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Definition

Fano bundles

If £ is a Fano bundle on X then X is a Fano manifold.

Some classification results:

7l dim X = 2 [Szurek & Wisniewski]

7l Fano bundles of rank 2 on P™ and Q™ [Ancona, Peternell,
Sols, Szurek, Wisniewski]

{7l Fano bundles of rank 2 on del Pezzo threefolds [Szurek &
Wiéniewski]
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Fano bundles
Generalization: Classification of Fano bundles of rank 2 on
(Fano) manifolds with b, =bs =1 (MOS, 2012).
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Generalization: Classification of Fano bundles of rank 2 on
(Fano) manifolds with b, =bs =1 (MOS, 2012).

As a special case we have the classification of Fano manifolds of
Picard number two (and by = 2) with two P'-bundle structures.

Later the assumption on by was removed by Watanabe (2013).

u]
&)
1}

n
it

DA



Flag Manifolds

Gianluca
Occhetta

Fano bundles

Generalization: Classification of Fano bundles of rank 2 on
(Fano) manifolds with b, =bs =1 (MOS, 2012).

As a special case we have the classification of Fano manifolds of
Picard number two (and by = 2) with two P'-bundle structures.

Later the assumption on by was removed by Watanabe (2013).

Finally the assumption “P'-bundle” was replaced by “smooth
P'-fibration” (MOSWa 2014).
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A generalization
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A generalization

e The vector bundle approach seems difficult to apply to this
more general situation.

e Is it possible to prove directly that these varieties are
rational homogeneous?
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Rational homogeneous manifolds

For example, if G = SL,, 1, then the subgroup of invertible
upper triangular matrices is a Borel subgroup, while the
parabolic subgroups correspond to @ # I C {1,...,n}.
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Rational homogeneous manifolds

Definition

For example, if G = SL,, 1, then the subgroup of invertible
upper triangular matrices is a Borel subgroup, while the
parabolic subgroups correspond to @ # I C {1,...,n}.

If I ={aj,...,ax} and ax,1 :=1n+ 1, then P(I) is the subgroup

By * *
0 By =« *
o 0 ... *

0 0 0 Byg

where the BJs are square matrices of order a; — a;j_1.

(=] [ = =
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For example, if G = SL;, 41, setting

e {e1,...,en. 1) standard basis of C™"*';
e I={a,...,ax} C{1,...,n}
o Wy, =(er,...,eq,)
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Rational homogeneous manifolds
Definition

For example, if G = SL;, 41, setting

e {e1,...,en. 1) standard basis of C™"*';
e I={a,...,ax} C{1,...,n}
o Wy, =(er,...,eq,)

P(I) is the stabilizer - w.r.t. the SL,, ,j-action - of the flag

Wy, CWq, C--- CWq,.

So G/P(I) is the variety F™(aq,..., ax) of flags of subspaces of
dimensions aq,...,ax of C**1.
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Rational homogeneous manifolds

We can denote the variety F™(aq,...,ax) by a marked diagram.
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Rational homogeneous manifolds
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We can denote the variety F™(aq,...,ax) by a marked diagram.

e—O—~O O—6—O O0—0C—=0

P3 G(1,3) (P3)*
e—0—O o0—eo—o oe—0O—=©
F3(1,2) F3(2,3) F3(1,3)
*—o—0

Fu 1 est ] ]F3(1)2)3)
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We can denote the variety F™(aq,...,ax) by a marked diagram.

e—0—O oO—e—oO o—0—e
P3 G(1,3) (P3)*
e—e—oO o—e—o e—0O0—o
F3(1,2) F3(2,3) F3(1,3)
*—eo—o
F3(1,2,3)

The diagram used is the Dynkin diagram of the Lie algebra sls:

o0—0—-=0



Dynkin diagrams
e G semisimple Lie group,
e g associated Lie algebra,
e n rank of g.
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e G semisimple Lie group,

Dynkin diagrams
e g associated Lie algebra,
e n rank of g.

Parabolic subgroups again correspond to () 21 C {1,...,n}, and
the variety G/P(I) is denoted by marking the Dynkin diagram of
g along the nodes corresponding to I.

G/P(I)

(D,7)
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Dynkin diagrams

e G semisimple Lie group,
e g associated Lie algebra,

e n rank of g.

Parabolic subgroups again correspond to § # I C {1,...,n}, and
the variety G/P(I) is denoted by marking the Dynkin diagram of
g along the nodes corresponding to I.

G/PI) & (D)

Dynkin diagrams of the classical (simple) Lie algebras

A, 0—0—o0 Sl
Bn O0—0>=0 502n+1
Cn 0—0==0 5Pon
Dn O_O<Z 5021
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Varietie, tw
P'-fibrations

A generalization

RH ma
Definitior
Dynkin diagrams

Cone and

contractions

Flag manifolds

Dynkin diagrams of the exceptional (simple) Lie algebras

Es
E;
Eg

F4
Gy

N W

Dynkin diagrams

€6

€7

fa
92
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o k SRl Dynkin diagrams of the exceptional (simple) Lie algebras
sz Ee O—O—i—o—o ¢

E-, o—o—i—o—o—o ¢y
Eg o—o—I—o—o—o—o eg

v F4 O0—0=>=0——0 f4
G2 == 92

Dynkin diagrams of rank two semisimple Lie algebras




Cone and contractions
X Rational Homogeneous given by (D, 7).
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X Rational Homogeneous given by (D, 7).

e X is a Fano manifold of Picard number px = #I,;
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Cone and contractions

X Rational Homogeneous given by (D, 7).

X is a Fano manifold of Picard number px = #I;

The cone NE(X) is simplicial, and its faces correspond to
proper subsets | C [;

Every contraction 7t: X — Y is of fiber type and smooth.
Y is RH with marked Dynkin diagram (D, J),
Every fiber is RH with marked Dynkin diagram (D\J,J\J).
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X Rational Homogeneous given by (D, 7).

e X is a Fano manifold of Picard number px = #I;

The cone NE(X) is simplicial, and its faces correspond to
proper subsets | C I;

Every contraction 7t: X — Y is of fiber type and smooth.
Y is RH with marked Dynkin diagram (D, J),
Every fiber is RH with marked Dynkin diagram (D\J,J\J).

F3(1,2,3) e&—e—@

¢ *—o PT::)
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Complete flag manifolds
Definition

e Every RH manifold is dominated by a complete flag
manifold.
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e Every RH manifold is dominated by a complete flag
manifold.

e pi: G/B — G/P! contractions corresponding to the
unmarking of one node are P'-fibrations.
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Complete flag manifolds
Definition

e Every RH manifold is dominated by a complete flag
manifold.

e pi: G/B — G/P! contractions corresponding to the
unmarking of one node are P'-fibrations.

Lie algebra g.

e If I} is a fiber of pi, and K; the relative canonical, the
intersection matrix [—K; - Ij] is the Cartan matrix of the



Fano bundles and flag manifolds
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Fano bundles and flag manifolds

Theorem 1

Theorem 1’




Theorem 2

Main result
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Theorem 2

Main result

Strategy:

1) Find a homogeneous model G/B for X.
2) Prove that X ~ G/B.
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Idea of proof
Part 1) - Finding a model
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Idea of proof

Part 1) - Finding a model
The flag manifold G/B is determined by the Lie algebra g, and
the Lie algebra g is determined by any one of the following data:
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Idea of proof
Part 1) - Finding a model
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.. The flag manifold G/B is determined by the Lie algebra g, and

P'-fibrations

NET——— the Lie algebra g is determined by any one of the following data:
RH manifolds

Definition

- e its associated root system ® C R™;

B e its Cartan matrix A = [a;] € M (Z);

Main result

e its Dynkin diagram D.

Statement

e its Weyl group W.

conclusion Root systems of rank two semisimple Lie algebras
Fu 1er results
Ay % A A 8 G,
o top 8
l ;
ﬂ o
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Relative duality

: M — Y smooth P'-fibration. T fiber, K relative canonical.
Let D be a divisor on M and set 1:=D -T+1. Then, Vi€ Z

HiM,D)= HYT(M,D+1K) 4fl<0
H'(M,D) = {0} if =0
Hi(M,D)= HYI(M,D+1K) 4f1>0

In particular X(M,D) = —X(M,D+ (D-T+1)K) for any D.
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Lemma

: M — Y smooth P'-fibration. T fiber, K relative canonical.
Let D be a divisor on M and set 1:=D -T+1. Then, Vi€ Z

Hi(M,D)= H"T(M,D + 1K)

ifl<0
H'(M,D) = {0} if =0
Hi(M,D)= HYI(M,D+1K) 4f1>0

In particular X(M,D) = —X(M,D+ (D-T+1)K) for any D.
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Lemma

Relative duality
(Lemma |

: M — Y smooth P'-fibration. T fiber, K relative canonical.
Let D be a divisor on M and set 1:=D -T+1. Then, Vi€ Z

HiM,D)= HYT(M,D+1K) 4fl<0
H'(M,D) = {0} if =0
Hi(M,D) = HY'(M,D + 1K)

iF1>0

In particular X(M,D) = —X(M,D+ (D-T+1)K) for any D.
v [ 32 tfo 1 [2]3 ][]
HO | ... 0 0 0 0 1 2 .
H | ... 2 1 0 0 0 0




Notation

X Fano manifold with Picard number n.

7, : X — X; elementary contration (P'-fibration)
K; relative canonical, I; fiber of ;.

Xx : Pic(X) — Z such that Xx(L) =X(X,L).
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Notation

X Fano manifold with Picard number n.

7, : X — X; elementary contration (P'-fibration).

K; relative canonical, T; fiber of ;.

Xx : Pic(X) — Z such that Xx(L) = X(X, L).

Given L4,...,L, basis of Pic(X),
Xx(miyy.ooymp) =X(X, MLy + -+ + muLy)

is a numerical polynomial of degree dim X; we can thus extend it
to a function xx : N1(X) — R.
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X Fano manifold with Picard number n.

7ty : X — X; elementary contration (P'-fibration).

Kj relative canonical, I fiber of ;.
Xx : Pic(X) — Z such that Xx(L) = X(X, L).

Given L4,...,L, basis of Pic(X),
XX(mh---)mn) :X(X»TTUI—] +"‘+mn]—n)

is a numerical polynomial of degree dim X; we can thus extend it
to a function xx : N1(X) — R.

We define also T: N;(X) = Ny (X) and X1 : N;(X) > R as

T(D):=D +Kx/2 Xt =XxoT
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Notation
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X Fano manifold with Picard number n.

7ty : X — X; elementary contration (P'-fibration).

Kj relative canonical, I fiber of ;.
Xx : Pic(X) — Z such that Xx(L) = X(X, L).

Given L4,...,L, basis of Pic(X),
XX(mh---)mn) :X(X»TTUI—] +"‘+mn]—n)

is a numerical polynomial of degree dim X; we can thus extend it
to a function xx : N1(X) — R.

We define also T: N;(X) = Ny (X) and X1 : N;(X) > R as
T(D):=D +Kx/2 Xt =XxoT

Note that T(D) - T; =D - T; — 1.



Define

Reflections
e hyperplanes M; :={D|D - T} =0}

e linear involutions r; : N'(X) — N'(X) as

Ti(D) =D+ (D . Fi)Ki
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Reflections
Define

e hyperplanes M; :={D|D - T} =0}
e linear involutions r; : N'(X) — N'(X) as

Ti(D) =D + (D . Fi)Ki
Then

@ r; fixes pointwise the hyperplane M;.

0 1i(Ky) = —K;
® X' (D) = —X"(ry(D))
e X'|m, =0
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Reflections
Define

e hyperplanes M; :={D|D - T} =0}
e linear involutions r; : N'(X) — N'(X) as

Ti(D) =D + (D . Fi)Ki
Then

@ r; fixes pointwise the hyperplane M;.

0 1i(Ky) = —K;
® X' (D) = —X"(ry(D))
e X'|m, =0

Proof of 3). Pick D in the lattice —Kx/2 + Pic(X); then

X"(D) = X(T(D)) =—X(T(D) + (T(D)- T}y + 1)K;)

—X(T(D) + (D - T)K;) = =X(T(r¢ (D))
= X'(r(D))
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Homogeneous model

Let W C GI(N'(X)) be the group generated by the r’s.
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Homogeneous model
Let W C GI(N'(X)) be the group generated by the r’s.

X"(D) = £XT (w(D)),

VD € N¢(X), VweWw.
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Let W C GI(N'(X)) be the group generated by the r’s.

X'(D)=+X"(w(D)), VD eN;j(X), YweWw.
Theorem
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Homogeneous model
Let W C GI(N'(X)) be the group generated by the r’s.

X'(D)=+X"(w(D)), VD eN;j(X), YweWw.
Theorem

Idea of proof.

X% vanishes on the hyperplanes w(M,); therefore the number of
these hyperplanes is bounded by the dimension of X.
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Then one proves that the isotropy subgroup of M; is finite
by considering the induced action on N;(X), and writing the
elements of W is a suitable basis.
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Then one proves that the isotropy subgroup of M; is finite

by considering the induced action on N;(X), and writing the
elements of W is a suitable basis.

By the finiteness there is a W-invariant scalar product ( , )
on N'(X). In particular the r;’s are euclidean reflections.
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Then one proves that the isotropy subgroup of M; is finite
by considering the induced action on N7 (X), and writing the
elements of W is a suitable basis.

By the finiteness there is a W-invariant scalar product ( , )
on N'(X). In particular the r;’s are euclidean reflections.

Using that ri(Ki) = —Kj is then straightforward (but tedious)
to prove that @ is a root system with Weyl group W.
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Homogeneous model

Then one proves that the isotropy subgroup of M; is finite
by considering the induced action on N7 (X), and writing the
elements of W is a suitable basis.

By the finiteness there is a W-invariant scalar product ( , )
on N'(X). In particular the r;’s are euclidean reflections.

Using that ri(Ki) = —Kj is then straightforward (but tedious)
to prove that @ is a root system with Weyl group W.

Since ( , ) is W-invariant, (Kj, K;) = (ri(K;), —K;) which gives

<Kj, K1> =2 ' = —Kj . Fi,
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Then one proves that the isotropy subgroup of M; is finite
by considering the induced action on N7 (X), and writing the
elements of W is a suitable basis.

By the finiteness there is a W-invariant scalar product ( , )
on N'(X). In particular the r;’s are euclidean reflections.

Using that ri(Ki) = —Kj is then straightforward (but tedious)
to prove that @ is a root system with Weyl group W.

7Holfni:rqer?em:|s model Since ( , ) is W_invariant’ (K]’ Kl) = (Ti(Kj)) —Kl) Wthh giVeS

<Kj, K1> =2 ' = —Kj . Fi,

so the Cartan matrix of the root system @ is the intersection
matrix [—Kj - T3]. [



Idea of Proof

Part 2) - Proving the isomorphism
X Fano manifold of Picard number n whose elementary

contractions are P'-fibrations. With £ = (11,...,l;), list of
indices in {1,...,n} we can associate
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Idea of Proof

Part 2) - Proving the isomorphism
X Fano manifold of Picard number n whose elementary

contractions are P'-fibrations. With £ = (11,...,l;), list of
indices in {1,...,n} we can associate

@ An element w({) of the Weyl group: the product of simple
reflections:

w(l) =11, 0071,
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Idea of Proof

Part 2) - Proving the isomorphism
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X Fano manifold of Picard number n whose elementary
contractions are P'-fibrations. With £ = (1y,...,1;), list of
indices in {1,...,n} we can associate

® An element w({) of the Weyl group: the product of simple
reflections:
wl) =1, 001,

® A subvariety X; of X, defined as the set of points belonging

to chains of rational curves I1,,11, ..., I, starting from x:

Xe = (o, (o) (m (g, (e (3)))))
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Idea of Proof

Part 2) - Proving the isomorphism
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X Fano manifold of Picard number n whose elementary
contractions are P'-fibrations. With £ = (1y,...,1;), list of
indices in {1,...,n} we can associate

® An element w({) of the Weyl group: the product of simple
reflections:
wl) =1, 001,

® A subvariety X; of X, defined as the set of points belonging

to chains of rational curves I1,,11, ..., I, starting from x:

Xe =70 (1, (- () (m, () (e (6)))))))

® A smooth t-dimensional variety Z;, with a morphism
fe: Z¢ — X¢, which is a tower of P'-bundles.



Bott-Samelson varieties
Set £[1] = (14,...,lt_1). Then the Bott-Samelson variety Z,

associated with ¢, is constructed in the following way:
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associated with ¢, is constructed in the following way:

o If £ = () set Z, := {x} and let f; : {x} — X be the inclusion.
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o If £ = () set Z, := {x} and let f; : {x} — X be the inclusion.
e 7, is built inductively on Z,;:
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e 7, is built inductively on Z,;:
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Bott-Samelson varieties
Set £[1] = (14,...,lt_1). Then the Bott-Samelson variety Z,

associated with ¢, is constructed in the following way:

o If £ =() set Z;, := {x} and let f; : {x} — X be the inclusion.
e 7, is built inductively on Z,;:

fe
Z,———X
|
Pern] Ty
fern
Z
el ger] Le
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One can prove that { is reduced if and only if
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Reduced words

One can prove that { is reduced if and only if

@ The dimension of X, is #({)

® The morphism fy : Z; — X, is birational
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Definition

Reduced words

One can prove that { is reduced if and only if

@ The dimension of X, is #({)

® The morphism fy : Z; — X, is birational

In W there exists a unique longest element wy, such that if {y is
a reduced list such that w({y) = wy then #({y) = dim X.

In particular fy : Zy, — X is surjective and birational.
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Conclusion
¢ X ~ G/B homogeneus model of X,
e {y list such that w({y) = wo,

e Zy,,Zy, Bott-Samelson varieties of X and X.
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Conclusion
¢ X ~ G/B homogeneus model of X,
e {y list such that w({y) = wo,

e Zy,,Zy, Bott-Samelson varieties of X and X.
z

~

® _
0 > Zl’fo

fe,

R<—
|
~
[
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Conclusion
¢ X ~ G/B homogeneus model of X,
e {y list such that w({y) = wo,

e Zy,,Zy, Bott-Samelson varieties of X and X.
z

~

0 . ;Zlo

fe,

R<—
|
~
[

The idea is to show inductively that Z,, depends only on the list
and on the intersection matrix, and that f;,, f¢, are contractions
of the same face of the cone of curves.
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