Gianluca Occhetta

Introduction

Fano bundles

Varieties with two $\operatorname{\mathbb{P}}^1$ -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

A geometric characterization of flag manifolds

Gianluca Occhetta

with R. Muñoz, L.E. Solá Conde, K. Watanabe and J. Wiśniewski

Carry-le-Rouet, May 2016

ション ふゆ く は く は く む く む く し く

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and

contractions

Flag manifolds

Main result

Statement

Relative duality

Reflection

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Definition

A vector bundle \mathcal{E} on a smooth complex projective variety X is called a Fano bundle iff $\mathbb{P}_{X}(\mathcal{E})$ is a Fano manifold.

Fano bundles

ション ふゆ く は く は く む く む く し く

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and

Elag manifolde

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Definition

A vector bundle \mathcal{E} on a smooth complex projective variety X is called a Fano bundle iff $\mathbb{P}_{X}(\mathcal{E})$ is a Fano manifold.

Fano bundles

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

If \mathcal{E} is a Fano bundle on X then X is a Fano manifold.

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and

Flag manifolds

Main result

Statement

Relative dualit

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Definition

A vector bundle \mathcal{E} on a smooth complex projective variety X is called a Fano bundle iff $\mathbb{P}_{X}(\mathcal{E})$ is a Fano manifold.

If \mathcal{E} is a Fano bundle on X then X is a Fano manifold.

Some classification results:

 \square dim X = 2 [Szurek & Wiśniewski]

Fano bundles

ション ふゆ マ キャット マックシン

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and

Flag manifolds

Main result

Statement

Relative dualit

Reflection

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Definition

A vector bundle \mathcal{E} on a smooth complex projective variety X is called a Fano bundle iff $\mathbb{P}_{X}(\mathcal{E})$ is a Fano manifold.

If \mathcal{E} is a Fano bundle on X then X is a Fano manifold.

Some classification results:

 \square dim X = 2 [Szurek & Wiśniewski]

✓ Fano bundles of rank 2 on ℙ^m and ℚ^m [Ancona, Peternell, Sols, Szurek, Wiśniewski]

Fano bundles

うして ふむ くまく ふせく しゃくしゃ

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and

Flag manifolds

Main result

Statement

Relative dualit

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Definition

A vector bundle \mathcal{E} on a smooth complex projective variety X is called a Fano bundle iff $\mathbb{P}_{X}(\mathcal{E})$ is a Fano manifold.

If \mathcal{E} is a Fano bundle on X then X is a Fano manifold.

Some classification results:

 \square dim X = 2 [Szurek & Wiśniewski]

 Fano bundles of rank 2 on P^m and Q^m [Ancona, Peternell, Sols, Szurek, Wiśniewski]

Fano bundles of rank 2 on del Pezzo threefolds [Szurek & Wiśniewski]

Fano bundles

うつう 山田 エル・エー・ 山田 うらう

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contractio

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Generalization: Classification of Fano bundles of rank 2 on (Fano) manifolds with $b_2 = b_4 = 1$ (MOS, 2012).

Fano bundles

・ロト ・ 画 ・ ・ 画 ・ ・ 目 ・ うへぐ

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Fano bundles

ション ふゆ マ キャット マックシン

Generalization: Classification of Fano bundles of rank 2 on (Fano) manifolds with $b_2 = b_4 = 1$ (MOS, 2012).

As a special case we have the classification of Fano manifolds of Picard number two (and $b_4 = 2$) with two \mathbb{P}^1 -bundle structures.

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contraction

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Generalization: Classification of Fano bundles of rank 2 on (Fano) manifolds with $b_2 = b_4 = 1$ (MOS, 2012).

As a special case we have the classification of Fano manifolds of Picard number two (and $b_4 = 2$) with two \mathbb{P}^1 -bundle structures.

Later the assumption on b_4 was removed by Watanabe (2013).

Fano bundles

うして ふゆう ふほう ふほう ふしつ

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contraction

Flag manifolds

Main result

Statement

Relative dualit

Reflections

Homogeneous mode

Bott-Samelson

Conclusion

Further results

Generalization: Classification of Fano bundles of rank 2 on (Fano) manifolds with $b_2 = b_4 = 1$ (MOS, 2012).

As a special case we have the classification of Fano manifolds of Picard number two (and $b_4 = 2$) with two \mathbb{P}^1 -bundle structures.

Later the assumption on b_4 was removed by Watanabe (2013).

Finally the assumption " \mathbb{P}^1 -bundle" was replaced by "smooth \mathbb{P}^1 -fibration" (MOSWa 2014).

Fano bundles

うして ふゆう ふほう ふほう ふしつ

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two ${\mathbb P}^1\text{-}{\rm fibrations}$

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and

contraction

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Varieties with two \mathbb{P}^1 -fibrations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and

Elag manifoldo

Main result

Statement

Relative duality

Reflection

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Varieties with two \mathbb{P}^1 -fibrations

ション ふゆ マ キャット マックシン

Theorem 1

A Fano manifold with Picard number 2 whose elementary contractions are \mathbb{P}^1 -fibrations is isomorphic to one of the following

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and

Flag manifolds

Main result

Statement

Relative duality

Reflection

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Varieties with two \mathbb{P}^1 -fibrations

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Theorem 1

A Fano manifold with Picard number 2 whose elementary contractions are \mathbb{P}^1 -fibrations is isomorphic to one of the following • $\mathbb{P}_{\mathbb{P}^1}(\mathfrak{O} \oplus \mathfrak{O})$

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and

Main result

Statement

Relative duality

Reflection

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Varieties with two \mathbb{P}^1 -fibrations

ション ふゆ マ キャット マックシン

Theorem 1

A Fano manifold with Picard number 2 whose elementary contractions are \mathbb{P}^1 -fibrations is isomorphic to one of the following

• $\mathbb{P}_{\mathbb{P}^1}(\mathbb{O}\oplus\mathbb{O})$

 $\bullet \ \mathbb{P}_{\mathbb{P}^2}(T_{\mathbb{P}^2})$

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

- A generalization
- RH manifolds
- Definition
- Dynkin diagrams
- Cone and
- contraction
- Flag manifolds

Main result

- Statement
- Relative duality
- Reflections
- Homogeneous model
- Bott-Samelson varieties
- Conclusion
- Further results

Varieties with two \mathbb{P}^1 -fibrations

うして ふむ くまく ふせく しゃくしゃ

Theorem 1

A Fano manifold with Picard number 2 whose elementary contractions are \mathbb{P}^1 -fibrations is isomorphic to one of the following

- $\mathbb{P}_{\mathbb{P}^1}(\mathbb{O}\oplus\mathbb{O})$
- $\mathbb{P}_{\mathbb{P}^2}(T_{\mathbb{P}^2})$
- $\mathbb{P}_{\mathbb{P}^3}(\mathbb{N}) = \mathbb{P}_{\mathbb{Q}^3}(\mathbb{S})$ \mathbb{N} Null-correlation , \mathbb{S} Spinor

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

- A generalization
- RH manifolds
- Definition
- Dynkin diagrams
- Cone and
- contraction
- Flag manifolds

Main result

- Statement
- Relative duality
- Reflections
- Homogeneous model
- Bott-Samelson varieties
- Conclusion
- Further results

Varieties with two \mathbb{P}^1 -fibrations

うして ふむ くまく ふせく しゃくしゃ

Theorem 1

A Fano manifold with Picard number 2 whose elementary contractions are \mathbb{P}^1 -fibrations is isomorphic to one of the following

- $\mathbb{P}_{\mathbb{P}^1}(\mathbb{O}\oplus\mathbb{O})$
- $\mathbb{P}_{\mathbb{P}^2}(T_{\mathbb{P}^2})$
- $\mathbb{P}_{\mathbb{P}^3}(\mathbb{N}) = \mathbb{P}_{\mathbb{O}^3}(\mathbb{S})$ \mathbb{N} Null-correlation , \mathbb{S} Spinor
- $\mathbb{P}_{\mathbb{Q}^5}(\mathbb{C}) = \mathbb{P}_{\mathsf{K}(\mathsf{G}_2)}(\mathbb{Q})$ \mathbb{C} Cayley, \mathbb{Q} universal quotient.

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

- A generalization
- RH manifolds
- Definition
- Dynkin diagrams
- Cone and
- contraction
- Flag manifolds

Main result

- Statement
- Relative duality
- Reflections
- Homogeneous model
- Bott-Samelson varieties
- Conclusion
- Further results

Varieties with two \mathbb{P}^1 -fibrations

うして ふむ くまく ふせく しゃくしゃ

Theorem 1

A Fano manifold with Picard number 2 whose elementary contractions are \mathbb{P}^1 -fibrations is isomorphic to one of the following

- $\mathbb{P}_{\mathbb{P}^1}(\mathbb{O}\oplus\mathbb{O})$
- $\mathbb{P}_{\mathbb{P}^2}(T_{\mathbb{P}^2})$
- $\mathbb{P}_{\mathbb{P}^3}(\mathcal{N}) = \mathbb{P}_{\mathbb{Q}^3}(\mathcal{S})$ \mathcal{N} Null-correlation , \mathcal{S} Spinor
- $\mathbb{P}_{\mathbb{Q}^5}(\mathbb{C}) = \mathbb{P}_{\mathsf{K}(\mathsf{G}_2)}(\mathbb{Q})$ \mathbb{C} Cayley, \mathbb{Q} universal quotient.

Remark

All the varieties appearing in the list are rational homogeneous

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two $\operatorname{\mathbb{P}}^1$ -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

A generalization

ション ふゆ く は く は く む く む く し く

Problem

Try to classify Fano manifolds whose elementary contractions are \mathbb{P}^1 -bundles - or just smooth \mathbb{P}^1 -fibrations.

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

- RH manifolds
- Definition
- Dynkin diagrams
- Cone and
- Elag manifolde
- Main result
- Statement
- Relative duality
- Reflections
- Homogeneous model
- Bott-Samelson varieties
- Conclusion
- Further results

A generalization

うして ふむ くまく ふせく しゃくしゃ

Problem

Try to classify Fano manifolds whose elementary contractions are \mathbb{P}^1 -bundles - or just smooth \mathbb{P}^1 -fibrations.

- The vector bundle approach seems difficult to apply to this more general situation.
- Is it possible to prove directly that these varieties are rational homogeneous?

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contractions

Flag manifolds

Main result

Statement

Relative duality

Reflection

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Rational homogeneous manifolds

うして ふむ くまく ふせく しゃくしゃ

Definition

A Borel subgroup B of a semisimple Lie group G is a maximal closed, connected solvable algebraic subgroup. A subgroup $P \supseteq B$ is called a parabolic subgroup.

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams Cone and contractions

Flag manifolds

Main result

Statement

Relative dualit

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Rational homogeneous manifolds

うして ふゆう ふほう ふほう ふしつ

Definition

A Borel subgroup B of a semisimple Lie group G is a maximal closed, connected solvable algebraic subgroup. A subgroup $P \supseteq B$ is called a parabolic subgroup.

For example, if $G = SL_{n+1}$, then the subgroup of invertible upper triangular matrices is a Borel subgroup, while the parabolic subgroups correspond to $\emptyset \neq I \subseteq \{1, \ldots, n\}$.

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams Cone and contractions

Main result

Rolativo dual

Reflections

Homogeneous model

Bott-Samelson

Conclusion

Further results

Rational homogeneous manifolds

ション ふゆ マ キャット マックシン

Definition

A Borel subgroup B of a semisimple Lie group G is a maximal closed, connected solvable algebraic subgroup. A subgroup $P \supseteq B$ is called a parabolic subgroup.

For example, if $G = SL_{n+1}$, then the subgroup of invertible upper triangular matrices is a Borel subgroup, while the parabolic subgroups correspond to $\emptyset \neq I \subseteq \{1, \ldots, n\}$.

If $I = \{a_1, \dots, a_k\}$ and $a_{k+1} := n + 1$, then P(I) is the subgroup

where the $B'_{i}s$ are square matrices of order $a_{j} - a_{j-1}$.

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contractions

Flag manifolds

Main result

Statement

Relative duality

Reflection

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Rational homogeneous manifolds

ション ふゆ く は く は く む く む く し く

Definition

A rational homogeneous manifold is the quotient of a semisimple Lie group G by a parabolic subgroup P.

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contractions

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Rational homogeneous manifolds

うして ふむ くまく ふせく しゃくしゃ

Definition

A rational homogeneous manifold is the quotient of a semisimple Lie group G by a parabolic subgroup P.

For example, if $G = SL_{n+1}$, setting

• $\{e_1, \ldots, e_{n+1}\}$ standard basis of \mathbb{C}^{n+1} ;

•
$$I = \{a_1, ..., a_k\} \subseteq \{1, ..., n\};$$

•
$$W_{\mathfrak{a}_{\mathfrak{i}}} = \langle \mathbf{e}_1, \ldots, \mathbf{e}_{\mathfrak{a}_{\mathfrak{i}}} \rangle$$

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contractions

Flag manifolds

Main result

Statement

Relative dualit

Reflections

Homogeneous model

Bott-Samelsor varieties

Conclusion

Further results

Rational homogeneous manifolds

うつう 山田 エル・エー・ 山田 うらう

Definition

A rational homogeneous manifold is the quotient of a semisimple Lie group G by a parabolic subgroup P.

For example, if $G = SL_{n+1}$, setting

• $\{e_1, \ldots, e_{n+1}\}$ standard basis of \mathbb{C}^{n+1} ;

•
$$I = \{a_1, \ldots, a_k\} \subseteq \{1, \ldots, n\};$$

•
$$W_{\mathfrak{a}_{\mathfrak{i}}} = \langle \mathbf{e}_1, \ldots, \mathbf{e}_{\mathfrak{a}_{\mathfrak{i}}} \rangle$$

 $\mathsf{P}(I)$ is the stabilizer - w.r.t. the $\operatorname{SL}_{n+1}\text{-}\operatorname{action}$ - of the flag

$$W_{\mathfrak{a}_1} \subset W_{\mathfrak{a}_2} \subset \cdots \subset W_{\mathfrak{a}_k}.$$

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

contractions

Flag manifolds

Main result

Statement

Relative duali

Reflections

Homogeneous mode.

Bott-Samelsor varieties

Conclusion

Further results

Rational homogeneous manifolds

うして ふゆう ふほう ふほう ふしつ

Definition

A rational homogeneous manifold is the quotient of a semisimple Lie group G by a parabolic subgroup P.

For example, if $G = SL_{n+1}$, setting

• $\{e_1, \ldots, e_{n+1}\}$ standard basis of \mathbb{C}^{n+1} ;

•
$$I = \{a_1, \ldots, a_k\} \subseteq \{1, \ldots, n\};$$

•
$$W_{a_i} = \langle \mathbf{e}_1, \ldots, \mathbf{e}_{a_i} \rangle$$

 $\mathsf{P}(I)$ is the stabilizer - w.r.t. the $\operatorname{SL}_{n+1}\text{-}\operatorname{action}$ - of the flag

$$W_{a_1} \subset W_{a_2} \subset \cdots \subset W_{a_k}$$

So G/P(I) is the variety $\mathbb{F}^n(a_1, \ldots, a_k)$ of flags of subspaces of dimensions a_1, \ldots, a_k of \mathbb{C}^{n+1} .

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and

Flag manifolds

Main result

Statement

Relative duality

Reflection

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Rational homogeneous manifolds

ション ふゆ く は く は く む く む く し く

We can denote the variety $\mathbb{F}^n(a_1, \ldots, a_k)$ by a marked diagram.

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Rational homogeneous manifolds

We can denote the variety $\mathbb{F}^n(a_1, \ldots, a_k)$ by a marked diagram.

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two $\operatorname{\mathbb{P}}^1$ -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and

Elag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Rational homogeneous manifolds

We can denote the variety $\mathbb{F}^n(a_1, \ldots, a_k)$ by a marked diagram.

The diagram used is the Dynkin diagram of the Lie algebra \mathfrak{sl}_4 :

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Gianluca Occhetta

Introduction

- Fano bundles
- Varieties with two \mathbb{P}^1 -fibrations
- A generalization
- RH manifolds
- Definition

Dynkin diagrams

- Cone and contractions
- Flag manifolds

Main result

- Statement
- Relative duality
- Reflections
- Homogeneous model
- Bott-Samelson varieties
- Conclusion
- Further results

• G semisimple Lie group,

- g associated Lie algebra,
- n rank of g.

Dynkin diagrams

ション ふゆ く は く は く む く む く し く

Gianluca Occhetta

Introduction

Fano bundles

- Varieties with two \mathbb{P}^1 -fibrations
- A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contractions Flag manifold

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

• G semisimple Lie group,

- g associated Lie algebra,
- n rank of g.

Parabolic subgroups again correspond to $\emptyset \neq I \subseteq \{1, \ldots, n\}$, and the variety G/P(I) is denoted by marking the Dynkin diagram of g along the nodes corresponding to I.

Dynkin diagrams

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

$$\mathsf{G}/\mathsf{P}(\mathrm{I}) \quad \leftrightarrow \quad (\mathfrak{D},\mathfrak{I})$$

Gianluca Occhetta

Introduction

Fano bundles

- Varieties with two \mathbb{P}^1 -fibrations
- A generalization
- RH manifolds

Definition

Dynkin diagrams

Cone and contractions Flag manifold

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

• G semisimple Lie group,

- g associated Lie algebra,
- n rank of g.

Parabolic subgroups again correspond to $\emptyset \neq I \subseteq \{1, \ldots, n\}$, and the variety G/P(I) is denoted by marking the Dynkin diagram of g along the nodes corresponding to I.

$$\mathsf{G}/\mathsf{P}(\mathrm{I}) \quad \leftrightarrow \quad (\mathfrak{D},\mathfrak{I})$$

Dynkin diagrams of the classical (simple) Lie algebras

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Dynkin diagrams

Dynkin diagrams

Flag Manifolds

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contraction

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 三直 - のへで

Dynkin diagrams

Flag Manifolds

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contraction

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Dynkin diagrams of rank two semisimple Lie algebras

0 0-0

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contraction

Flag manifolds

Main result

Statement

Relative duality

Reflection

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Cone and contractions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

X Rational Homogeneous given by $(\mathcal{D}, \mathcal{I})$.

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contraction

Flag manifolds

Main result

Statement

Relative duality

Reflection

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

X Rational Homogeneous given by $(\mathcal{D}, \mathfrak{I})$.

• X is a Fano manifold of Picard number $\rho_X = \#I$;

Cone and contractions
Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contractions

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

X Rational Homogeneous given by $(\mathcal{D}, \mathcal{I})$.

- X is a Fano manifold of Picard number $\rho_X = \#I$;
- The cone NE(X) is simplicial, and its faces correspond to proper subsets J ⊊ I;

Cone and contractions

ション ふゆ く は く は く む く む く し く

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contraction:

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

X Rational Homogeneous given by $(\mathcal{D}, \mathcal{I})$.

- X is a Fano manifold of Picard number $\rho_X = \#I$;
- The cone NE(X) is simplicial, and its faces correspond to proper subsets $J \subsetneq I;$
- Every contraction $\pi: X \to Y$ is of fiber type and smooth.

Cone and contractions

ション ふゆ マ キャット キャット しょう

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contraction:

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

X Rational Homogeneous given by $(\mathcal{D}, \mathcal{I})$.

- X is a Fano manifold of Picard number $\rho_X = \#I;$
- The cone NE(X) is simplicial, and its faces correspond to proper subsets $J \subsetneq I;$
- Every contraction $\pi: X \to Y$ is of fiber type and smooth.
- Y is RH with marked Dynkin diagram $(\mathcal{D}, \mathcal{J})$,

Cone and contractions

うして ふゆう ふほう ふほう ふしつ

Gianluca Occhetta

Introduction

Fano bundles

- Varieties with two \mathbb{P}^1 -fibrations
- A generalization
- RH manifolds
- Definition

Dynkin diagrams

Cone and contraction

Flag manifolds

Main result

Statement

- Relative duality
- Reflections
- Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

X Rational Homogeneous given by $(\mathcal{D}, \mathcal{I})$.

- X is a Fano manifold of Picard number $\rho_X = \#I;$
- The cone NE(X) is simplicial, and its faces correspond to proper subsets $J \subsetneq I;$

Cone and contractions

うして ふゆう ふほう ふほう ふしつ

- Every contraction $\pi: X \to Y$ is of fiber type and smooth.
- Y is RH with marked Dynkin diagram $(\mathcal{D}, \mathcal{J})$,
- Every fiber is RH with marked Dynkin diagram $(\mathcal{D} \setminus \mathcal{J}, \mathcal{I} \setminus \mathcal{J})$.

Gianluca Occhetta

Introduction

Fano bundles

- Varieties with two \mathbb{P}^1 -fibrations
- A generalization

RH manifolds

- Definition
- Dynkin diagrams

Cone and contraction:

Flag manifolds

Main result

- Statement
- Relative duality
- Reflections
- Homogeneous model
- Bott-Samelson varieties
- Conclusion
- Further results

X Rational Homogeneous given by $(\mathcal{D}, \mathcal{I})$.

- X is a Fano manifold of Picard number $\rho_X = \#I;$
- The cone NE(X) is simplicial, and its faces correspond to proper subsets $J \subsetneq I;$
- Every contraction $\pi: X \to Y$ is of fiber type and smooth.
- Y is RH with marked Dynkin diagram $(\mathcal{D}, \mathcal{J})$,
- Every fiber is RH with marked Dynkin diagram $(\mathcal{D} \setminus \mathcal{J}, \mathcal{I} \setminus \mathcal{J})$.

Cone and contractions

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifold

Definition

Dynkin diagrams

Cone and contraction

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Complete flag manifolds

ション ふゆ く は く は く む く む く し く

Definition

A complete flag manifold is a RH manifold with a diagram in which all the nodes are marked. i.e. a quotient G/B by a Borel subgroup.

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifold:

Definition

Dynkin diagrams

Cone and contraction

Flag manifolds

Main result

Statement

Relative duality

Reflection

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Complete flag manifolds

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のく⊙

Definition

A complete flag manifold is a RH manifold with a diagram in which all the nodes are marked. i.e. a quotient G/B by a Borel subgroup.

• Every RH manifold is dominated by a complete flag manifold.

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contraction

Flag manifolds

Main result

Statement

Relative duality

Reflection

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Complete flag manifolds

うして ふゆう ふほう ふほう ふしつ

Definition

A complete flag manifold is a RH manifold with a diagram in which all the nodes are marked. i.e. a quotient G/B by a Borel subgroup.

- Every RH manifold is dominated by a complete flag manifold.
- $p_i:G/B\to G/P^i$ contractions corresponding to the unmarking of one node are $\mathbb{P}^1\text{-}\mathrm{fibrations}.$

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contraction

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Complete flag manifolds

Definition

A complete flag manifold is a RH manifold with a diagram in which all the nodes are marked. i.e. a quotient G/B by a Borel subgroup.

- Every RH manifold is dominated by a complete flag manifold.
- $p_i:G/B\to G/P^i$ contractions corresponding to the unmarking of one node are $\mathbb{P}^1\text{-fibrations}.$
- If Γ_i is a fiber of p_i , and K_i the relative canonical, the intersection matrix $[-K_i \cdot \Gamma_j]$ is the Cartan matrix of the Lie algebra g.

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contractio

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Fano bundles and flag manifolds

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contractio

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Fano bundles and flag manifolds

うして ふむ くまく ふせく しゃくしゃ

Theorem 1

A Fano manifold with Picard number 2 whose elementary contractions are \mathbb{P}^1 -fibrations is isomorphic to one of the following

 $\mathbb{P}_{\mathbb{P}^{1}}(\mathbb{O} \oplus \mathbb{O}) \qquad \mathbb{P}_{\mathbb{P}^{2}}(\mathsf{T}_{\mathbb{P}^{2}}) \qquad \mathbb{P}_{\mathbb{P}^{3}}(\mathbb{N}) \qquad \mathbb{P}_{\mathbb{Q}^{5}}(\mathbb{C})$

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contractio

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Fano bundles and flag manifolds

うして ふむ くまく ふせく しゃくしゃ

Theorem 1

A Fano manifold with Picard number 2 whose elementary contractions are \mathbb{P}^1 -fibrations is isomorphic to one of the following

$\mathbb{P}_{\mathbb{P}^1}(\mathfrak{C})$	$0 \oplus 0)$	$\mathbb{P}_{\mathbb{P}^2}(T_{\mathbb{P}^2})$	$\mathbb{P}_{\mathbb{P}^{3}}(\mathcal{N})$	$\mathbb{P}_{\mathbb{Q}^5}(\mathcal{C})$
•	•	••	€€€	e

Theorem 1'

A Fano manifold with Picard number 2 whose elementary contractions are \mathbb{P}^1 -fibrations is a complete flag manifold.

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifold

Definition

Dynkin diagrams

Cone and contraction

Flag manifolds

Main result

Statement

Relative duality

Reflection

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Theorem 2

A Fano manifold X whose elementary contractions are \mathbb{P}^1 -fibrations is a complete flag manifold G/B, for some semisimple group G.

Main result

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifold

Definition

Dynkin diagrams

Cone and contractions

Flag manifolds

Main result

Statement

Relative duality

Reflection

Homogeneous mode

Bott-Samelsor varieties

Conclusion

Further results

Theorem 2

A Fano manifold X whose elementary contractions are \mathbb{P}^1 -fibrations is a complete flag manifold G/B, for some semisimple group G.

Strategy:

- 1) Find a homogeneous model G/B for X.
- 2) Prove that $X \simeq G/B$.

Main result

うして ふむ くまく ふせく しゃくしゃ

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and

contraction

Flag manifolds

Main result

Statement

Relative duality

Reflection

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Idea of proof Part 1) - Finding a model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifold

Definition

Dynkin diagrams

Cone and contraction

Flag manifolds

Main result

Statement

Relative duality

Reflection:

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Idea of proof Part 1) - Finding a model

ション ふゆ マ キャット マックシン

The flag manifold G/B is determined by the Lie algebra \mathfrak{g} , and the Lie algebra \mathfrak{g} is determined by any one of the following data:

Gianluca Occhetta

Introduction

Fano bundles

- Varieties with two \mathbb{P}^1 -fibrations
- A generalization
- RH manifolds
- Definition
- Dynkin diagrams
- Cone and
- contraction
- Flag manifolds

Main result

Statement

- Relative duality
- Reflections
- Homogeneous model
- Bott-Samelson varieties
- Conclusion
- Further results

Idea of proof Part 1) - Finding a model

The flag manifold G/B is determined by the Lie algebra \mathfrak{g} , and the Lie algebra \mathfrak{g} is determined by any one of the following data:

- its associated root system $\Phi \subset \mathbb{R}^n$;
- its Cartan matrix $A = [a_{ij}] \in M_n(\mathbb{Z});$
- its Dynkin diagram \mathcal{D} .
- its Weyl group W.

Root systems of rank two semisimple Lie algebras

Gianluca Occhetta

Lemma

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contraction:

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous mode

Bott-Samelson varieties

Conclusion

Further results

$\pi: \mathsf{M} \to \mathsf{Y}$ smooth \mathbb{P}^1 -fibration. Γ fiber, K relative canonical.

Let D be a divisor on M and set $i:=D\cdot\Gamma+1.$ Then, $\forall i\in\mathbb{Z}$

$$\begin{split} &H^{i}(M,D)\cong \quad H^{i-1}(M,D+lK) \quad \textit{ if } l<0 \\ &H^{i}(M,D)\cong \quad \{0\} \qquad \textit{ if } l=0 \\ &H^{i}(M,D)\cong \quad H^{i+1}(M,D+lK) \quad \textit{ if } l>0 \end{split}$$

In particular $X(M,D) = -X(M,D + (D \cdot \Gamma + 1)K)$ for any D.

Relative duality

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Gianluca Occhetta

Lemma

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contraction

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous mode

Bott-Samelson varieties

Conclusion

Further results

$\pi: M \to Y$ smooth \mathbb{P}^1 -fibration. Γ fiber, K relative canonical.

Let D be a divisor on M and set $l := D \cdot \Gamma + 1$. Then, $\forall i \in \mathbb{Z}$

$$\begin{split} & H^{i}(M,D) \cong \quad H^{i-1}(M,D+lK) \quad \textit{ if } l < 0 \\ & H^{i}(M,D) \cong \quad \{0\} \qquad \textit{ if } l = 0 \\ & H^{i}(M,D) \cong \quad H^{i+1}(M,D+lK) \quad \textit{ if } l > 0 \end{split}$$

In particular $X(M,D) = -X(M,D + (D \cdot \Gamma + 1)K)$ for any D.

l		-3	-2	-1	0	1	2	3	
H ⁰		0	0	0	0	1	2	3	
H ¹	•••	3	2	1	0	0	0	0	•••

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Gianluca Occhetta

Lemma

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contraction

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous mode

Bott-Samelson varieties

Conclusion

Further results

$\pi: M \to Y$ smooth \mathbb{P}^1 -fibration. Γ fiber, K relative canonical.

Let D be a divisor on M and set $l := D \cdot \Gamma + 1$. Then, $\forall i \in \mathbb{Z}$

$$\begin{split} & H^{i}(M,D) \cong \quad H^{i-1}(M,D+lK) \quad \textit{ if } l < 0 \\ & H^{i}(M,D) \cong \quad \{0\} \qquad \textit{ if } l = 0 \\ & H^{i}(M,D) \cong \quad H^{i+1}(M,D+lK) \quad \textit{ if } l > 0 \end{split}$$

In particular $X(M,D) = -X(M,D + (D \cdot \Gamma + 1)K)$ for any D.

l		-3	-2	-1	0	1	2	3	
H ⁰		0	0	0	0	1	2	3	
H ¹	•••	3	2	1	0	0	0	0	•••

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Gianluca Occhetta

Lemma

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contraction

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous mode

Bott-Samelson varieties

Conclusion

Further results

$\pi: M \to Y$ smooth \mathbb{P}^1 -fibration. Γ fiber, K relative canonical.

Let D be a divisor on M and set $l := D \cdot \Gamma + 1$. Then, $\forall i \in \mathbb{Z}$

$$\begin{split} & H^{i}(M,D) \cong \quad H^{i-1}(M,D+lK) \quad \textit{if } l < 0 \\ & H^{i}(M,D) \cong \quad \{0\} \qquad \textit{if } l = 0 \\ & H^{i}(M,D) \cong \quad H^{i+1}(M,D+lK) \quad \textit{if } l > 0 \end{split}$$

In particular $X(M,D) = -X(M,D + (D \cdot \Gamma + 1)K)$ for any D.

l		-3	-2	-1	0	1	2	3	
H ⁰		0	0	0	0	1	2	3	
H1	•••	3	2	1	0	0	0	0	•••

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contraction

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous mode

Bott-Samelson varieties

Conclusion

Further results

Lemma $\pi: M \to Y$ smooth \mathbb{P}^1 -fibration. Γ fiber, K relative canonical.

Let D be a divisor on M and set $l := D \cdot \Gamma + 1$. Then, $\forall i \in \mathbb{Z}$

$$\begin{split} H^{i}(M,D) &\cong \quad H^{i-1}(M,D+lK) & \textit{ if } l < 0 \\ H^{i}(M,D) &\cong \quad \{0\} & \textit{ if } l = 0 \\ H^{i}(M,D) &\cong \quad H^{i+1}(M,D+lK) & \textit{ if } l > 0 \end{split}$$

In particular $X(M,D) = -X(M,D + (D \cdot \Gamma + 1)K)$ for any D.

l		-3	-2	-1	0	1	2	3	
H ⁰		0	0	0	0	1	2	3	
H ¹	•••	3	2	1	0	0	0	0	•••

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

Gianluca Occhetta

Lemma

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contraction

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous mode

Bott-Samelson varieties

Conclusion

Further results

$\pi: M \to Y$ smooth \mathbb{P}^1 -fibration. Γ fiber, K relative canonical.

Let D be a divisor on M and set $l := D \cdot \Gamma + 1$. Then, $\forall i \in \mathbb{Z}$

$$\begin{split} H^{i}(M,D) &\cong \quad H^{i-1}(M,D+lK) & \textit{ if } l < 0 \\ H^{i}(M,D) &\cong \quad \{0\} & \textit{ if } l = 0 \\ H^{i}(M,D) &\cong \quad H^{i+1}(M,D+lK) & \textit{ if } l > 0 \end{split}$$

In particular $X(M,D) = -X(M,D + (D \cdot \Gamma + 1)K)$ for any D.

l	••••	-3	-2	-1	0	1	2	3	
H ⁰		0	0	0	0	1	2	3	
H1	•••	3	2	1	0	0	0	0	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Gianluca Occhetta

Introduction

Fano bundles

- Varieties with two \mathbb{P}^1 -fibrations
- A generalization
- RH manifolds
- Definition
- Dynkin diagrams
- Cone and
- The mandfald
- Main result

Statement

Relative duality

Reflection

- Homogeneous model
- Bott-Samelson varieties
- Conclusion

Further results

- X Fano manifold with Picard number n.
- $\pi_i: X \to X_i$ elementary contration (\mathbb{P}^1 -fibration).
- K_i relative canonical, Γ_i fiber of π_i .
- $X_X : Pic(X) \to \mathbb{Z}$ such that $X_X(L) = X(X, L)$.

Notation

ション ふゆ く は く は く む く む く し く

Gianluca Occhetta

Introduction

Fano bundles

- Varieties with two \mathbb{P}^1 -fibrations
- A generalization
- RH manifolds
- Definition
- Dynkin diagrams
- Cone and
- Flag manifolds

Main result

Statement

- Relative duality
- Reflections
- Homogeneous model
- Bott-Samelsor varieties
- Conclusion

Further results

• X Fano manifold with Picard number n.

- $\pi_i: X \to X_i$ elementary contration (\mathbb{P}^1 -fibration).
- K_i relative canonical, Γ_i fiber of π_i .
- $X_X : Pic(X) \to \mathbb{Z}$ such that $X_X(L) = X(X, L)$.

Given L_1, \ldots, L_n basis of Pic(X),

$$X_X(\mathfrak{m}_1,\ldots,\mathfrak{m}_n)=X(X,\mathfrak{m}_1L_1+\cdots+\mathfrak{m}_nL_n)$$

is a numerical polynomial of degree dim X; we can thus extend it to a function $\chi_X:N_1(X)\to\mathbb{R}.$

Notation

うして ふゆう ふほう ふほう ふしつ

Gianluca Occhetta

Introduction

Fano bundles

- Varieties with two \mathbb{P}^1 -fibrations
- A generalization
- RH manifolds
- Definition
- Dynkin diagrams
- Cone and
- Flag manifolds

Main result

- Statement
- Relative duality
- Reflections
- Homogeneous model
- Bott-Samelson varieties
- Conclusion
- Further results

• X Fano manifold with Picard number n.

- $\pi_i: X \to X_i$ elementary contration (\mathbb{P}^1 -fibration).
- K_i relative canonical, Γ_i fiber of π_i .
- $X_X : Pic(X) \to \mathbb{Z}$ such that $X_X(L) = X(X, L)$.

Given L_1, \ldots, L_n basis of Pic(X),

$$X_X(\mathfrak{m}_1,\ldots,\mathfrak{m}_n)=X(X,\mathfrak{m}_1L_1+\cdots+\mathfrak{m}_nL_n)$$

is a numerical polynomial of degree dim X; we can thus extend it to a function $\chi_X:N_1(X)\to\mathbb{R}.$

We define also $T:N_1(X)\to N_1(X)$ and $X_T:N_1(X)\to \mathbb{R}$ as

 $T(D) := D + K_X/2 \qquad \qquad X_T = X_X \circ T$

Notation

うして ふゆう ふほう ふほう ふしつ

Gianluca Occhetta

Introduction

Fano bundles

- Varieties with two \mathbb{P}^1 -fibrations
- A generalization
- RH manifolds
- Definition
- Dynkin diagrams
- Cone and
- Flag manifolds

Main result

```
Statement
```

- Relative duality
- Reflections
- Homogeneous model
- Bott-Samelson varieties
- Conclusion
- Further results

• X Fano manifold with Picard number n.

- $\pi_i: X \to X_i$ elementary contration (\mathbb{P}^1 -fibration).
- K_i relative canonical, Γ_i fiber of π_i .
- $X_X : Pic(X) \to \mathbb{Z}$ such that $X_X(L) = X(X, L)$.

Given L_1, \ldots, L_n basis of Pic(X),

$$X_X(\mathfrak{m}_1,\ldots,\mathfrak{m}_n)=X(X,\mathfrak{m}_1L_1+\cdots+\mathfrak{m}_nL_n)$$

is a numerical polynomial of degree dim X; we can thus extend it to a function $\chi_X:N_1(X)\to\mathbb{R}.$

We define also $T:N_1(X)\to N_1(X)$ and $X_T:N_1(X)\to \mathbb{R}$ as

```
T(D) := D + K_X/2 \qquad \qquad X_T = X_X \circ T
```

Note that $T(D) \cdot \Gamma_i = D \cdot \Gamma_i - 1$.

Notation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Gianluca Occhetta

Introduction

- Fano bundles
- Varieties with two \mathbb{P}^1 -fibrations
- A generalization
- RH manifolds
- Definition
- Dynkin diagrams
- Cone and
- CONCLACTIONS
- Flag manifolds

Main result

- Statement
- Relative duality

Reflections

- Homogeneous model
- Bott-Samelson varieties
- Conclusion
- Further results

Define

- hyperplanes $M_i := \{D \mid D \cdot \Gamma_i = 0\}$
- linear involutions $r_i : N^1(X) \to N^1(X)$ as

 $r_i(D) = D + (D \cdot \Gamma_i)K_i$

Reflections

Gianluca Occhetta

Introduction

- Fano bundles
- Varieties with two \mathbb{P}^1 -fibrations
- A generalization
- RH manifolds
- Definition
- Dynkin diagrams
- Cone and
- contraction
- Flag manifolds

Main resul

- Statement
- Reflections
- Homogeneous mode
- Bott-Samelsor varieties
- Conclusion
- Further results

Define

- hyperplanes $M_i := \{ D \mid D \cdot \Gamma_i = 0 \}$
- linear involutions $r_i:N^1(X)\to N^1(X)$ as

$$r_{\mathfrak{i}}(D)=D+(D\cdot\Gamma_{\mathfrak{i}})K_{\mathfrak{i}}$$

Then

1 r_i fixes pointwise the hyperplane M_i .

$$2 r_i(K_i) = -K_i$$

$$4 X^{\mathsf{T}}|_{\mathsf{M}_{\mathfrak{i}}} \equiv 0$$

Reflections

Gianluca Occhetta

Introduction

- Fano bundles
- Varieties with two \mathbb{P}^1 -fibrations
- A generalization
- RH manifolds
- Definition
- Dynkin diagrams
- Cone and
- concractions
- riag manifolds

Main result

Deletion dueli

Reflections

- Homogeneous mode
- Bott-Samelsor varieties
- Conclusion
- Further results

Define

- hyperplanes $M_i := \{ D \mid D \cdot \Gamma_i = 0 \}$
- linear involutions $r_i:N^1(X)\to N^1(X)$ as

$$r_{\mathfrak{i}}(D)=D+(D\cdot\Gamma_{\mathfrak{i}})K_{\mathfrak{i}}$$

Then

1 r_i fixes pointwise the hyperplane M_i .

$$\mathbf{2} \mathbf{r}_{i}(\mathbf{K}_{i}) = -\mathbf{K}_{i}$$

$$X^{\mathsf{T}}(\mathsf{D}) = -X^{\mathsf{T}}(\mathsf{r}_{i}(\mathsf{D}))$$

$$X^{\mathsf{T}}|_{\mathsf{M}_{i}} \equiv 0$$

Proof of 3). Pick D in the lattice $-K_X/2 + Pic(X)$; then $\chi^T(D) = \chi(T(D)) = -\chi(T(D) + (T(D) \cdot \Gamma_i + 1)K_i)$

$$= -X(T(D) + (D \cdot \Gamma_i)K_i) = -X(T(r_i(D)))$$
$$= X^T(r_i(D))$$

Reflections

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifold:

Definition

Dynkin diagrams

Cone and

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Homogeneous model

ション ふゆ く は く は く む く む く し く

Let $W \subset \operatorname{Gl}(N^1(X))$ be the group generated by the r_i 's.

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and

00110200020110

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Homogeneous model

ション ふゆ く は く は く む く む く し く

Let $W \subset \operatorname{Gl}(N^1(X))$ be the group generated by the r_i 's.

 $X^{\mathsf{T}}(\mathsf{D}) = \pm X^{\mathsf{T}}(w(\mathsf{D})), \qquad \forall \mathsf{D} \in \mathsf{N}_1(X), \quad \forall w \in W.$

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Let $\mathcal{W}\subset \mathrm{Gl}(N^1(X))$ be the group generated by the $r_i\text{'s.}$

 $X^T(D) = \pm X^T(w(D)), \qquad \forall D \in N_1(X), \quad \forall w \in W.$

Theorem

The group W is finite and

$$\Phi := \{ w(-K_i) \mid w \in W, \ i = 1, ..., n \} \subset N^1(X),$$

is a root system, whose Weyl group is W and whose Cartan matrix is the intersection matrix $[-K_j \cdot \Gamma_i]$.

Homogeneous model

うして ふむ くまく ふせく しゃくしゃ

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and contraction

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Let $W \subset \operatorname{Gl}(N^1(X))$ be the group generated by the $r_i\text{'s.}$

 $X^{\mathsf{T}}(\mathsf{D}) = \pm X^{\mathsf{T}}(w(\mathsf{D})), \qquad \forall \mathsf{D} \in \mathsf{N}_1(X), \quad \forall w \in W\!\!.$

Theorem

The group W is finite and

$$\Phi := \{ w(-K_i) \mid w \in W, \ i = 1, ..., n \} \subset N^1(X),$$

is a root system, whose Weyl group is W and whose Cartan matrix is the intersection matrix $[-K_i \cdot \Gamma_i]$.

Idea of proof.

 X_X^{I} vanishes on the hyperplanes $w(M_i)$; therefore the number of these hyperplanes is bounded by the dimension of X.

●●● 画 →画▼ →画▼ → ■ ●●●

Homogeneous model

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifold:

Definition

Dynkin diagrams

Cone and

contractions

Flag manifolds

Main result

Statement

Relative duality

Reflection

Homogeneous model

Bott-Samelsor varieties

Conclusion

Further results

Then one proves that the isotropy subgroup of M_i is finite by considering the induced action on $N_1(X)$, and writing the elements of W is a suitable basis.

ション ふゆ く は く は く む く む く し く

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifold

Definition

Dynkin diagrams

Cone and contraction:

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Then one proves that the isotropy subgroup of M_i is finite by considering the induced action on $N_1(X)$, and writing the elements of W is a suitable basis.

By the finiteness there is a W-invariant scalar product $(\ ,\)$ on $N^1(X).$ In particular the r_i 's are euclidean reflections.

うして ふむ くまく ふせく しゃくしゃ
Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifold

Definition

Dynkin diagram

contractions

Flag manifold

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Then one proves that the isotropy subgroup of M_i is finite by considering the induced action on $N_1(X)$, and writing the elements of W is a suitable basis.

By the finiteness there is a W-invariant scalar product $(\ ,\)$ on $N^1(X).$ In particular the r_i 's are euclidean reflections.

Using that $r_i(K_i) = -K_i$ is then straightforward (but tedious) to prove that Φ is a root system with Weyl group W.

うして ふゆう ふほう ふほう ふしつ

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifold

Delinition

. . . .

contractions

Flag manifold

Main result

Statement

Relative dualit

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Then one proves that the isotropy subgroup of M_i is finite by considering the induced action on $N_1(X)$, and writing the elements of W is a suitable basis.

By the finiteness there is a W-invariant scalar product (,) on $N^1(X)$. In particular the r_i 's are euclidean reflections.

Using that $r_i(K_i) = -K_i$ is then straightforward (but tedious) to prove that Φ is a root system with Weyl group W.

Since (,) is W-invariant, $(K_j, K_i) = (r_i(K_j), -K_i)$ which gives

$$\langle \mathsf{K}_{\mathsf{j}},\mathsf{K}_{\mathfrak{i}}\rangle := 2 rac{(\mathsf{K}_{\mathsf{j}},\mathsf{K}_{\mathfrak{i}})}{(\mathsf{K}_{\mathfrak{i}},\mathsf{K}_{\mathfrak{i}})} = -\mathsf{K}_{\mathsf{j}}\cdot\mathsf{\Gamma}_{\mathsf{i}},$$

うして ふゆう ふほう ふほう ふしつ

Gianluca Occhetta

Introduction

Fano bundles

- Varieties with two \mathbb{P}^1 -fibrations
- A generalization
- RH manifold
- Definition
- Dynkin diagrams
- Cone and contraction
- Flag manifold:

Main result

- Statement
- Relative dualit
- Reflections
- Homogeneous model
- Bott-Samelson varieties
- Conclusion

Further results

Then one proves that the isotropy subgroup of M_i is finite by considering the induced action on $N_1(X)$, and writing the elements of W is a suitable basis.

By the finiteness there is a W-invariant scalar product $(\ ,\)$ on $N^1(X).$ In particular the r_i 's are euclidean reflections.

Using that $r_i(K_i) = -K_i$ is then straightforward (but tedious) to prove that Φ is a root system with Weyl group W.

Since $(\ ,\)$ is W-invariant, $(K_j,K_i)=(r_i(K_j),-K_i)$ which gives

$$\langle \mathsf{K}_{j},\mathsf{K}_{\mathfrak{i}}\rangle := 2 \frac{(\mathsf{K}_{j},\mathsf{K}_{\mathfrak{i}})}{(\mathsf{K}_{\mathfrak{i}},\mathsf{K}_{\mathfrak{i}})} = -\mathsf{K}_{j}\cdot\mathsf{\Gamma}_{\mathfrak{i}},$$

うして ふゆう ふほう ふほう ふしつ

so the Cartan matrix of the root system Φ is the intersection matrix $[-K_i \cdot \Gamma_i]$.

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifold:

Definition

Dynkin diagrams

Cone and contraction

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Idea of Proof

Part 2) - Proving the isomorphism

ション ふゆ く は く は く む く む く し く

X Fano manifold of Picard number n whose elementary contractions are \mathbb{P}^1 -fibrations. With $\ell=(l_1,\ldots,l_t),$ list of indices in $\{1,\ldots,n\}$ we can associate

Gianluca Occhetta

Introduction

Fano bundles

- Varieties with two \mathbb{P}^1 -fibrations
- A generalization
- RH manifolds
- Definition
- Dynkin diagrams
- Cone and
- Flag manifolds

Main result

Statement

- Relative duality
- Reflections
- Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Idea of Proof

Part 2) - Proving the isomorphism

うして ふむ くまく ふせく しゃくしゃ

X Fano manifold of Picard number n whose elementary contractions are \mathbb{P}^1 -fibrations. With $\ell=(l_1,\ldots,l_t),$ list of indices in $\{1,\ldots,n\}$ we can associate

 An element w(l) of the Weyl group: the product of simple reflections:

$$w(\ell) = r_{l_1} \circ \cdots \circ r_{l_t}$$

Gianluca Occhetta

Introduction

Fano bundles

- \mathbb{P}^1 -fibrations
- A generalization
- RH manifolds
- Definition
- Dynkin diagrams
- Cone and
- Flag manifolds

Main result

Statement

- Relative duality
- Reflections
- Homogeneous model
- Bott-Samelson varieties

Conclusion

Further results

Part 2) - Proving the isomorphism

Idea of Proof

うして ふゆう ふほう ふほう ふしつ

X Fano manifold of Picard number n whose elementary contractions are \mathbb{P}^1 -fibrations. With $\ell=(l_1,\ldots,l_t)$, list of indices in $\{1,\ldots,n\}$ we can associate

An element w(l) of the Weyl group: the product of simple reflections:

$$w(\ell) = r_{l_1} \circ \cdots \circ r_{l_t}$$

A subvariety X_ℓ of X, defined as the set of points belonging to chains of rational curves Γ_{l1}, Γ_{l2}..., Γ_{lt} starting from x:

 $X_{\ell} := \pi_{l_t}^{-1}(\pi_{l_t}(\ldots(\pi_{l_2}^{-1}(\pi_{l_2}(\pi_{l_1}^{-1}(\pi_{l_1}(x)))))))$

Gianluca Occhetta

Introduction

Fano bundles

- Varieties with two P¹-fibrations
- A generalization
- RH manifolds
- Definition
- Dynkin diagrams
- Cone and
- Flag manifolds

Main result

Statement

- Relative duality
- Reflections
- Homogeneous model
- Bott-Samelson varieties

Conclusion

Further results

Idea of Proof Part 2) - Proving the isomorphism

X Fano manifold of Picard number n whose elementary contractions are \mathbb{P}^1 -fibrations. With $\ell=(l_1,\ldots,l_t)$, list of indices in $\{1,\ldots,n\}$ we can associate

An element w(l) of the Weyl group: the product of simple reflections:

$$w(\ell) = r_{l_1} \circ \cdots \circ r_{l_t}$$

A subvariety X_ℓ of X, defined as the set of points belonging to chains of rational curves Γ_{L1}, Γ_{L2}..., Γ_{Lt} starting from x:

$$X_{\ell} := \pi_{l_{t}}^{-1}(\pi_{l_{t}}(\ldots(\pi_{l_{2}}^{-1}(\pi_{l_{2}}(\pi_{l_{1}}^{-1}(\pi_{l_{1}}(x)))))))$$

3 A smooth t-dimensional variety Z_{ℓ} , with a morphism $f_{\ell}: Z_{\ell} \to X_{\ell}$, which is a tower of \mathbb{P}^1 -bundles.

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifold:

Definition

Dynkin diagrams

Cone and

contraction

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Bott-Samelson varieties

ション ふゆ く は く は く む く む く し く

Set $\ell[1] = (l_1, \ldots, l_{t-1})$. Then the Bott-Samelson variety Z_ℓ associated with ℓ , is constructed in the following way:

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two $\operatorname{\mathbb{P}}^1$ -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and

contraction

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Bott-Samelson varieties

ション ふゆ く は く は く む く む く し く

Set $\ell[1] = (l_1, \dots, l_{t-1})$. Then the Bott-Samelson variety Z_ℓ associated with ℓ , is constructed in the following way:

• If $\ell = \emptyset$ set $Z_{\ell} := \{x\}$ and let $f_{\ell} : \{x\} \to X$ be the inclusion.

Gianluca Occhetta

Introduction

Fano bundles

- Varieties with two \mathbb{P}^1 -fibrations
- A generalization
- RH manifolds
- Definition
- Dynkin diagrams
- Cone and
- contraction
- Flag manifolds

Main result

Statement

- Relative duality
- Reflections
- Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Bott-Samelson varieties

ション ふゆ く は く は く む く む く し く

Set $\ell[1] = (l_1, \dots, l_{t-1})$. Then the Bott-Samelson variety Z_ℓ associated with ℓ , is constructed in the following way:

• If $\ell=\emptyset$ set $\mathsf{Z}_\ell:=\{x\}$ and let $f_\ell:\{x\}\to X$ be the inclusion.

Gianluca Occhetta

Introduction

Fano bundles

- Varieties with two \mathbb{P}^1 -fibrations
- A generalization
- RH manifolds
- Definition
- Dynkin diagrams
- Cone and
- contraction
- Flag manifolds

Main result

Statement

- Relative duality
- Reflections
- Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Bott-Samelson varieties

うつう 山田 エル・エー・ 山田 うらう

Set $\ell[1] = (l_1, \ldots, l_{t-1})$. Then the Bott-Samelson variety Z_ℓ associated with ℓ , is constructed in the following way:

• If $\ell = \emptyset$ set $Z_{\ell} := \{x\}$ and let $f_{\ell} : \{x\} \to X$ be the inclusion.

Gianluca Occhetta

Introduction

Fano bundles

- Varieties with two \mathbb{P}^1 -fibrations
- A generalization
- RH manifolds
- Definition
- Dynkin diagrams
- Cone and
- contraction
- Flag manifolds

Main result

Statement

- Relative duality
- Reflections
- Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Bott-Samelson varieties

うして ふゆう ふほう ふほう ふしつ

Set $\ell[1] = (l_1, \dots, l_{t-1})$. Then the Bott-Samelson variety Z_ℓ associated with ℓ , is constructed in the following way:

• If $\ell = \emptyset$ set $Z_{\ell} := \{x\}$ and let $f_{\ell} : \{x\} \to X$ be the inclusion.

Gianluca Occhetta

Introduction

Fano bundles

- Varieties with two \mathbb{P}^1 -fibrations
- A generalization
- RH manifolds
- Definition
- Dynkin diagrams
- Cone and
- contraction
- Flag manifolds

Main result

Statement

- Relative duality
- Reflections
- Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Bott-Samelson varieties

うつう 山田 エル・エー・ 山田 うらう

Set $\ell[1] = (l_1, \ldots, l_{t-1})$. Then the Bott-Samelson variety Z_ℓ associated with ℓ , is constructed in the following way:

• If $\ell = \emptyset$ set $Z_{\ell} := \{x\}$ and let $f_{\ell} : \{x\} \to X$ be the inclusion.

Gianluca Occhetta

Introduction

Fano bundles

- Varieties with two \mathbb{P}^1 -fibrations
- A generalization
- RH manifolds
- Definition
- Dynkin diagrams
- Cone and
- contraction
- Flag manifolds

Main result

Statement

- Relative duality
- Reflections
- Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Bott-Samelson varieties

うして ふゆう ふほう ふほう ふしつ

Set $\ell[1] = (l_1, \dots, l_{t-1})$. Then the Bott-Samelson variety Z_ℓ associated with ℓ , is constructed in the following way:

• If $\ell = \emptyset$ set $Z_{\ell} := \{x\}$ and let $f_{\ell} : \{x\} \to X$ be the inclusion.

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and

CONCLACTIONS

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Definition

If there is no factorization of $w(\ell)$ in less than $\#(\ell)$ simple reflections, then $w(\ell)$ and ℓ are called reduced.

Reduced words

ション ふゆ く は く は く む く む く し く

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and

contractions

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Definition

If there is no factorization of $w(\ell)$ in less than $\#(\ell)$ simple reflections, then $w(\ell)$ and ℓ are called reduced.

One can prove that ℓ is reduced if and only if

Reduced words

ション ふゆ マ キャット マックシン

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagram

Cone and

Flag manifolds

Main result

Statement

Relative dualit

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Definition

If there is no factorization of $w(\ell)$ in less than $\#(\ell)$ simple reflections, then $w(\ell)$ and ℓ are called reduced.

One can prove that ℓ is reduced if and only if

1 The dimension of X_{ℓ} is $\#(\ell)$

2 The morphism $f_{\ell}: Z_{\ell} \to X_{\ell}$ is birational

Reduced words

うして ふむ くまく ふせく しゃくしゃ

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagram

Cone and

Flag manifolds

Main result

Statement

Relative dualit

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

Definition

If there is no factorization of $w(\ell)$ in less than $\#(\ell)$ simple reflections, then $w(\ell)$ and ℓ are called reduced.

One can prove that ℓ is reduced if and only if

- **1** The dimension of X_{ℓ} is $\#(\ell)$
- 2 The morphism $f_{\ell}: Z_{\ell} \to X_{\ell}$ is birational

In W there exists a unique longest element w_0 , such that if ℓ_0 is a reduced list such that $w(\ell_0) = w_0$ then $\#(\ell_0) = \dim X$.

In particular $f_{\ell} : Z_{\ell_0} \to X$ is surjective and birational.

Reduced words

うして ふゆう ふほう ふほう ふしつ

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

- A generalization
- RH manifolds

Definition

Dynkin diagrams

Cone and

Flag manifolds

Main result

Statement

Relative duality

Reflection

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

- $\overline{X} \simeq G/B$ homogeneus model of X,
- ℓ_0 list such that $w(\ell_0) = w_0$,
- $Z_{\ell_0}, \overline{Z}_{\ell_0}$ Bott-Samelson varieties of X and \overline{X} .

Conclusion

ション ふゆ く は く は く む く む く し く

Gianluca Occhetta

Introduction

- Fano bundles
- Varieties with two \mathbb{P}^1 -fibrations
- A generalization
- RH manifolds
- Definition
- Dynkin diagrams
- Cone and
-
- Statement
- Relative dual:
- Reflections
- Homogeneous model
- Bott-Samelson varieties
- Conclusion
- Further results

- $\overline{X} \simeq G/B$ homogeneus model of X,
- ℓ_0 list such that $w(\ell_0) = w_0$,
- $Z_{\ell_0}, \overline{Z}_{\ell_0}$ Bott-Samelson varieties of X and \overline{X} .

Conclusion

ション ふゆ アメリア メリア しょうくの

Gianluca Occhetta

Introduction

- Fano bundles
- Varieties with two \mathbb{P}^1 -fibrations
- A generalization
- RH manifolds
- Definition
- Dynkin diagrams
- Cone and contraction
- Flag manifolds

Main result

- Statement
- Relative duality
- Reflections
- Homogeneous model
- Bott-Samelson varieties
- Conclusion
- Further results

- $\overline{X} \simeq G/B$ homogeneus model of X,
- ℓ_0 list such that $w(\ell_0) = w_0$,
- $Z_{\ell_0}, \overline{Z}_{\ell_0}$ Bott-Samelson varieties of X and \overline{X} .

The idea is to show inductively that Z_{ℓ_0} depends only on the list and on the intersection matrix, and that f_{ℓ_0} , \overline{f}_{ℓ_0} are contractions of the same face of the cone of curves.

Conclusion

うつう 山田 エル・エー・ 山田 うらう

Gianluca Occhetta

Introduction

Fano bundles

Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagrams

Cone and

contraction

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

A generalization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Gianluca Occhetta

Introduction

Fano bundles Varieties with two \mathbb{P}^1 -fibrations

A generalization

RH manifolds

Definition

Dynkin diagram

Cone and

Flag manifolds

Main result

Statement

Relative duality

Reflections

Homogeneous model

Bott-Samelson varieties

Conclusion

Further results

A generalization

Theorem 2'

X smooth projective variety of Picard number n, such that there exist n extremal rays, whose associated elementary contractions $\pi_i : X \to X_i$ are smooth \mathbb{P}^1 -fibrations. Then X is isomorphic to a flag manifold G/B, for some semisimple group G.