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Fano bundles

A vector bundle E on a smooth complex projective variety X is a Fano
bundle iff PX(E) is a Fano manifold.

If E is a Fano bundle on X then X is a Fano manifold.

Fano bundles of rank 2 on projective spaces and quadrics have been
classified in the ’90s (Ancona, Peternell, Sols, Szurek, Wiśniewski).

Generalization: Classification of Fano bundles of rank 2 on (Fano)
manifolds with b2 = b4 = 1 (Muñoz, , Solá Conde, 2012).

Later the assumption b4 = 1 was removed by Watanabe.
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Varieties with two P1-bundle structures

As a special case we have the classification of Fano manifolds of Picard
number two with two P1-bundle structures.

X Y Bundle
P1 P1 O ⊕O
P2 P2 TP2

P3 Q3 N
Q3 P3 S
Q5 K(G2) C

K(G2) Q5 Q

• N Null-correlation bundle;
• S spinor bundle;
• C Cayley bundle;
• Q universal quotient bundle.
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Varieties with two P1-bundle structures
A different perspective

Theorem

A Fano manifold with Picard number 2 and two P1-bundle structures is
isomorphic to a complete flag manifold of type A1 × A1, A2, B2 or G2.
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Generalization

• Classify Fano manifolds whose elementary contractions are
P1-bundles (o P1-fibrations).

• Understand the relation between P1-fibrations and homogeneity (if
any).

Theorem

X Fano manifold whose elementary contractions are smooth P1-
fibrations such that X is not a product. If dim X 6= 24 then X is
a complete flag manifold.
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Lie algebras and complete flags
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Lie Algebras
Cartan decomposition

G semisimple Lie group, g associated Lie algebra,

h ⊂ g Cartan subalgebra (maximal abelian subalgebra).

The action of h on g defines an eigenspace decomposition, called Cartan
decomposition of g:

g = h⊕
⊕

α∈h∨\{0}

gα.

The spaces gα are defined by

gα = {g ∈ g | [h, g] = α(h)g, for every h ∈ h} ,

and the elements α ∈ h∨ \ {0} such that gα 6= 0 are called roots of g.
The (finite) set Φ of such elements is called root system of g.

A basis of h∨ formed by elements of Φ such that the coordinates of
every element of Φ are integers, all ≥ 0 or all ≤ 0 is a system of simple
roots of g.
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Lie Algebras
Weyl group

On the space h∨ there is a symmetric bilinear form κ coming from the
Killing form of g; this form, restricted to the real vector space E
generated by the roots is positive definite.

The root system Φ is invariant with respect to the isometries of (E, κ)
defined by:

σα(x) = x− 〈x, α〉α, where 〈x, α〉 := 2
κ(x, α)

κ(α, α)
.

which are the reflections with respect to the roots.

W ⊂ Gl(E) generated by {σα, α ∈ Φ} is the Weyl group of g.
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generated by the roots is positive definite.

The root system Φ is invariant with respect to the isometries of (E, κ)
defined by:

σα(x) = x− 〈x, α〉α, where 〈x, α〉 := 2
κ(x, α)

κ(α, α)
.

which are the reflections with respect to the roots.

W ⊂ Gl(E) generated by {σα, α ∈ Φ} is the Weyl group of g.
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Lie Algebras
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Given a set of simple roots {α1, . . . , αn} of g, the Cartan matrix di g is
the matrix whose entries are the integers 〈αi, αj〉.

A and all its principal minors are positive definite and moreover

• aii = 2 for every i,
• aij = 0 iff aji = 0,
• if aij 6= 0, i 6= j, then aij, aji ∈ Z− and aijaji = 1, 2 or 3.

In particular the possible 2× 2 principal minors are (up to transposition)(
2 0
0 2

) (
2 −1
−1 2

) (
2 −1
−2 2

) (
2 −1
−3 2

)
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Lie Algebras
Dynkin diagrams

Set D = {1, . . . , n}, where n is the number of simple roots of g. With the
matrix A is associated a finite Dynkin diagram D, in the following way

• D is a graph whose set of nodes is D,
• the nodes i and j are joined by aijaji edges,
• if |aij| > |aji| the edge is directed towards the node i.
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Dynkin diagrams
of (semi)simple Lie algebras

An SLn+1

Bn SO2n+1
CLASSICAL

Cn Sp2n

Dn SO2n

E6

E7
EXCEPTIONAL

E8

F4

G2
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Rational homogeneous manifolds
Subgroups P ⊂ G s.t. G/P is a projective variety are called parabolic.

A parabolic subgroup is determined by the choice of a set of simple
roots, i.e. by a subset I ⊂ D, and the corresponding variety is denoted by
marking the nodes of I.

Example
Set G = SL(4)

P3 G(1, 3) (P3)∗

F(0, 1) F(1, 2) F(0, 2)

F(0, 1, 2)
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Complete flag manifolds

A complete flag manifold G/B is a rational homogeneous manifolds s.t.
in its Dynkin diagram all the nodes are marked. B, called Borel
subgroup, is the smallest parabolic subgroup.

If D = An, then G/B is the manifold parametrizing complete flags of
linear subspaces in Pn.

• Elementary contractions of G/B are P1-bundles.

• Every rational homogenous manifold is dominated by a complete
flag manifold.

• If f : Z → G/B is a surjective morphism from a rational
homogenous manifold, then Z = G/B× Z′, and f is the projection.
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Cartan matrix
Geometric interpretation

G/B complete flag manifold, with Dynkin diagram D.

• pi : G/B→ G/Pi elementary contraction corresponding to the
unmarking of node i;

• Γi fiber of pi;
• −Ki = −KG/B + p∗i KG/Pi relative anticanonical.

The Cartan matrix of D is the intersection matrix −Ki · Cj.
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πi : X → Xi elementary contration.

Ki relative canonical.

Γi fiber of πi.

D = {1, . . . , n}.
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Reflection group
Relative duality

Lemma

π : M → Y smooth P1-fibration (M,Y smooth).
Γ fiber, K relative canonical, D divisor on M, l := D · Γ.

Hi(M,D) ∼= Hi+sgn(l+1)(M,D + (l + 1)K),∀i ∈ Z, se l 6= −1
Hi(M,D) ∼= {0} for every i ∈ Z, if l = −1.

Corollary
χ(M,D) = −χ(M,D + (l + 1)K)
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Reflection group

For every contraction πi : X → X let us consider the affine involution
r′i : N1(X)→ N1(X)

r′i(D) := D + (D · Γi + 1)Ki.

Setting T(D) := D + KX/2 the maps ri := T−1 ◦ r′i ◦ T are liner
involutions of N1(X) given by

ri(D) = D + (D · Γi)Ki,

We have ri(Ki) = −Ki and ri fixes pointwise the hyperplane

Mi := {D|D · Γi = 0} ⊂ N1(X).

Let W ⊂ Gl(N1(X)) be the group generated by the ri’s.
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Reflection group
Finiteness

Let χX : N1(X)→ R be the polynomial (of degree ≤ dim X) such that

χX(m1, . . . ,mn) = χ(X,m1K1 + · · ·+ mnKn)

and let χT
X := χX ◦ T .

Lemma

For every R-divisor D and every ri χT
X(D) = −χT

X(ri(D)).

Corollary

For every R-divisor D and every w ∈ W χT
X(D) = ±χT

X(w(D)).

Theorem
W is a finite group.
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Cartan matrix

there is a scalar product 〈 , 〉 on N1(X), which is W-invariant. In
particular the ri’s are euclidean reflections.

Moreover

−D · Γi = 2
〈D,Ki〉
〈Ki,Ki〉

, for every i.

The set

Φ := {w(−Ki) |w ∈ W, i = 1, . . . , n} ⊂ N1(X),

is a root system, whose Weyl group is W.

The Cartan matrix A of this root system is the n× n matrix with entries
aij := −Ki · Γj ∈ Z.
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By the properties of root systems

• aii = 2 for every i,
• aij = 0 iff aji = 0,
• se aij 6= 0, i 6= j, then aij, aji ∈ Z and aijaji = 1, 2 o 3.

Using geometric properties of X one can show that aij with i 6= j are
nonpositive.

S //

��

X

πi

��
Γj

sj

HH ??

πi|Γj

// Xi

As a consequence we can show

Theorem
Every connected component ofD is one of the following:
An, Bn, Cn, Dn, E6, E7, E8, F4, or G2.
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S //

��

X

πi

��
Γj

sj

HH ??

πi|Γj

// Xi

As a consequence we can show

Theorem
Every connected component ofD is one of the following:
An, Bn, Cn, Dn, E6, E7, E8, F4, or G2.
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Homogeneous models

We associate with X a semi simple Lie group G, determined by D.

Given a Borel subgroup B we consider the morphism

ψ : N1(X)→ N1(G/B), defined by ψ(Ki) = Ki.

Proposition

Λ ⊂ Pic(X) generated by the Ki’s.
• dim X = dim G/B;
• hi(X,D) = hi(G/B, ψ(D)) for every D ∈ Λ, i ∈ Z.
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Bott-Samelson varieties

x ∈ X, ` = (l1, . . . , lr), li ∈ D, and `[s] := (l1, . . . , lr−s).

We introduce manifolds Z`[s], with morphisms f`[s] : Z`[s] → X, called
Bott-Samelson varieties associated with the subsequences `[s], in the
following way:

If s = r we set Z`[r] := {x} and f`[r] : {x} → X is the inclusion.

If s < r we build Z`[s] on Z`[s+1] in the following way:

Z`[s]
f`[s] //

p`[s+1]

��

X

Z`[s+1]

f`[s+1]

<<

g`[s+1]
// Xlr−s
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Bott-Samelson varieties

Z`[s]
f`[s] //

p`[s+1]

��

X

πlr−s

��
Z`[s+1]

σ`[s+1]

JJ

f`[s+1]

<<

g`[s+1]
// Xlr−s

the map f`[s+1] factors via Z`[s], and gives a section σ`[s+1] di p`[s+1].

In particular p`[s+1] is a P1-bundle, given by the projectivization of an
extension F`[s] of OZ`[s+1] with OZ`[s+1](f ∗`[s+1](Klr−s)):

0→ OZ`[s+1](f ∗`[s+1](Klr−s)) −→ F`[s] −→ OZ`[s+1] → 0,

determined by ζ`[s] ∈ H1(Z`[s+1], f ∗`[s+1](Klr−s)).
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Bott-Samelson varieties
Geometric interpretation

The image of Z` in X is the set of points belonging to chains of rational
curves Γl1 ,Γl2 . . .Γlr starting from x.

In the homogeneous case such loci are the Schubert varieties.

Given w ∈ W, lits length λ(w) is the minimum t such that
w = ri1 ◦ · · · ◦ rit ; such an expression for w is called reduced.
In W there exists a unique w0 of length dim X, and all the other elements
are shorter.

In the homogeneous case dim f`(Z`) = λ(w(`)); moreover, if w(`) is
reduced then f` : Z` → f (Z`) is birational.

We show that the same properties hold in general.
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Bott-Samelson varieties
Uniqueness

X, with connected diagram D, G/B homogeneus model, ` sequence.

Z`,Z` Bott-Samelson varieties of X and G/B

Let `0 be a list corresponding to the longest element in W: w(`0) = w0.
If Z`0 ' Z`0 , then X ' G/B.

Proposizione

If D 6= F4,G2 there exists ` = (l1, . . . , lm) with w(`) = w0 such
that Z`[s] ' Z`[s] for every s = 0, . . . ,m− 1.
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Bott-Samelson varieties
Uniqueness

Z` is defined by the extension

0→ OZ`[1](f ∗`[1](Klr )) −→ F` −→ OZ`[1] → 0.

One shows easily that the following are equivalent

• F` ' OZ`[1](f ∗`[1](Klr ))⊕OZ`[1] ;

• h1(Z`[1], f ∗` (Kj)) = 0;
• the index j does not appear in `[1].

So we have to show that if the index j appears in `[1] then
h1(Z`[1], f ∗` (Kj)) ≤ 1.
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h1(Z`[1], f ∗` (Kj)) ≤ 1.
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Special cases

• G2: no expression (there are 2) of w0 works. An (easy) ad hoc
argument is possible.

• F4: no expression (there are 2144892) of w0 works. We are
working on an ad hoc argument.
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Positivity of the tangent bundle
X smooth complex projective variety.

Theorem (Mori (1979))
TX ample⇔ X = Pm.

• TX nef⇒ ??
• Examples:

Abelian

Homogeneous manifolds

22

,,
Razional,

G
P

=
Semisimple
Parabolic

Theorem (Demailly, Peternell and Schneider (1994))

TX nef⇒

{
X étale←− X′ F−→ A

A Abelian, F Fano, TF nef
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Campana-Peternell Conjecture

Conjecture (Campana-Peternell (1991))
Every Fano manifold with nef tangent bundle is homogeneous.

Definition
A CP-manifold is a Fano manifold with nef tangent bundle.

Results:
2� dim X = 3 [Campana Peternell(1991)]
2� dim X = 4 [CP (1993), Mok (2002), Hwang (2006)]
2� dim X = 5 e ρX > 1 [Watanabe (2012)]
2� TX big e 1-ample [Solá-Conde Wiśniewski (2004)]

• The above results are based on detailed classifications of the
manifolds satisfying the required properties;

• homogeneity is checked a posteriori.
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Campana-Peternell Conjecture
A possible strategy

In the paper in which the conjecture is introduced, Campana and
Peternell proposed the following approach:

1 Prove the conjecture for CP-manifolds with Picard number one.
2 Show that, given a CP-manifold X and a contraction f : X → Y ,

from the homogeneity of Y and of the fibers of f one can
reconstruct the homogeneity of X.

The Picard number one case turned out to be very difficult.

A possible alternative strategy is:

1 Prove the conjecture for CP-manifolds with “maximal” Picard
number.

2 Show that any CP-manifold is dominated by a CP-manifold with
“maximal” Picard number.
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Campana-Peternell Conjecture
A possible strategy

In the paper in which the conjecture is introduced, Campana and
Peternell proposed the following approach:

1 Prove the conjecture for CP-manifolds with Picard number one.
2 Show that, given a CP-manifold X and a contraction f : X → Y ,

from the homogeneity of Y and of the fibers of f one can
reconstruct the homogeneity of X.

The Picard number one case turned out to be very difficult.

A possible alternative strategy is:

1 Prove the conjecture for CP-manifolds with “maximal” Picard
number.

2 Show that any CP-manifold is dominated by a CP-manifold with
“maximal” Picard number.
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