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Uniform bundles

Goals

• Obtain splitting criteria for vector bundles;
• Classify indecomposable vector bundles in different setups.

2� Uniform vector bundles on Grassmannians;
2� Fano bundles on Grassmannians of lines;

2� Vector bundles on Pn with low Fano threshold;
2� Stability of Fano bundles;
2� Fano bundles with a second P1-bundle structure;
2 Fano bundles with a conic-bundle structure;
2 Fano bundles with a smooth blow-down contraction;
2� Uniform bundles.



Splitting criteria

G. Occhetta

Setup

Splitting criteria
Splitting criteria

Applications

Fano bundles
Contractions

Stability

Double structure

Other results
Grauert - Mülich
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Setup
Base manifold

• Base field: C;
• X Fano manifold;
• Pic(X) = Z〈HX〉;
• −KX = iXHX , iX index of X;
• H4(X,Z) = Z〈Σ〉;
• H2

X =: d Σ;
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Setup
Vector bundles

• E vector bundle on X of rank two;
• π : P(E)→ X natural projection;
• OP(E)(1) := O(L), H := π∗HX , −Krel = 2L− c1H;
• c1(E) = c1HX ↔ c1 ∈ Z, may assume c1 = −1, 0;
• c2(E) =: c2Σ,↔ c2 ∈ Z;
• Discriminant: ∆(E) = (c2

1 − 4c2/d)Σ := ∆Σ;
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Uniform bundles

Setup
Vector bundles

• E vector bundle on X of rank two;
• π : P(E)→ X natural projection;

• OP(E)(1) := O(L), H := π∗HX , −Krel = 2L− c1H;
• c1(E) = c1HX ↔ c1 ∈ Z, may assume c1 = −1, 0;
• c2(E) =: c2Σ,↔ c2 ∈ Z;
• Discriminant: ∆(E) = (c2

1 − 4c2/d)Σ := ∆Σ;



Splitting criteria

G. Occhetta

Setup

Splitting criteria
Splitting criteria

Applications

Fano bundles
Contractions

Stability

Double structure

Other results
Grauert - Mülich
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Setup
Rational curves

• M⊂ RatCurves(X) irreducible component such that
Locus(M) = X dominating family of rational curves; a curve
belonging to such anM is a free curve

• µ = HX · M;
• Splitting type of ` is (a, b) if ν∗E = OP1(a)⊕OP1(b);
• τ(`) = |a− b|/µ;
• Mt ⊂M: curves ofM with τ(`) = t ∈ (1/µ)Z;

• M̃t ⊂ RatCurves(P(E)) family of minimal sections over curves
parametrized byMt;

• Mx ⊂M: curves ofM passing through x.
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Setup
Stability

• β := min{b ∈ Z | H0(X, E(b)) 6= 0}.
• E is stable (semistable) iff β > −c1/2 (β ≥ −c1/2).
• ∆ > 0 implies E not semistable;
• ∆ = 0 implies E not semistable, unless E is trivial.

If ∆ = 0 either c1(E) = c2(E) = 0 or c1(S2E(1)) = c2(S2E(1)) = 0.

Mehta -Ramanathan: Any stable vector bundle with trivial c1 and c2 is
given by an irreducible unitary representation of π1(X).
Being X Fano, π1(X) is trivial.

If E is semistable (and not stable) then h0(E) 6= 0 and h0(E(−1)) = 0
so that E is trivial, as c2 = 0.
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Cones of P(E)

• −Krel + τH is the second
ray of Nef(P(E));

• −Krel + ρH is the second
ray of Eff(P(E)).



Splitting criteria

G. Occhetta

Setup

Splitting criteria
Splitting criteria

Applications

Fano bundles
Contractions

Stability

Double structure

Other results
Grauert - Mülich
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Splitting criteria
Numerical splitting...

A (slight) generalization of a result of Ancona, Peternell and Wiśniewski

Lemma (1)
Assume that, for some rational number q there is a surface S ⊂ P(E)
such that π|S is finite and that (L− qH) · C = 0 for every C ⊂ S. Then

c2 = dq(c1 − q).

Proof.
By the relative Euler sequence restricted to S

0 → (ωP(E)/X(1))|S −→ (π∗E)|S −→ (O(1))|S → 0.

we get that: c2((π∗E)|S) =
(
c1(−L + c1H) · c1(L)

)
|S.

Using that L|S ≡num qH|S, we deduce

c2((π∗E)|S) = d(c1 − q)q(π∗Σ)|S.
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Uniform bundles

Splitting criteria
Numerical splitting...

A (slight) generalization of a result of Ancona, Peternell and Wiśniewski
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Uniform bundles

Splitting criteria
... and splitting

The following was proved by Ballico for X = Pn andM the family of
lines; his proof applies verbatim in our setting

Lemma (2)
Assume that c2 = dr(c1 − r) for some rational number r and that there
exists a curve ` ∈M such that the splitting type of E is (a, b) with

|a− b| ≤ µ|2r − c1|

then E splits.

If there is a surface as in Lemma (1) containing a minimal section over a
curve inM both conditions are satisfied.
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Corollary
Assume that there is a surface S ⊂ X, which contains a free rational
curve, and such that E|S splits. Then E splits.

Corollary
Assume that there exists a rational number r such that rµ ∈ Z and

M̃rµ
y contains a complete curve T for some y ∈ P(E).

Then E splits.

Proof.
Let S be the locus of curves parametrized by the complete curve T;
in S every curve is numerically proportional to a curve of M̃rµ

y .
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Uniform bundles

Splitting criteria
Applications

Corollary
Assume that E is indecomposable. If −Krel + τH is semiample then any
fiber of the second contraction has dimension less than or equal to one.

Proof.
If the second contraction has a fiber F of dimension at least two, we take
S to be a surface contained in F and we apply Lemmata (1) and (2).

Proposition
Assume thatMx is proper for a general x ∈ X, that β ≤ 0 and that
• τ < 2iX − 2β − c1 − 4/µ if (c1, β) 6= (0, 0);
• τ < 2iX − 6/µ, if (c1, β) = (0, 0).

Then E splits as a sum of line bundles.
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Assume we are in case (c1, β) 6= (0, 0).

The existence of D ∈ |L + βH| excludes splitting types with τ small
with respect to β.

Moreover D has negative intersection with minimal sections.

Therefore for a general x ∈ X the existence
of a complete curve inMt

x implies
the existence of a complete curve in M̃t

y

If the number of possible splitting types is less than or equal to the
dimension ofMx we get a complete curve inMa

x for some a.

We then compute the maximum number of possible splitting types and
the dimension ofMx in terms of the invariants.
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Corollary (3)
Assume that ∆ ≥ 0 and that τ < 2iX +

√
∆− 4/µ. Then E splits.

Proof.
E is not stable, hence β ≤ 0. In Solá’s talk we saw that

−2β − c1 ≥
√

∆,

so we conclude by the Proposition.

Remark
The bound in the above Corollary is better than the bound one gets from
Castelnuovo-Mumford regularity.
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Generalities

From now on we assume that E is a Fano bundle, i.e. that P(E) is a Fano
manifold. This is equivalent to

τ < iX

In particular −Krel + τH is semiample and is the supporting divisor of a
Mori contraction ϕ : P(E)→ Y , which we call the second contraction.

By the canonical bundle formula

−KP(E) = 2L + (iX − c1)H

we see that

iP(E) =

{
2 if iX − c1 ≡ 0 mod 2
1 if iX − c1 6≡ 0 mod 2



Splitting criteria

G. Occhetta

Setup

Splitting criteria
Splitting criteria

Applications

Fano bundles
Contractions

Stability

Double structure

Other results
Grauert - Mülich
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Examples

X Blow-ups Conic bundles P1-bundles

P2 Q3 along line
P3 along Γ3

Divisor of type
(2, 1) in P2 × P2 P(TP2)

P3 P(N )
Q3 P(π∗N ) P(S)
Q5 P(C)
V3

4 P(Q|V4)
V3

5 P4 along S(V5)
K(G2) P(Q)

Table: Known indecomposable Fano bundles on Fanos with b2 = b4 = 1

• N null-correlation bundle;
• S spinor bundle;
• C Cayley bundle;
• Q universal quotient bundle.
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Uniform bundles

Fano bundles
Examples

X Blow-ups Conic bundles P1-bundles

P2 Q3 along line
P3 along Γ3

Divisor of type
(2, 1) in P2 × P2 P(TP2)

P3 P(N )
Q3 P(π∗N ) P(S)
Q5 P(C)
V3

4 P(Q|V4)
V3

5 P4 along S(V5)
K(G2) P(Q)

Table: Known indecomposable Fano bundles on Fanos with b2 = b4 = 1

• N null-correlation bundle;
• S spinor bundle;
• C Cayley bundle;
• Q universal quotient bundle.



Splitting criteria

G. Occhetta

Setup

Splitting criteria
Splitting criteria

Applications

Fano bundles
Contractions

Stability

Double structure

Other results
Grauert - Mülich
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Contractions

For simplicity we assume from now on that µ = 1.

Denote by R2 the second extremal ray, and by C a rational curve of
minimal degree spanning R2.

Lemma
If E is indecomposable then the second contraction ϕ : P(E)→ Y, its
length and the Fano threshold of E are

1 A P1-bundle, l(R2) = 2, τ = iX − 2
H·C ;

2 a conic bundle with reducible fibers, l(R2) = 1, τ = iX − 1
H·C ;

3 the blow-up of a codimension two smooth subvariety, l(R2) = 1,
τ = iX − 1

H·C .

In all cases Y is smooth and Fano.
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Two useful formulae

Since −Krel + τH is semiample, if ∆ < 0 we have the following two
formulae (seen in Solá’s talk)

arg
(
τ +
√

∆
)

=
π

n + 1
fiber type

arg
(
ρ+
√

∆
)

+ n arg
(
τ +
√

∆
)

= π divisorial
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+ n arg
(
τ +
√

∆
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= π divisorial
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Theorem (Grauert-Schneider for Fanos)
If E is not stable and indecomposable then X ' P2 and E is a bundle
whose projectivization is the blow-up of a smooth three-dimensional
quadric along a line.

Proof. By Corollary (3), E splits unless possibly when c1 = β = 0.

A divisor E ∈ |L| is not nef, otherwise we have τ = 0 and E splits.

In particular E · C < 0, hence ϕ : P(E)→ Y is a smooth blow-up,
E = Exc(ϕ), E · C = −1. It follows that
• ρ = 0;
• l(R2) = 1;
• τ = iX − 1

H·C .
Notice that β = 0, then c2 > 0, hence ∆ < 0.
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Using the (anti)canonical bundle formula

1 = l(R2) = −KP(E) · C

= (2L + iXH) · C = −2 + iX,

we get iX = 3.

By the “useful formula” for the divisorial case we have

arg(τ +
√

∆) =
π

2n
⇒ 4c2

d
= −∆ = τ 2 tan2

( π
2n

)
Number theory tells us that n = 2, 3.

If n = 3, X is a smooth quadric Q3; the formula above gives a
non-integral value for c2.

If n = 2, X is P2; the formula above gives c2 = 1 and we conclude by
the classification given by Szurek and Wiśniewski.
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Fano bundles
Double P1-bundle structure

X Y bundle
P2 P2 TP2

P3 Q3 N
Q3 P3 S
Q5 K(G2) C

K(G2) Q5 Q

Table: Known indecomposable double P1-bundle structure

• N null-correlation bundle;
• S spinor bundle;
• Q universal quotient bundle;
• C Cayley bundle.
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Double P1-bundle structure

Theorem
For a Fano bundle E the following are equivalent

1 iX − c1(E) ≡ 0 (mod 2);

2 P(E) has a second contraction which is a P1-bundle;
3 (X, E) is one of the following

1 (P2, TP2);
2 (P3,N ), withN a null-correlation bundle;
3 (Q3,S) with S the restriction of a spinor bundle;
4 (Q5, C) with C a Cayley bundle;
5 (K(G2),Q), withQ the restriction of the universal quotient bundle.

(1)⇒ (2).

Condition (1) implies that iP(E) = 2, hence l(R2) = 2.
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(2)⇒ (3).

Assume that ϕ : P(E)→ Y makes P(E) a P1-bundle over a smooth
(Fano) variety Y . Denote by F the normalized rank two vector bundle
on Y whose projectivization is P(E).

Using Pic(P(E)) = 〈L,H〉 = 〈L,H〉 we get that

• H · f = 1 ;
• τ = iX − 2;
• −Krel + τH = 2H;
• H · f = 1;
• τ = iY − 2;
• −Krel + τH = 2H;

Set dX = Hn
X and dY = Hn

Y . We have

dY = HH
n

dX = HHn
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Uniform bundles

(2)⇒ (3).

Assume that ϕ : P(E)→ Y makes P(E) a P1-bundle over a smooth
(Fano) variety Y . Denote by F the normalized rank two vector bundle
on Y whose projectivization is P(E).

Using Pic(P(E)) = 〈L,H〉 = 〈L,H〉 we get that

• H · f = 1 ;
• τ = iX − 2;
• −Krel + τH = 2H;
• H · f = 1;
• τ = iY − 2;
• −Krel + τH = 2H;

Set dX = Hn
X and dY = Hn

Y . We have

dY = HH
n

dX = HHn



Splitting criteria

G. Occhetta

Setup

Splitting criteria
Splitting criteria

Applications

Fano bundles
Contractions

Stability

Double structure

Other results
Grauert - Mülich
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Uniform bundles

We can compute

dY

dX
=

(−Krel + τH)nH
2nLHn

dX

dY
=

(−Krel + τH)nH
2nL H

n

and simplify using (−Krel)2 = ∆H2, Hn+1 = 0, ∆ = τ 2 tan2
(

π

n + 1

)
and the corresponding relations for overlined quantities.

Multiplying the two formulae we finally get

(iX − 2)(iY − 2) = ττ = 4 cos2
(

π

n + 1

)
=


1 if n = 2
2 if n = 3
3 if n = 5
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Uniform bundles

We can compute

dY

dX
=

(−Krel + τH)nH
2nLHn

dX

dY
=

(−Krel + τH)nH
2nL H

n

and simplify using (−Krel)2 = ∆H2, Hn+1 = 0, ∆ = τ 2 tan2
(

π

n + 1

)
and the corresponding relations for overlined quantities.

Multiplying the two formulae we finally get

(iX − 2)(iY − 2) = ττ = 4 cos2
(

π

n + 1

)

=


1 if n = 2
2 if n = 3
3 if n = 5



Splitting criteria

G. Occhetta

Setup

Splitting criteria
Splitting criteria

Applications

Fano bundles
Contractions

Stability

Double structure

Other results
Grauert - Mülich
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Up to exchange X and Y the possible values of of iX and iY are:

n iX iY X
2 3 3 P2

3 4 3 P3

5 5 3 Q5

Using the formulae we compute (c1, c2).

The tangent bundle of P2, the null-correlation bundle on P3 and the
Cayley bundle on Q5 are determined, among stable bundles, by their
Chern classes.

(3)⇒ (2).

Direct computation.
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Uniform bundles

Up to exchange X and Y the possible values of of iX and iY are:

n iX iY X
2 3 3 P2

3 4 3 P3

5 5 3 Q5

Using the formulae we compute (c1, c2).

The tangent bundle of P2, the null-correlation bundle on P3 and the
Cayley bundle on Q5 are determined, among stable bundles, by their
Chern classes.

(3)⇒ (2).

Direct computation.



Splitting criteria

G. Occhetta

Setup

Splitting criteria
Splitting criteria

Applications

Fano bundles
Contractions

Stability

Double structure

Other results
Grauert - Mülich
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Minimal sections and divisors
(and a Grauert - Mülich type theorem)

Proposition (4)
Assume thatMx is irreducible for x ∈ X general and let (a, b) with
a ≤ b be the general splitting type of E . The closure of the locus of the
minimal sections over a general curve is either

a unisecant divisor in |L− bH| or

the whole P(E); in this case b− a ≤ 1.

Corollary (G-M for Fanos)
LetM be a covering family of rational curves on X such thatMx is
irreducible for general x ∈ X. Let (a, b) with a ≤ b be the general
splitting type of E . If E is semistable, then b− a ≤ 1.
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Irreducibility ofMx
What is known

LetM be a minimal dominating family for X. Then

• If dimMx ≥ dim X−1
2 thenMx is irreducible (Kebekus and

Kovács);
• If Pic(X) ' Z andMx is positive dimensional, it is irreducible in

all the known examples;
• If Pic(X) 6' Z there are examples with dimMx = dim X−3

2 andMx

reducible for all x ∈ X.
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Uniform bundles
A condition for splitting

Lemma (5)
Assume that E is uniform of type (a, b) with a < b with respect to an
unsplit covering familyM of rational curves on X, and that
H0(E(−b)) 6= 0. Then E = OX(a)⊕OX(b).
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Uniform bundles
Classification

Theorem
Assume thatM is unsplit and thatMx is irreducible for a general
x ∈ X. If E is indecomposable and uniform with respect toM, then
(X, E) is either (P2,TP2), (Q3,S) or (K(G2),Q).

Proof.
By Proposition (4) and Lemma (5) we have b− a = 1 and that the
family of minimal sections is covering.

SinceM is unsplit and E is uniform also M̃ is unsplit.

If there is a surface in a rcM̃ equivalence class the bundle splits.
So all the classes are one-dimensional and the family is extremal by a
result of Bonavero, Casagrande and Druel.

The second contraction is a P1-bundle, and we apply the previous
theorem, checking uniformity in the classification.
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