Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections

model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

A characterization of complete flag manifolds

Gianluca Occhetta

with R. Muñoz, L.E. Solá Conde, K. Watanabe and J. Wiśniewski

Cortona, June 2015

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

1 Introduction

2 Rational Homogeneous Manifolds

Outline

3 Main result

4 Campana-Peternell Conjecture

6 An application

Gianluca Occhetta

Introduction Fano bundles

The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main regult

Fibrations and reflections

model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

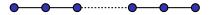
Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

Introduction



Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity o: the tangent bundle

Results

An application

Homogeneity and rational curves Comments and related results

Idea of proof Speculations

A vector bundle \mathcal{E} on a smooth complex projective variety X is a

Fano bundles

If \mathcal{E} is a Fano bundle on X then X is a Fano manifold.

Fano bundle iff $\mathbb{P}_{\mathbf{X}}(\mathcal{E})$ is a Fano manifold.

Fano bundles of rank 2 on \mathbb{P}^m and \mathbb{Q}^m have been classified in the '90s (Ancona, Peternell, Sols, Szurek, Wiśniewski).

Generalization: Classification of Fano bundles of rank 2 on (Fano) manifolds with $b_2 = b_4 = 1$ (Muñoz, _ , Solá Conde, 2012).

As a special case we have the classification of Fano manifolds of Picard number two (and $b_4 = 2$) with two \mathbb{P}^1 -bundle structures.

Later the assumption on b_4 was removed by Watanabe.

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves Comments and related results

Idea of proof Speculations

Varieties with two \mathbb{P}^1 -bundle structures

Theorem (version with Bundles)

A Fano manifold with Picard number 2 and two \mathbb{P}^1 -bundle structures is isomorphic to one of the following

- $\mathbb{P}_{\mathbb{P}^1}(\mathcal{O}\oplus\mathcal{O})$
- $\mathbb{P}_{\mathbb{P}^2}(\mathsf{T}_{\mathbb{P}^2})$
- $\mathbb{P}_{\mathbb{P}^3}(\mathcal{N}) = \mathbb{P}_{\mathbb{Q}^3}(\mathcal{S})$ \mathcal{N} Null-correlation , \mathcal{S} Spinor
- $\mathbb{P}_{\mathbb{Q}^5}(\mathcal{C}) = \mathbb{P}_{K(G_2)}(\mathcal{Q}) \mathcal{C}$ Cayley, \mathcal{Q} universal quotient.

This result can be reformulated as follows:

Theorem (version with Flags)

A Fano manifold with Picard number 2 and two \mathbb{P}^1 -bundle structures is rational homogeneous and it is isomorphic to a complete flag manifold of type $A_1 \times A_1$, A_2 , B_2 or G_2 .

Gianluca Occhetta

Introduction

The problem

- RH manifolds
- Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

- Fibrations and reflections Homogeneous model
- Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves Comments and related results Idea of proof Speculations

- Classify Fano manifolds whose elementary contractions are \mathbb{P}^1 -bundles or just smooth \mathbb{P}^1 -fibrations.
- The vector bundle approach seems difficult to apply to this more general situation.
- Is it possible to prove the homogeneity directly, or at least recover features of the complete flags using the P¹-fibrations?

Theorem

X is a Fano manifold whose elementary contractions are smooth \mathbb{P}^1 -fibrations (Flag Type manifold) if and only if X is a complete flag manifold.

A generalization

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections

model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results Idea of proof

idea or prooi

Speculations

Rational Homogeneous Manifolds



Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity o the tangent bundle

Results

An application

Homogeneity and rational curves Comments and related results

Idea of proof Speculations

Lie Algebras Root systems

G semisimple Lie group, \mathfrak{g} Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ Cartan subalgebra. The action of \mathfrak{h} on \mathfrak{g} defines an eigenspace decomposition, called Cartan decomposition of \mathfrak{g} :

$$\mathfrak{g}=\mathfrak{h}\oplus igoplus_{lpha\in\mathfrak{h}^ee\setminus\{\mathfrak{0}\}}\mathfrak{g}_lpha.$$

The spaces \mathfrak{g}_{α} are defined by

$$\mathfrak{g}_{\alpha} = \{g \in \mathfrak{g} \,|\, [h,g] = \alpha(h)g, \text{ for every } h \in \mathfrak{h}\};$$

 $\alpha \neq 0$ such that $\mathfrak{g}_{\alpha} \neq 0$ is called a root of \mathfrak{g} .

The (finite) set Φ of such elements is called root system of \mathfrak{g} .

A set of simple roots $\Delta = \{\alpha_1, \dots, \alpha_n\} \subset \Phi$ is a basis of \mathfrak{h}^{\vee} such that the coordinates of root are integers, all ≥ 0 or all ≤ 0 .

Gianluca Occhetta

Introduction

The problem

RH manifolds

Lie algebras

Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity o the tangent bundle

Results

An application

Homogeneity and rational curves Comments and related results

Idea of proof

Speculations

Lie Algebras

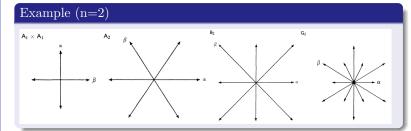
Weyl group

 (E, κ) real vector space generated by the roots, with a symmetric bilinear positive form κ induced by the Killing form of \mathfrak{g} .

The reflections with respect to the roots:

$$\sigma_{lpha}(\mathrm{x}) = \mathrm{x} - \langle \mathrm{x}, lpha
angle \mathrm{\alpha}, \quad \mathrm{where} \quad \langle \mathrm{x}, lpha
angle := 2 rac{\kappa(\mathrm{x}, lpha)}{\kappa(lpha, lpha)},$$

fix the root system and generate a finite group $W\subset \mathrm{Gl}(\mathsf{E}),$ called the Weyl group of $\mathfrak{g}.$



Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras

Cartan matrix

Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity o the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results Idea of proof

. . . .

Given a set of simple roots $\{\alpha_1, \ldots, \alpha_n\}$ of \mathfrak{g} , the Cartan matrix A of \mathfrak{g} is the $n \times n$ matrix whose entries are the Cartan integers

$$\langle \alpha_i, \alpha_j \rangle = 2 rac{\kappa(\alpha_i, \alpha_j)}{\kappa(\alpha_j, \alpha_j)}.$$

A and all its principal minors are positive definite and moreover

- $a_{ii} = 2$ for every i,
- $a_{ij} = 0$ iff $a_{ji} = 0$,
- if $a_{ij} \neq 0$, $i \neq j$, then a_{ij} , $a_{ji} \in \mathbb{Z}^-$ and $a_{ij}a_{ji} = 1, 2$ or 3.

Example (n=2)

The Cartan matrices of rank 2 Lie algebras are

$$\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}$$

Cartan matrix

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras

Cartan matrix

Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity o the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results Idea of proof

Dynkin diagrams

With the matrix A is associated a finite Dynkin diagram \mathcal{D} , in the following way

- \mathcal{D} is a graph with \mathfrak{n} nodes,
- the nodes i and j are joined by $a_{ij}a_{ji}$ edges,
- if $|a_{ij}| > |a_{ji}|$ the edges are directed towards the node i.

Example (n=2)

The Dynkin diagrams of rank 2 Lie algebras are

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

- Lie algebras
- Cartan matrix

Dynkin diagrams

- RH manifolds
- Cone and contractions
- Flag manifolds

Main result

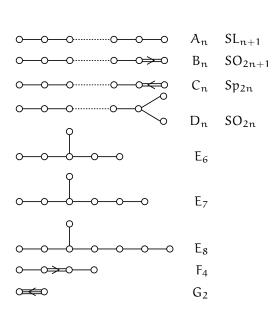
- Fibrations and reflections Homogeneous model
- Bott-Samelson varieties

CP Conjecture

- Positivity o the tangent bundle
- Results

An application

- Homogeneity and rational curves
- Comments and related results Idea of proof
- Speculations



Dynkin diagrams

CLASSICAL

EXCEPTIONAL

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagram

RH manifolds

Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

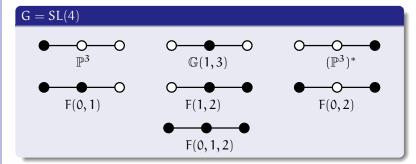
Homogeneity and rational curves

Comments and related results Idea of proof Speculations

Rational homogeneous manifolds

Subgroups $P \subset G$ s.t. G/P is projective are called parabolic.

A parabolic subgroup is given by the choice of a set of simple roots, i.e. by $I \subset D$, and the variety G/P is denoted by marking the nodes of I.



So a rational homogeneous (RH) manifold is given by a marked Dynkin diagram $(\mathcal{D}, \mathcal{I})$.

Gianluca Occhetta

The problem

RH manifolds

Cone and contractions

Flag manifolds

the tangent

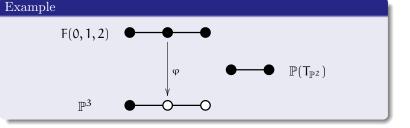
Homogeneity and

Idea of proof

X RH given by $(\mathcal{D}, \mathcal{I})$.

- **1** X is a Fano manifold:
- **2** The Picard number ρ_X of X is #I;
- **3** The cone NE(X) is simplicial, and its faces correspond to proper subsets $J \subseteq I$;
- 4 Every contraction $\pi: X \to Y$ is of fiber type and smooth.
- **6** Y is RH with marked Dynkin diagram $(\mathcal{D}, \mathcal{J})$,
- **6** Every fiber is RH with marked Dynkin diagram $(\mathcal{D} \setminus \mathcal{J}, \mathcal{I} \setminus \mathcal{J})$.

Cone and contractions



Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions

Flag manifolds

Main result

Fibrations and reflections Homogeneous

model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

Complete flag manifolds

A complete flag manifold is a RH manifold with a diagram in which all the nodes are marked. The corresponding parabolic subgroup B is called a Borel subgroup.

- Every RH manifold is dominated by a complete flag manifold.
- $p_i: G/B \to G/P^i$ contractions corresponding to the unmarking of one node are \mathbb{P}^1 -bundles.
- If Γ_i is a fiber of p_i , and K_i the relative canonical, the intersection matrix $[-K_i \cdot \Gamma_j]$ is the Cartan matrix.

Example (A_n)

If $\mathcal{D} = A_n$, then G/B is the manifold parametrizing complete flags of linear subspaces in \mathbb{P}^n .

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

- Fibrations and reflections Homogeneous model
- Bott-Samelson varieties

CP Conjecture

- Positivity of the tangent bundle
- Results

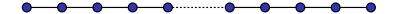
An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

Fano manifolds whose elementary contractions are smooth \mathbb{P}^1 -fibrations



Relative duality

Occhetta

Flag

Manifolds

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

$\pi: M \to Y$ smooth \mathbb{P}^1 -fibration. Γ fiber, K relative canonical

Lemma

Let D be a divisor on M and set $l := D \cdot \Gamma + 1$. Then, $\forall i \in \mathbb{Z}$

$$\begin{aligned} &H^{i}(M,D)\cong \quad H^{i-1}(M,D+lK) & \ \ if\ l<0 \\ &H^{i}(M,D)\cong \quad \{0\} & \ \ if\ l=0 \\ &H^{i}(M,D)\cong \quad H^{i+1}(M,D+lK) & \ \ if\ l>0 \end{aligned}$$

 $\label{eq:analytical} \textit{In particular} \quad X(M,D) = -X(M,D+lK) \quad \textit{for any } D.$

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity o the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results Idea of proof Speculations

Theorem

\boldsymbol{X} is Flag Type manifold if and only if \boldsymbol{X} is a complete flag manifold.

Idea of Proof

I - Finding a homogeneous model

- X Fano manifold with Picard number n.
- $\pi_i : X \to X_i$ elementary contration.
- K_i relative canonical, Γ_i fiber of π_i .
- $X_X : \operatorname{Pic}(X) \to \mathbb{Z}$ such that $X_X(L) = X(X, L)$.

Given L_1, \ldots, L_n basis of Pic(X),

$$X_{X}(\mathfrak{m}_{1},\ldots,\mathfrak{m}_{n})=X(X,\mathfrak{m}_{1}L_{1}+\cdots+\mathfrak{m}_{n}L_{n})$$

is a numerical polynomial of degree $\dim X,$ so we can extend it to $X_X:N_1(X)\to \mathbb{R}.$

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves Comments and related results Idea of proof

Speculations

By the Lemma the affine involutions $r'_i:N^1(X)\to N^1(X)$ $r'_i(D):=D+(D\cdot\Gamma_i+1)K_i,$

satisfy

$$\chi_{X}(D) = -\chi_{X}(r'_{i}(D)).$$

Since $K_X \cdot \Gamma_i = -2$ for every i, setting

$$\begin{array}{rcl} T(D) &:= & D + K_X/2 \\ r_i &:= & T^{-1} \circ r'_i \circ T \\ \chi^T &:= & X_X \circ T \end{array}$$

we have that the map r_i is a linear involution of $N^1(X)$ given by $r_i(D)=D+(D\cdot\Gamma_i)K_i,$

which fixes pointwise the hyperplane $\mathsf{M}_{\mathfrak{i}}:=\{\mathsf{D}\,|\,\mathsf{D}\cdot\Gamma_{\mathfrak{i}}=0\}$ and satisfies

$$\mathbf{r}_{i}(\mathbf{K}_{i}) = -\mathbf{K}_{i}$$
 $\mathbf{\chi}^{\mathsf{T}}(\mathbf{D}) = -\mathbf{\chi}^{\mathsf{T}}(\mathbf{r}_{i}(\mathbf{D}));$

in particular X^T vanishes on M_i for every i.

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

Let $W \subset \operatorname{Gl}(N^1(X))$ be the group generated by the r_i 's.

Theorem

The group W is finite and the set

$$\Phi := \{ w(-K_i) \mid w \in W, \ i = 1, ..., n \} \subset N^1(X),$$

is a root system, whose Weyl group is W

Weyl group

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity o the tangent bundle

Results

An application

Homogeneity and rational curves Comments and related results

Idea of proof Speculations

Idea of proof

For every divisor D and every $w \in W$

$$X^{\mathsf{T}}(\mathsf{D}) = \pm X^{\mathsf{T}}(w(\mathsf{D})),$$

so X_X^T vanishes on the hyperplanes $w(M_i)$; therefore the number of these hyperplanes is bounded by the dimension of X.

Then one proves that the isotropy subgroup of M_i is finite (by considering the induced action on $N_1(X)$, and writing the elements of W is a suitable basis).

By the finiteness there is a scalar product (,) on $N^1(X)$, which is W-invariant. In particular the r_i 's are euclidean reflections.

Using that $r_i(K_i) = -K_i$ is then straightforward (but tedious) to prove that Φ is a root system with Weyl group W.

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections

Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results Idea of proof

Homogeneous model

Since (,) is W-invariant, $(K_j,K_i)=(r_i(K_j),-K_i)$ which gives

$$-K_j\cdot \Gamma_i=2\frac{(K_j,K_i)}{(K_i,K_i)}=\langle K_j,K_i\rangle,$$

so the intersection matrix $[-K_j\cdot\Gamma_i]$ is the Cartan matrix of $\Phi.$

In particular the intersection matrix of X is the intersection matrix of a complete flag manifold G/B, the homogeneous model of X. Define $\psi : N^1(X) \to N^1(G/B)$, by setting $\psi(K_i) = \overline{K}_i$.

Proposition 1997

- $\Lambda \subset \operatorname{Pic}(X)$ generated by the K_i 's.
 - $h^{i}(X,D) = h^{i}(G/B,\psi(D))$ for every $D \in \Lambda$, $i \in \mathbb{Z}$.
 - $\dim X = \dim G/B;$

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity o the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

Idea of Proof

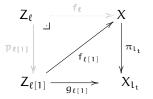
II - Proving the isomorphism

- X Flag Type manifold of Picard number $n, x \in X$ point;
- $\ell = (l_1, \ldots, l_t)$, list of indices in $\{1, \ldots, n\}$,
- $\ell[1] = (l_1, \ldots, l_{t-1}).$

The Bott-Samelson variety Z_{ℓ} , with a morphism $f_{\ell} : Z_{\ell} \to X$, associated with the sequence ℓ , is constructed in the following way:

If $\ell=\emptyset$ we set $\mathsf{Z}_\ell:=\{x\}$ and $\mathsf{f}_\ell:\{x\}\to X$ is the inclusion.

Inductively we build Z_{ℓ} on $Z_{\ell[1]}$:



Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity o: the tangent bundle

Results

An application

Homogeneity and rational curves

related results Idea of proof Speculations The image of Z_{ℓ} in X is the set of points belonging to chains of rational curves $\Gamma_{l_1}, \Gamma_{l_2} \dots, \Gamma_{l_t}$ starting from x.

In the homogeneous case such loci are the Schubert varieties.

With a list ℓ it is associated an element $w(\ell)$ of the Weyl group:

 $w = r_{l_1} \circ \cdots \circ r_{l_t};$

if there is no expression of $w(\ell)$ which contains less than t reflections, then $w(\ell)$ and ℓ are called reduced.

The length $\lambda(w(\ell))$ is the number of reflections appearing in a reduced expression of $w(\ell)$.

If $w(\ell)$ is reduced then $f_\ell: Z_\ell \to f_\ell(Z_\ell)$ is birational, hence

$$\dim f_{\ell}(\mathsf{Z}_{\ell}) = \dim \mathsf{Z}_{\ell} = \#(\ell) = \lambda(w(\ell)).$$

In W there exists a unique longest element w_0 , of length dim X. If ℓ_0 is a reduced list such that $w(\ell_0) = w_0$ then $f_{\ell} : \mathbb{Z}_{\ell_0} \to X$ is surjective and birational.

Gianluca Occhetta

The problem

Cartan matrix RH manifolds Cone and Flag manifolds

Bott-Samelson varieties

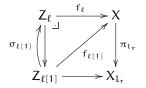
the tangent

X Flag Type manifold, G/B homogeneous model of X Find a list ℓ_0 such that $w(\ell_0) = w_0$ and prove that

$$\mathsf{Z}_{\ell_0}\simeq\overline{\mathsf{Z}}_{\ell_0}\qquad\mathsf{f}_{\ell_0}=\overline{\mathsf{f}}_{\ell_0}$$

The idea is to show inductively that Z_{ℓ_0} depends only on the list and on the intersection matrix.

Assume that $Z_{\ell[1]} \simeq \overline{Z}_{\ell[1]}$;



 $f_{\ell[1]}$ factors via Z_{ℓ} , giving a section $\sigma_{\ell[1]}$, hence an extension $0 \to \mathcal{O}_{Z_{\ell}[1]}(f_{\ell}^*[1]K_{l_r}) \longrightarrow \mathcal{F}_{\ell} \longrightarrow \mathcal{O}_{Z_{\ell}[1]} \to 0.$

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity o the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results Idea of proof

Speculations

One shows easily that the following are equivalent

• The extension is split;

•
$$h^1(Z_{\ell[1]}, f^*_{\ell}(K_{l_r})) = 0;$$

• the index l_r does not appear in $\ell[1]$.

It is enough to show that if the index l_r appears in $\ell[1]$ then

$$h^{1}(Z_{\ell[1]}, f_{\ell}^{*}(K_{l_{r}})) \leq 1.$$

This can be done except for G_2 , (already known from the n = 2 case) and F_4 , for which an ad hoc argument is needed.

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

- Fibrations and reflections
- model
- Bott-Samelson varieties

CP Conjecture

- Positivity of the tangent bundle
- Results

An application

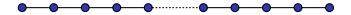
Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

Campana-Peternell Conjecture



Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

related results Idea of proof

Speculations

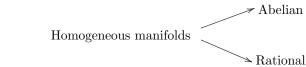
Positivity of the tangent bundle

X smooth complex projective variety.

Theorem [Mori (1979)]

 $T_X \text{ ample } \Leftrightarrow X = \mathbb{P}^{\mathfrak{m}}.$

- $T_X \text{ nef} \Rightarrow ??$
- Examples:



Theorem [Demailly, Peternell and Schneider (1994)]

$$\int X \stackrel{\text{étale}}{\longleftarrow} X' \stackrel{F}{\longrightarrow} A$$

$$T_X$$
 nef

A Abelian, F Fano, $T_{F}\,{\rm nef}$

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results Idea of proof Speculations

Campana-Peternell Conjecture

Campana-Peternell Conjecture (1991)

Every Fano manifold with nef tangent bundle (CP manifold) is homogeneous.

Results:

- \checkmark dim X = 3 [Campana & Peternell(1991)]
- $\mathbf{V} \dim \mathbf{X} = 4$ [CP (1993), Mok (2002), Hwang (2006)]
- \checkmark dim X = 5 and $\rho_X > 1$ [Watanabe (2012)]
- ☑ T_X big and 1-ample [Solá-Conde & Wiśniewski (2004)]
- The above results are obtained by classifying the manifolds satisfying the required properties;
- homogeneity is checked a posteriori.

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds

Cone and contractions

Flag manifolds

Main result

Fibrations and reflections

model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

An application

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

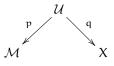
An application

Homogeneity and rational curves

Comments and related results Idea of proof Speculations

Homogeneity via families of rational curves

- X Fano of Picard number one;
- *M* dominating family of rational curves of minimal degree;
- \mathcal{U} universal family.



Theorem

Assume that \mathcal{M} is unsplit, q is smooth and that $\mathcal{M}_x := q^{-1}(x)$ is RH for every $x \in X$. Then X is RH. Assume that T_X is nef and that $\mathcal{M}_x := q^{-1}(x)$ is RH for every $x \in X$. Then X is RH.

Remark

If T_X is nef then the assumptions on $\mathcal M$ and q hold.

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Recognizing homogeneous spaces

- $\bullet~X$ Fano of Picard number one, T_X nef;
- S = G/P RH space of Picard number one;
- \mathcal{M}, \mathcal{L} minimal dominating families of rational curves;

Corollary

 $\mathrm{Assume}\ \mathcal{L}_0\ \mathrm{is}\ \mathrm{RH}.\ \mathrm{If}\ \mathcal{M}_x\simeq \mathcal{L}_0\ \mathrm{for}\ \mathrm{every}\ x\in X\ \mathrm{then}\ X\simeq S.$

The following are equivalent:

- \mathcal{L}_0 is G-homogeneous.
- P is associated to a long simple root.
- There is no arrow in the Dynkin diagram pointing towards the node corresponding to P.

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

Recognizing homogeneous spaces

- X Fano of Picard number one;
- S = G/P RH space of Picard number one;
- \mathcal{M}, \mathcal{L} minimal dominating families of rational curves;
- $C_0(S)$ VMRT of S;
- $\mathcal{C}_{\mathbf{x}}(X)$ VMRT of X at a general point;

Theorem [Mok, Hong-Hwang]

If P is associated to a long simple root and $\mathcal{C}(X)_{x}$ is projectively equivalent to $\mathcal{C}(S)_{0}$, then $X \simeq S$.

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Idea of the proof

Given the smooth fibration $q: \mathcal{U} \to X$, with RH fiber F, it is possible to construct the associated flag bundle over X, whose fibers over a point are complete flag manifolds.

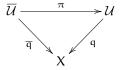
The fibration q is defined by a cocycle $\vartheta \in H^1(X,G),$ where G is the identity component of $\operatorname{Aut}(F)$ - here we use that X is simply connected.

The cocycle ϑ defines a principal G-bundle $\mathcal{U}_G \to X$

Given a Borel subgroup $B\subset G$ we can define the G/B-bundle

$$\overline{\mathcal{U}} := \mathcal{U}_G \times^G G / B \to X$$

as a quotient of $\mathcal{U}_G \times G/B$ by $(x, gB) \sim (xg', g'^{-1}gB)$, and we have a commutative diagram



Idea of the proof

Occhetta Introduction

Flag

Manifolds

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous

Bott-Samelson varieties

CP Conjecture

Positivity o: the tangent bundle

Results

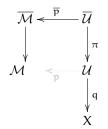
An application

Homogeneity and rational curves

Comments and related results

Idea of proof

The flag bundle $\overline{\mathcal{U}}$ has Picard number $\rho(G/B) + 1$, and has $\rho(G/B)$ contractions (over X) which are smooth \mathbb{P}^1 -fibrations.



Idea: show that the \mathbb{P}^1 - fibration $p: \mathcal{U} \to \mathcal{M}$ can be lifted to $\overline{\mathcal{U}}$.

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results

Idea of proof

So $\overline{\mathcal{U}}$ has a number of \mathbb{P}^1 -fibrations equal to its Picard number.

Idea of the proof

A priori it is not a Fano manifold; however we can prove a slightly stronger version of the main theorem

Theorem

Let X be a smooth projective variety of Picard number n, with n elementary contractions which are smooth \mathbb{P}^1 -fibrations. Then X is isomorphic to a complete flag manifold.

and get that $\overline{\mathcal{U}}$ is a complete flag manifold; hence X, being the image of a contraction of \mathcal{U} is homogeneous.

Remark

A similar argument has been used to conclude the proof of CP conjecture in dimension 5 by Kanemitsu (2015).

Gianluca Occhetta

Introduction

Fano bundles The problem

RH manifolds

Lie algebras Cartan matrix Dynkin diagrams RH manifolds Cone and contractions Flag manifolds

Main result

Fibrations and reflections Homogeneous model

Bott-Samelson varieties

CP Conjecture

Positivity of the tangent bundle

Results

An application

Homogeneity and rational curves

Comments and related results

Idea of proof

Speculations

Speculations

Given a CP-manifold X, we define:

$$\tau(X) := \sum_{R} (\ell(R) - 2)$$

where the sum is taken over the extremal rays of $\overline{NE}(X)$.

In particular $\tau(X) = 0$ if and only if X is a Flag Type manifold.

CP conjecture will then follow from:

Conjecture

Given a CP-manifold satisfying $\tau(X) > 0$, there exists a contraction $f: X' \to X$ from a CP-manifold X' satisfying $\tau(X') < \tau(X)$.