivity of the
tangent bundle

Campana-Peternell
Conjecture

DA

o F = E z



Fano manifolds
and P -fibrations

Gianluca
Occhetta

Motivation
Fano bundles

‘The problem

Lie Algebras
Cartan decomposition
Cartan matrix

Dynkin diagrams

Rational
homogeneous

manitos Lie algebras and complete flags

RH manifolds

Flag manifolds

Homogeneous
models

Fibrations and
reflections

Dynkin diagram
Bott-Samelson
varieties
Construction
Properties
Uniqueness
Campana-
Peternell
Conjecture

Positivity of the
tangent bundle
Campana-Peternell
Conjecture




Fano manifolds
and P -fibrations

Gianluca
Occhetta

Motivation
Fano bundles

‘The problem

G semisimple Lie group,
Lie Algebras

Cartan decomposition

Cartan matrix

Dynkin diagrams

Rational
homogeneous
manifolds

RH manifolds
Flag manifolds
Homogeneous

models

Fibrations and
reflections

Dynkin diagram
Bott-Samelson
varieties

Construction

Properties

Uniqueness
Campana-
Peternell
Conj

P y of the
tangent bundle

Campana-Peternell
Conjecture

Lie Algebras

Cartan decomposition

g associated Lie algebra,



Fano manifolds
and P -fibrations

e Lie Algebras
Cartan decomposition

Motivation

Fano bundles

The problem G semisimple Lie group, g associated Lie algebra,

Lie Algebras

Grandeommsin [y C g Cartan subalgebra (maximal abelian subalgebra).
“artan matrix

Dynkin diagrams

Rational

homogeneous

manifolds

RH manifolds

Flag manifolds

Homogeneous
models

Fibrations and
reflections

Dynkin diagram
Bott-Samelson
varieties
Construction
Properties
Uniqueness
Campana-
Peternell
Conjecture

Positivity of the

tangent bundle

Campana-Peternell
Conjecture



Fano manifolds
and P! -fibrations

Gianluca
Occhetta

Motivation
Fano bundles

‘The problem

Lie Algebras
Cartan decomposition

Cartan matrix

Dynkin diagrams

Rational
homogeneous
manifolds
RH manifolds
Flag manifolds
Homogeneous
models

Fibrations and
reflections

Dynkin diagram

Bott-Samelson
varieties
Construction
Properties
Uniqueness
Campana-
Peternell
Conjecture

Positivity of the

Lie Algebras

Cartan decomposition
G semisimple Lie group, g associated Lie algebra,
h C g Cartan subalgebra (maximal abelian subalgebra).
The action of f on g defines an eigenspace decomposition, called Cartan

decomposition of g:
g=bho @ Ja-
achv\{0}



Fano manifolds
and P! -fibrations

Gianluca
Occhetta

Fano bundles

The problem

Cartan decomposition

RH manifolds

Flag manifolds

Fibrations and

Lie Algebras
Cartan decomposition
G semisimple Lie group, g associated Lie algebra,
h C g Cartan subalgebra (maximal abelian subalgebra).

The action of h on g defines an eigenspace decomposition, called Cartan

decomposition of g:
g=bho @ Ja-
achv\{0}
The spaces g, are defined by

9o = {g € g[[h 8] = a(h)g, forevery h € b},

and the elements o € ¥ \ {0} such that g,, # 0 are called roots of g.
The (finite) set @ of such elements is called root system of g.



Fano manifolds
and P! -fibrations

Gianluca
Occhetta

Fano bundles

The problem

Lie Algebras

Cartan decomposition

G semisimple Lie group, g associated Lie algebra,
h C g Cartan subalgebra (maximal abelian subalgebra).

The action of h on g defines an eigenspace decomposition, called Cartan

decomposition of g:
g=bho @ Ja-
achv\{0}
The spaces g, are defined by

9o = {g € gl[h, 8] = a(h)g, forevery h € b},
and the elements o € ¥ \ {0} such that g,, # 0 are called roots of g.
The (finite) set @ of such elements is called root system of g.

A basis of b formed by elements of ® such that the coordinates of
every element of ® are integers, all > 0 or all < 0 is a system of simple
roots of g.



Fano manifolds
and P! -fibrations

e Lie Algebras
Motivation Weyl group

Fano bundles

‘The problem

Lie Algebras
Guandsomesiion O the space b there is a symmetric bilinear form x coming from the
Dynkin diagrams Killing form of g; this form, restricted to the real vector space E

St generated by the roots is positive definite.

homogeneous
manifolds
RH manifolds
Flag manifolds
Homogeneous
models

Fibrations and
reflections

Dynkin diagram

Bott-Samelson
varieties
Construction
Properties
Uniqueness
Campana-
Peternell
Conjecture

Positivity of the

Conjecture



Fano manifolds
and P! -fibrations

Gianluca
Occhetta

Fano bundles

The problem

Cartan decomposition

RH manifolds

Flag manifolds

Fibrations and
reflections

Dynkin diagram

Construction
Properties

Uniqueness

Positivity of the

Lie Algebras
Weyl group

On the space h" there is a symmetric bilinear form x coming from the
Killing form of g; this form, restricted to the real vector space E
generated by the roots is positive definite.

The root system  is invariant with respect to the isometries of (E, k)
defined by:

Oo(x) =x— (x,a0)a, where (x,qa):=2——"-+.



Fano manifolds
and P! -fibrations

Gianluca
Occhetta

Fano bundles

The problem

Cartan decomposition

RH manifolds

Flag manifolds

Fibrations and
reflections

Dynkin

Lie Algebras
Weyl group

On the space h" there is a symmetric bilinear form x coming from the
Killing form of g; this form, restricted to the real vector space E
generated by the roots is positive definite.

The root system  is invariant with respect to the isometries of (E, k)
defined by:

Ou(X) =x— (x,a)a, where (x,a):=2

which are the reflections with respect to the roots.



Fano manifolds
and P! -fibrations

Gianluca
Occhetta

Fano bundles

The problem

Cartan decomposition

RH manifolds

Flag manifolds

Fibrations and

Lie Algebras
Weyl group

On the space h" there is a symmetric bilinear form x coming from the
Killing form of g; this form, restricted to the real vector space E
generated by the roots is positive definite.

The root system  is invariant with respect to the isometries of (E, k)
defined by:

Ou(X) =x— (x,a)a, where (x,a):=2
which are the reflections with respect to the roots.

W C GI(E) generated by {0, a € @} is the Weyl group of g.



Fano manifolds
and P -fibrations

e Lie Algebras
Motivation Cartan matrix

Fano bundles

‘The problem
Lie Algebras

crandamoiin Given a set of simple roots {«, . .., oy} of g, the Cartan matrix di g is

Cartan matrix

. the matrix whose entries are the integers («;, o).

Rational
homogeneous
manifolds

RH manifolds

Flag manifolds

Homogeneous
models

Fibrations and
reflections

Dynkin diagram
Bott-Samelson
varieties

Construction

Properties

Uniqueness
Campana-
Peternell
Conjecture

Positivity of the

tangent bundle

Campana-Peternell
Conjecture



Fano manifolds
and P -fibrations

- Lie Algebras

Occhetta
Cartan matrix

Motivation
Fano bundles

‘The problem
Lie Algebras

cmmacomeiion—— Given a set of simple roots {«, ..., a,} of g, the Cartan matrix di g is
) ) n

Cartan matrix

T — the matrix whose entries are the integers («;, o).

Rational

homogencous A and all its principal minors are positive definite and moreover

manifolds
RH manifolds
Flag manifolds
Homogeneous
models

Fibrations and
reflections

Dynkin diagram
Bott-Samelson
varieties

Construction

Properties

Uniqueness
Campana-
Peternell
Conjecture

Positivity of the
4 bundle
Campana-Peternell
Conjecture



Fano manifolds
and P! -fibrations

Ginluca Lie Algebras

Occhetta
Cartan matrix

Motivation
Fano bundles

‘The problem
Lie Algebras

st Given a set of simple roots {«, . .., a,} of g, the Cartan matrix di g is
) ) n

Cartan matrix

T — the matrix whose entries are the integers («;, o).

Rational

homogencous A and all its principal minors are positive definite and moreover

manifolds
RH manifolds

e a; =2 forevery i,

Flag manifolds
Homogeneous
models

Fibrations and
reflections

Dynkin diagram
Bott-Samelson
varieties

Construction

Properties

Uniqueness
Campana-
Peternell
Conjecture

Positivity of the
4 bundle
Campana-Peternell
Conjecture



Fano manifolds
and P! -fibrations

e Lie Algebras
Motivation Cartan matrix

Fano bundles

‘The problem
Lie Algebras

comdcmeiion—— Given a set of simple roots {«, ..., a,} of g, the Cartan matrix di g is
) ) n

Cartan matrix

T — the matrix whose entries are the integers («;, o).

Rational

homogencous A and all its principal minors are positive definite and moreover

manifolds
RH manifolds

e a; =2 forevery i,

Flag manifolds
Homogeneous e a; =0iffa; =
models Cl,] 0 a]’ O’

Fibrations and
reflections

Dynkin diagram
Bott-Samelson
varieties

Construction

Properties

Uniqueness
Campana-
Peternell
Conjecture

Positivity of the
4 bundle
na-Peternell
Conjecture



Fano manifolds
and P! -fibrations

Ocehetn Lie Algebras
Cartan matrix

Fano bundles

The problem

Cartan decomposition Given a set of Simple Toots {al’ ceey an} of g, the Cartan matrix di g 18

Cartan matrix

Dynkin diagrams the matrix whose entries are the integers («;, o).

A and all its principal minors are positive definite and moreover

RH manifolds

* a; = 2 forevery i,
° aij:Oiffaj,-:0,
recions o if ajj 75 0,i 7é Jj, then aij, aji € Z~ and ajjaj; = 1,2 or 3.

Dynkin diagram

Construction
Properties

Uniqueness

Positivity of the




Fano manifolds
and P! -fibrations

Ocehetn Lie Algebras
Cartan matrix

Fano bundles

The problem

comscomoitin (Given a set of simple roots {«y, . .., a,} of g, the Cartan matrix di g is

Cartan matrix

Dynkindigranms the matrix whose entries are the integers («;, o).

A and all its principal minors are positive definite and moreover

RH manifolds

e a;; = 2 forevery i,
o aij:Oiffaj,-:O,
e o if ajj 75 0,i 75‘], then aij, aji € 7~ and ajjaj; = 1,2 or 3.

Dynkin diagram

In particular the possible 2 x 2 principal minors are (up to transposition)

o 2 0 2 -1 2 -1 2 -1
0 2 -1 2 2 2 -3 2

Positivity of the




Fano manifolds
and P -fibrations

e Lie Algebras
Motivation Dynkln diagl‘ams

Fano bundles

‘The problem

Lie Algebras

Cartan decomposition

P Set D = {1,...,n}, where n is the number of simple roots of g. With the
Dynkin diagrams matrix A is associated a finite Dynkin diagram D, in the following way

Rational
homogeneous
manifolds

RH manifolds

Flag manifolds

Homogeneous
models

Fibrations and
reflections

Dynkin diagram
Bott-Samelson
varieties
Construction
Properties
Uniqueness
Campana-
Peternell
Conjecture

Positivity of the

tangent bundle

Campana-Peternell
Conjecture



Fano manifolds
and P -fibrations

- Lie Algebras

Occhetta
Dynkin diagrams

Motivation
Fano bundles

‘The problem
Lie Algebras

it Set D = {1,...,n}, where n is the number of simple roots of g. With the

‘Cartan matrix
Dynkin diagrams matrix A is associated a finite Dynkin diagram D, in the following way
Rational

Tt ¢ D is a graph whose set of nodes is D,

RH manifolds
Flag manifolds
Homogeneous
models
Fibrations and
reflections
Dynkin diagram
Bott-Samelson
varieties
Construction
Properties
Uniqueness
Campana-
Peternell
Conjecture

Positivity of the
4 bundle
Campana-Peternell
Conjecture



Fano manifolds
and P! -fibrations

e Lie Algebras
Motivation Dynkin diagrams

Fano bundles

‘The problem

Lie Algebras

Cartan decomposition

P Set D = {1,...,n}, where n is the number of simple roots of g. With the
Dynkin diagrams matrix A is associated a finite Dynkin diagram D, in the following way

Rational

homogeneous

Tt e D is a graph whose set of nodes is D,

RH manifolds

SIymTRE e the nodes i and j are joined by aj;a;; edges,
Homogeneous

models

Fibrations and
reflections

Dynkin diagram
Bott-Samelson
varieties

Construction

Properties

Uniqueness
Campana-
Peternell
Conjecture

Positivity of the
4 bundle
na-Peternell
Conjecture



Fano manifolds
and P! -fibrations

Ocehetn Lie Algebras
Dynkin diagrams

Fano bundles

The problem

Cartan decomposition

e Set D = {1,...,n}, where n is the number of simple roots of g. With the
Dyniin diagrams matrix A is associated a finite Dynkin diagram D, in the following way

e D is a graph whose set of nodes is D,

RH manifolds

Sl e the nodes i and j are joined by aj;a;; edges,

o if |a;| > |a;| the edge is directed towards the node i.

Fibrations and
reflections

Dynkin diagram

Construction
Properties

Uniqueness

Positivity of the




Fano manifolds
and P! -fibrations

Giantacs Lie Algebras

Dynkin diagrams
Fano bundles

The problem

Cartan decomposition

e Set D = {1,...,n}, where n is the number of simple roots of g. With the
Dyniin diagrams matrix A is associated a finite Dynkin diagram D, in the following way

e D is a graph whose set of nodes is D,

RH manifolds

Flag manifolds

e the nodes i and j are joined by aj;a;; edges,

o if |a;| > |a;| the edge is directed towards the node i.




Fano manifolds
and P! -fibrations

Gortrs Dynkin diagrams
of (semi)simple Lie algebras
S O—O0——0mrrem 0—0—0 A, SLu
Cartan decomposition |~~~ ; e Bn S02n+ 1

SFpmEs CLASSICAL
Dynkin diagrams O——0O—0O s O—0O=<0 C, Spwm

RH manifolds Dﬂ Sozn
Flag manifolds
o O_I_O_O Es

Fibrations and

reflections
Dynkin diagram

S EXCEPTIONAL
o—o—I—o—o—o—o Eg

Positivity of the




Fano manifolds
and P -fibrations

Lo Rational homogeneous manifolds

Motivation Subgroups P C G s.t. G/P is a projective variety are called parabolic.

Fano bundles

‘The problem

Lie Algebras
Cartan decomposition
Cartan matrix

Dynkin diagrams

Rational
homogeneous
manifolds
RH manifolds
Flag manifolds
Homogeneous
models

Fibrations and
reflections

Dynkin diagram

amelson

Construction
Properties
Uniqueness
Campana-
Peternell
Conjecture
Positivity of the
tangent bundle
Campana-Peternell
Conjecture



Fano manifolds
and P! -fibrations

Gianluca
Occhetta

Fano bundles

The problem

Cartan decomposition

RH manifolds

Flag manifolds

Fibrations and
reflections

Dynkin diagram

Construction

Properties

Uniqueness

Rational homogeneous manifolds
Subgroups P C G s.t. G/P is a projective variety are called parabolic.

A parabolic subgroup is determined by the choice of a set of simple
roots, i.e. by a subset I C D, and the corresponding variety is denoted by
marking the nodes of 1.



Fano manifolds
and P! -fibrations

Gianluca Rational homogeneous manifolds

Occhetta

Subgroups P C G s.t. G/P is a projective variety are called parabolic.

Fano bundles

e A parabolic subgroup is determined by the choice of a set of simple
roots, i.e. by a subset I C D, and the corresponding variety is denoted by
marking the nodes of 1.

Example
RH manifolds Set G = SL(4)

Flag manifolds

Fibrations and

reflections

Dynkin




Fano manifolds
and P! -fibrations

Gianluca Rational homogeneous manifolds

Occhetta

Subgroups P C G s.t. G/P is a projective variety are called parabolic.

Fano bundles

e A parabolic subgroup is determined by the choice of a set of simple
roots, i.e. by a subset I C D, and the corresponding variety is denoted by
marking the nodes of 1.

Example
RH manifolds Set G = SL(4)

P G(1,3) S

Fibrations and




Fano manifolds
and P! -fibrations

Gianluca
Occhetta

RH manifolds

Flag manifolds

Rational homogeneous manifolds
Subgroups P C G s.t. G/P is a projective variety are called parabolic.

A parabolic subgroup is determined by the choice of a set of simple
roots, i.e. by a subset I C D, and the corresponding variety is denoted by
marking the nodes of 1.

Set G = SL(4)
&—0O—oO o0—e—oO o—O0——=o
P3 G(1,3) (P3)*

e—e—O O—0—o 60—

F(0,1) F(1,2) F(0,2)




Fano manifolds
and P! -fibrations

Gianluca
Occhetta

RH manifolds

Flag manifolds

Rational homogeneous manifolds
Subgroups P C G s.t. G/P is a projective variety are called parabolic.

A parabolic subgroup is determined by the choice of a set of simple
roots, i.e. by a subset I C D, and the corresponding variety is denoted by
marking the nodes of 1.

Set G = SL(4)
&—0O—oO o0—e—oO o—O0——=o
P3 G(1,3) (P3)*

e—e—O O—0—o 60—

F(0,1) F(1,2) F(0,2)

F(0,1,2)




Fano manifolds
and P -fibrations

e Complete flag manifolds

Motivation
Fano bundles

‘The problem

Lie Algebras A complete flag manifold G/B is a rational homogeneous manifolds s.t.
o™ inits Dynkin diagram all the nodes are marked. B, called Borel
B subgroup, is the smallest parabolic subgroup.

Rational
homogeneous
manifolds

RH manifolds
Flag manifolds

Homogeneous
models

Fibrations and
reflections
Dynkin diagram

Bott-Samelson

varieties
Construction
Properties
Uniqueness

Campana-

Peternell

Conjecture

Positivity of the
4 bundle
Campana-Peternell
Conjecture



Fano manifolds
and P! -fibrations

Ceaheen Complete flag manifolds

Fano bundles

The problem

A complete flag manifold G/B is a rational homogeneous manifolds s.t.
o in its Dynkin diagram all the nodes are marked. B, called Borel
B subgroup, is the smallest parabolic subgroup.

Cartan decomposition

trix

If D = A, then G/B is the manifold parametrizing complete flags of
il linear subspaces in P".

Flag manifolds

Fibrations and
reflections

Dynkin diagram

Construction
Properties

Uniqueness

Positivity of the




Fano manifolds
and P! -fibrations

Gianluca
Occhetta

Fano bundles

The problem

Cartan decomposition

RH manifolds

Flag manifolds

Fibrations and
reflections

Dynkin diagram

Construction

Properties

Uniqueness

Complete flag manifolds

A complete flag manifold G/B is a rational homogeneous manifolds s.t.
in its Dynkin diagram all the nodes are marked. B, called Borel
subgroup, is the smallest parabolic subgroup.

If D = A, then G/B is the manifold parametrizing complete flags of
linear subspaces in P".

e Elementary contractions of G/B are P!-bundles.



Fano manifolds
and P! -fibrations

Gianluca

Ceanee Complete flag manifolds

Fano bundles

The problem

A complete flag manifold G/B is a rational homogeneous manifolds s.t.
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flag manifold.
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Complete flag manifolds

A complete flag manifold G/B is a rational homogeneous manifolds s.t.
in its Dynkin diagram all the nodes are marked. B, called Borel
subgroup, is the smallest parabolic subgroup.

If D = A, then G/B is the manifold parametrizing complete flags of
linear subspaces in P".

e Elementary contractions of G/B are P!-bundles.

o Every rational homogenous manifold is dominated by a complete
flag manifold.

e Iff: Z — G/B is a surjective morphism from a rational
homogenous manifold, then Z = G/B x Z', and f is the projection.



Cartan matrix

Geometric interpretation

«O>» «F»r» « >

«E>

DA



Fano manifolds
and P -fibrations

Gianluca
Occhetta

Motivation
Fano bundles

‘The problem

Lie Algebras
Cartan decomposition
Cartan matrix

Dynkin diagrams

Rational
homogeneous
manifolds

RH manifolds
Flag manifolds
Homogeneous

models

Fibrations and
reflections

Dynkin diagram
Bott-Samelson
varieties
Construction
Properties
Uniqueness
Campana-
Peternell
Conjecture

P y of the
tangent bundle

Campana-Peternell
Conjecture

Cartan matrix
Geometric interpretation

G/B complete flag manifold, with Dynkin diagram D.



Fano manifolds
and P -fibrations

e Cartan matrix
Geometric interpretation

Motivation
Fano bundles

‘The problem

Lie Algebras
Cartan decomposition

Cartan matrix

P G/B complete flag manifold, with Dynkin diagram D.
Rational
manifolds

B e pi: G/B — G/P' elementary contraction corresponding to the
Flag manifolds K X
unmarking of node i;

Homogeneous
models

Fibrations and
reflections
Dynkin diagram

Bott-Samelson

varieties
Construction
Properties
Uniqueness

Campana-

Peternell

Conjecture

Positivity of the
4 bundle
Campana-Peternell
Conjecture



Fano manifolds
and P -fibrations

e Cartan matrix
Geometric interpretation

Motivation
Fano bundles

‘The problem

Lie Algebras
Cartan decomposition

Cartan matrix

R G/B complete flag manifold, with Dynkin diagram D.
Rational

homogeneous

manifolds

B e pi: G/B — G/P' elementary contraction corresponding to the
Flag manifolds K X
unmarking of node i;

Homogeneous
models

Fibrations and o Fi fiber Ofpi;
reflections
Dynkin diagram
Bott-Samelson
varieties
Construction
Properties
Uniqueness
Campana-
Peternell
Conjecture

Positivity of the
4 bundle
Campana-Peternell
Conjecture



Fano manifolds
and P! -fibrations

e Cartan matrix
Geometric interpretation

Motivation
Fano bundles
‘The problem

Lie Algebras

Car

decomposition

Cartan matrix

P G/B complete flag manifold, with Dynkin diagram D.
Rational

homogeneous

manifolds

RH manifolds

e pi: G/B — G/P' elementary contraction corresponding to the
unmarking of node i;

Flag manifolds

Homogeneous
models

Fibrations and o Fi fiber Ofpi;
reflections

Pk diea e —K; = —Kg/p + pi Kg/p relative anticanonical.
Bott-Samelson

varieties

Construction

Properties

Uniqueness

Campana-

Peternell

Conjecture

Positivity of the

Conjecture



Fano manifolds
and P! -fibrations

Gianluca

Ocehtn Cartan matrix
Geometric interpretation

Fano bundles

The problem

Cartan decomposition

G/B complete flag manifold, with Dynkin diagram D.

RH manifolds

e pi: G/B — G/P' elementary contraction corresponding to the

Flag manifolds
unmarking of node i;
Fibrations and ° Fi fiber of Dis
reflections
R e —K; = —Kg/p + pi Kg/p relative anticanonical.

Construction

Propertie The Cartan matrix of D is the intersection matrix —K; - C;.

Uniqueness

Positivity of the




Fano manifolds
and P -fibrations

Gianluca
Occhetta

Motivation
Fano bundles

‘The problem

Lie Algebras
Cartan decomposition
Cartan matrix

Dynkin diagrams

Rational

Fano manifolds whose elementary

manifolds

RH manifolds

R contractions are smooth P!-fibrations

Homogeneous
models

Fibrations and
reflections

Dynkin diagram

Bott-Samelson

varieties
Construction
Properties

Uniqueness

mpana-
Peternell
Conjecture

Positivity of the
tangent bundle

Campana-Peternell
Conjecture



Notation

X Fano manifold with Picard number 7.

«O>» «F»r» « >

«E>

DA



Fano manifolds
and P -fibrations

EEne Notation

Motivation
Fano bundles

‘The problem

Lie Algebras
Cartan decomposition

Cartan matrix

Dynkin diagrams X Fano manifold with Picard number 7.

Rational
homogeneous

manifolds 7; - X — X' elementary contration.

RH manifolds
Flag manifolds
Homogeneous

models

Fibrations and
reflections

Dynkin diagram
Bott-Samelson
varieties
Construction
Properties
Uniqueness
Campana-
Peternell
Conjecture

P y of the
tangent bundle

Campana-Peternell
Conjecture



Fano manifolds
and P -fibrations

Gianluca
Occhetta

Motivation
Fano bundles

‘The problem

Lie Algebras
Cartan decomposition
Cartan matrix
Dynkin diagrams

Rational

homogeneous
manifolds

RH manifolds

Flag manifolds

Homogeneous
models

Fibrations and
reflections

Dynkin diagram
Bott-Samelson
varieties
Construction
Properties
Uniqueness
Campana-
Peternell
Conjecture

Positivity of the
tangent bundle

X Fano manifold with Picard number 7.

7 : X — X' elementary contration.

K;

relative canonical.

Notation



Fano manifolds
and P -fibrations

Gianluca
Occhetta

Motivation
Fano bundles
‘The problem
Lie Algebras
Cartan decomposition
Cartan matrix
Dynkin diagrams
Rational

homogeneous
manifolds

RH manif

lds
Flag manifolds
Homogeneous

models

Fibrations and
reflections

Dynkin diagram

Bott
varieties

amelson

Construction
Properties
Uniqueness

Campana-

Peternell

Conjecture
Positivity of the
tangent bundle

Campana-Peternell
Conjecture

X Fano manifold with Picard number n.
7 : X — X' elementary contration.
K; relative canonical.

T; fiber of ;.

Notation



Fano manifolds
and P -fibrations

Gianluca

G Notation

Motivation
Fano bundles

‘The problem

Lie Algebras
Cartan decomposition

Cartan matrix . . .
Dynkin diagrams X Fano manifold with Picard number 7.

Rational
manifolds m; : X — X' elementary contration.
RH manifolds

Flag manifolds

S K; relative canonical.

models

Fibrations and
reflections

Dynkin diagram Fi ﬁber Of .

Bott
varieties

Construction D = {1, NN ,n}.

Properties

amelson

Uniqueness

Campana-
Peternell
Conjecture
Positivity of the
t b

tang ndle

Campana-Peternell
Conjecture



Fano manifolds
and P! -fibrations

Giantacs Reflection group
Relative duality

Fano bundles

The problem

Cartan decomposition

7 : M — Y smooth P'-fibration (M,Y smooth).
T fiber, K relative canonical, D divisoron M, | := D - T'.

RH manifolds

Flag manifolds Hi ( M7 D)
H'(M,D)

l12

Hi+Sgn(l+1)(M7D +(+1)K),VieZ, sel #+—1
{0} foreveryic Z, ifl = —1.

14

Fibrations and
reflections

Dynkin diagram

Construction

Properties

X(M,D) = —X(M,D + (I + 1)K)




Fano manifolds
and P -fibrations

Gianluca

Ocenetn Reflection group

Motivation
Fano bundles

‘The problem

For every contraction 7; : X — X let us consider the affine involution
Lie Algebras /. 1 1

Cartan decomposition ri . N (X ) — N (X )
Cartan matrix

Dynkin diagrams /
Rati |; ri(D) :D+(Drl+1)Kl
homogeneous

manifolds

RH manifolds

Flag manifolds
Homogeneous
models

Fibrations and
reflections

Dynkin diagram

Construction

Properties

Uniqueness
Campana-
Peternell
Conjecture

Positivity of the
tangent bundle

Campana-Peternell
Conjecture



Fano manifolds
and P! -fibrations

Gianluca
Occhetta

Fano bundles

The problem

Cartan decomposition

RH manifolds

Flag manifolds

Fibrations and
reflections

Dynkin diagram

Construction
Properties

Uniqueness

Positivity of the
4 bundle
Campa
Conjecture

Peternell

Reflection group

For every contraction 7; : X — X let us consider the affine involution
rl  NY(X) — N'(X)

/

Setting (D) := D + Kx/2 the maps r; := T~! o} o T are liner
involutions of N'(X) given by
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For every contraction 7; : X — X let us consider the affine involution
rl  NY(X) — N'(X)

ri(D):=D+ (D-T;+ 1)K;.

Setting (D) := D + Kx/2 the maps r; := T~! o} o T are liner
involutions of N'(X) given by
ri(D) =D+ (D -T))K;,
We have r;(K;) = —K; and r; fixes pointwise the hyperplane
M; = {D|D-T; =0} Cc N'(X).

Let W C GI(N'(X)) be the group generated by the ;’s.
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there is a scalar product (, ) on N!(X), which is W-invariant. In
particular the r;’s are euclidean reflections.

Moreover

D, K;
-D-T;= 2“7?, for every i.

<Ki7 K1>
The set

O :={w(-K)|lweWw, i=1,...,n} C N (X),

is a root system, whose Weyl group is W.

The Cartan matrix A of this root system is the n x n matrix with entries
ajj 1= —K; - Fj € 7.
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If s = r we set Zy,; := {x} and f;,; : {x} — X is the inclusion.
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Bott-Samelson varieties

xeX, t=(ly,...,I,),l; € D,and £[s] := (L1, ..., L—s).

We introduce manifolds Zy,, with morphisms fy : Z,) — X, called
Bott-Samelson varieties associated with the subsequences £[s], in the
following way:

If s = r we set Zy,; := {x} and f;,; : {x} — X is the inclusion.
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Bott-Samelson varieties associated with the subsequences £[s], in the
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If s = r we set Zy,; := {x} and f;,; : {x} — X is the inclusion.

If s < r we build Zy on Zyj, ) in the following way:

fers)

Zyyg ———=X

Sesen
Pefs+1] Ty

ZE[H']] 8e[s+1] Xl’—“
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Ools+1] | | Pefs+1] ¢ T
2[s+1]
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Zyy —=X

Oels+1] | | Pefs+1] g T,
Sers+1)
Z _—
Z[SJFI] 8e[s+1] lr—s

the map fy[;y1) factors via Zy, and gives a section o[ 1] di pjet1)-

In particular py[;yq) is a P'-bundle, given by the projectivization of an
extension Fy[, of OZ@[M] with OZz[m] (fl*[s-i-l] (Ki,_,)):

0— OZ@[:-H] (fl*[erl] (Klyﬂ-)) — ]:E[S} — OZ@[.y+l] — 0,

determined by () € Hl(ze[s+1]7f£k[s+1] (Ki_)).
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Given w € W, lits length A(w) is the minimum # such that

w = r; o ---or;; such an expression for w is called reduced.

reltiom In W there exists a unique wy of length dim X, and all the other elements
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Geometric interpretation

The image of Z, in X is the set of points belonging to chains of rational
curves I';,I';, ... T, starting from x.

In the homogeneous case such loci are the Schubert varieties.

Given w € W, lits length A(w) is the minimum # such that

w =r;, o---or;;such an expression for w is called reduced.

In W there exists a unique wy of length dim X, and all the other elements
are shorter.

In the homogeneous case dimf;(Z;) = A(w({)); moreover, if w(¢) is
reduced then f; : Z, — f(Z,) is birational.
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Geometric interpretation

The image of Z, in X is the set of points belonging to chains of rational
curves I';,I';, ... T, starting from x.

In the homogeneous case such loci are the Schubert varieties.

Given w € W, lits length A(w) is the minimum # such that

w =r;, o---or;;such an expression for w is called reduced.

In W there exists a unique wy of length dim X, and all the other elements

are shorter.

In the homogeneous case dimf;(Z;) = A(w({)); moreover, if w(¢) is
reduced then f; : Z, — f(Z,) is birational.

We show that the same properties hold in general.
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Uniqueness

Zy is defined by the extension

0— Osz (fe*[l](K,r)) — Fr — OZem — 0.

One shows easily that the following are equivalent
° Fi OZe[l] (fé*[l](Kl.-)) @ OZZ[I];
o W (Zo)o S (K)) = 0;

e the index j does not appear in £[1].

So we have to show that if the index j appears in £[1] then
W' (Zopy f7 (Kj)) < 1.
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Results:
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Campana-Peternell Conjecture
A possible strategy

In the paper in which the conjecture is introduced, Campana and
Peternell proposed the following approach:
@ Prove the conjecture for CP-manifolds with Picard number one.

® Show that, given a CP-manifold X and a contractionf : X — Y,
from the homogeneity of Y and of the fibers of f/ one can
reconstruct the homogeneity of X.

The Picard number one case turned out to be very difficult.
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Campana-Peternell Conjecture
A possible strategy

In the paper in which the conjecture is introduced, Campana and
Peternell proposed the following approach:

@ Prove the conjecture for CP-manifolds with Picard number one.

® Show that, given a CP-manifold X and a contractionf : X — Y,
from the homogeneity of Y and of the fibers of f/ one can
reconstruct the homogeneity of X.

The Picard number one case turned out to be very difficult.

A possible alternative strategy is:
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Campana-Peternell Conjecture
A possible strategy

In the paper in which the conjecture is introduced, Campana and
Peternell proposed the following approach:

@ Prove the conjecture for CP-manifolds with Picard number one.

® Show that, given a CP-manifold X and a contractionf : X — Y,
from the homogeneity of Y and of the fibers of f/ one can
reconstruct the homogeneity of X.

The Picard number one case turned out to be very difficult.
A possible alternative strategy is:

@ Prove the conjecture for CP-manifolds with “maximal” Picard
number.
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The problem

In the paper in which the conjecture is introduced, Campana and
Peternell proposed the following approach:

@ Prove the conjecture for CP-manifolds with Picard number one.

® Show that, given a CP-manifold X and a contractionf : X — Y,
S from the homogeneity of Y and of the fibers of f/ one can
reconstruct the homogeneity of X.

Fibrations and

The Picard number one case turned out to be very difficult.
A possible alternative strategy is:

@ Prove the conjecture for CP-manifolds with “maximal” Picard
number.

® Show that any CP-manifold is dominated by a CP-manifold with
“maximal” Picard number.
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