G. Occhetta

Setup

Splitting criteria Splitting criteria

Applications

Fano bundles Contractions

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Splitting criteria for rank two vector bundles on Fano manifolds

G. Occhetta

joint work with R. Muñoz and L.E. Solá Conde

KIAS, April 6, 2011

・ロト・(部ト・モト・モー・)へ()

G. Occhetta

Setup

- Splitting criteria
- Splitting criteria
- Applications
- Fano bundles
- Contractions
- Stability
- Double structure
- Other results
- Grauert Mülich
- Uniform bundles

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

Goals

< □ > < @ > < E > < E > E のQ@

• Obtain splitting criteria for vector bundles;

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

Goals

< □ > < @ > < E > < E > E のQ@

- Obtain splitting criteria for vector bundles;
- Classify indecomposable vector bundles in different setups.

G. Occhetta

- Setup
- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

Goals

- Obtain splitting criteria for vector bundles;
- Classify indecomposable vector bundles in different setups.
- 🗹 Uniform vector bundles on Grassmannians;

G. Occhetta

- Setup
- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

- Obtain splitting criteria for vector bundles;
- Classify indecomposable vector bundles in different setups.
- Uniform vector bundles on Grassmannians;Fano bundles on Grassmannians of lines;

G. Occhetta

- Setup
- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

• Obtain splitting criteria for vector bundles;

- Classify indecomposable vector bundles in different setups.
- ☑ Uniform vector bundles on Grassmannians;
- ☑ Fano bundles on Grassmannians of lines;
- \checkmark Vector bundles on \mathbb{P}^n with low Fano threshold;

G. Occhetta

- Setup
- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

• Obtain splitting criteria for vector bundles;

- Classify indecomposable vector bundles in different setups.
- ☑ Uniform vector bundles on Grassmannians;
- ☑ Fano bundles on Grassmannians of lines;
- \checkmark Vector bundles on \mathbb{P}^n with low Fano threshold;
- ☑ Stability of Fano bundles;

G. Occhetta

- Setup
- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

• Obtain splitting criteria for vector bundles;

- Classify indecomposable vector bundles in different setups.
- ☑ Uniform vector bundles on Grassmannians;
- ☑ Fano bundles on Grassmannians of lines;
- \checkmark Vector bundles on \mathbb{P}^n with low Fano threshold;
- ☑ Stability of Fano bundles;
- \mathbf{V} Fano bundles with a second \mathbb{P}^1 -bundle structure;

G. Occhetta

- Setup
- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

- Obtain splitting criteria for vector bundles;
- Classify indecomposable vector bundles in different setups.
- ☑ Uniform vector bundles on Grassmannians;
- ☑ Fano bundles on Grassmannians of lines;
- \checkmark Vector bundles on \mathbb{P}^n with low Fano threshold;
- ☑ Stability of Fano bundles;
- \mathbf{Z} Fano bundles with a second \mathbb{P}^1 -bundle structure;
- □ Fano bundles with a conic-bundle structure;

Goals

G. Occhetta

- Setup
- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

• Obtain splitting criteria for vector bundles;

- Classify indecomposable vector bundles in different setups.
- ☑ Uniform vector bundles on Grassmannians;
- ☑ Fano bundles on Grassmannians of lines;
- \checkmark Vector bundles on \mathbb{P}^n with low Fano threshold;
- ☑ Stability of Fano bundles;
- \mathbf{V} Fano bundles with a second \mathbb{P}^1 -bundle structure;
- □ Fano bundles with a conic-bundle structure;
- \Box Fano bundles with a smooth blow-down contraction;

G. Occhetta

- Setup
- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

• Obtain splitting criteria for vector bundles;

- Classify indecomposable vector bundles in different setups.
- Uniform vector bundles on Grassmannians;
- ☑ Fano bundles on Grassmannians of lines;
- \checkmark Vector bundles on \mathbb{P}^n with low Fano threshold;
- ☑ Stability of Fano bundles;
- \mathbf{Z} Fano bundles with a second \mathbb{P}^1 -bundle structure;
- □ Fano bundles with a conic-bundle structure;
- \Box Fano bundles with a smooth blow-down contraction;

Uniform bundles.

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

Outline

< □ > < @ > < E > < E > E のQ@

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

1 Setup

2 Splitting criteria

Outline

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

1 Setup

2 Splitting criteria Splitting criteria

Outline

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

1 Setup

2 Splitting criteria Splitting criteria Applications

Outline

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

1 Setup

2 Splitting criteria Splitting criteria Applications

3 Fano bundles

Outline

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

1 Setup

2 Splitting criteria Splitting criteria Applications

3 Fano bundles Contractions

Outline

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

1 Setup

2 Splitting criteria Splitting criteria Applications

3 Fano bundles Contractions Stability

Outline

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

1 Setup

2 Splitting criteria Splitting criteria Applications

3 Fano bundles

Contractions Stability Double \mathbb{P}^1 -bundle structure

Outline

< □ > < @ > < E > < E > E のQ@

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles Contractions Stability Double structur

Other results Grauert - Mülich Uniform bundles

1 Setup

2 Splitting criteria Splitting criteria Applications

3 Fano bundles

Contractions Stability Double \mathbb{P}^1 -bundle structure

4 Other results

Outline

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles Contractions Stability Double structur

Other results Grauert - Mülich Uniform bundles

1 Setup

2 Splitting criteria Splitting criteria Applications

3 Fano bundles

Contractions Stability Double \mathbb{P}^1 -bundle structure

4 Other results

Grauert - Mülich

Outline

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles Contractions Stability Double structur

Other results Grauert - Mülich Uniform bundles

1 Setup

2 Splitting criteria Splitting criteria Applications

3 Fano bundles

Contractions Stability Double \mathbb{P}^1 -bundle structure

4 Other results

Grauert - Mülich Uniform bundles

Outline

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

G. Occhetta

Setup

Splitting criteria

Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results

Grauert - Mülich Uniform bundles

Setup Base manifold

< □ > < @ > < E > < E > E のQ@

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions
- Dauble structure
- Other results Grauert - Mülich Uniform bundles

Setup Base manifold

< □ > < @ > < E > < E > E のQ@

• Base field: \mathbb{C} ;

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

Setup Base manifold

< □ > < @ > < E > < E > E のQ@

- Base field: \mathbb{C} ;
- X Fano manifold;

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

Setup Base manifold

< □ > < @ > < E > < E > E のQ@

- Base field: C;
- X Fano manifold;
- $\operatorname{Pic}(X) = \mathbb{Z}\langle H_X \rangle;$

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

Setup Base manifold

- Base field: C;
- X Fano manifold;
- $\operatorname{Pic}(X) = \mathbb{Z}\langle H_X \rangle;$
- $-K_X = i_X H_X$, i_X index of X;

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

Setup Base manifold

- Base field: \mathbb{C} ;
- X Fano manifold;
- $\operatorname{Pic}(X) = \mathbb{Z}\langle H_X \rangle;$
- $-K_X = i_X H_X$, i_X index of X;
- $H^4(X,\mathbb{Z}) = \mathbb{Z}\langle \Sigma \rangle;$

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

Setup Base manifold

- Base field: \mathbb{C} ;
- X Fano manifold;
- $\operatorname{Pic}(X) = \mathbb{Z}\langle H_X \rangle;$
- $-K_X = i_X H_X$, i_X index of X;
- $H^4(X,\mathbb{Z}) = \mathbb{Z}\langle \Sigma \rangle;$
- $H_X^2 =: d\Sigma;$

G. Occhetta

Setup

Splitting criteria

Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results

Grauert - Mülich Uniform bundles

Setup Vector bundles

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions
- Stability
- Double structure
- Other results Grauert - Mülich Uniform bundles

Setup Vector bundles

< □ > < @ > < E > < E > E のQ@

• \mathcal{E} vector bundle on *X* of rank two;

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability
- Other results Grauert - Mülich Uniform bundles

Setup Vector bundles

- \mathcal{E} vector bundle on *X* of rank two;
- $\pi : \mathbb{P}(\mathcal{E}) \to X$ natural projection;

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

Setup Vector bundles

- \mathcal{E} vector bundle on *X* of rank two;
- $\pi : \mathbb{P}(\mathcal{E}) \to X$ natural projection;

•
$$\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1) := \mathcal{O}(L), \quad H := \pi^* H_X, \quad -K_{\text{rel}} = 2L - c_1 H;$$

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

Setup Vector bundles

- *E* vector bundle on *X* of rank two;
- $\pi : \mathbb{P}(\mathcal{E}) \to X$ natural projection;
- $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1) := \mathcal{O}(L), \quad H := \pi^* H_X, \quad -K_{\text{rel}} = 2L c_1 H;$
- $c_1(\mathcal{E}) = c_1 H_X \leftrightarrow c_1 \in \mathbb{Z}$, may assume $c_1 = -1, 0$;

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

Setup Vector bundles

- \mathcal{E} vector bundle on *X* of rank two;
- $\pi : \mathbb{P}(\mathcal{E}) \to X$ natural projection;

•
$$\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1) := \mathcal{O}(L), \quad H := \pi^* H_X, \quad -K_{\text{rel}} = 2L - c_1 H;$$

•
$$c_1(\mathcal{E}) = c_1 H_X \leftrightarrow c_1 \in \mathbb{Z}$$
, may assume $c_1 = -1, 0$;

•
$$c_2(\mathcal{E}) =: c_2\Sigma, \leftrightarrow c_2 \in \mathbb{Z};$$

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

Setup Vector bundles

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- *E* vector bundle on *X* of rank two;
- $\pi : \mathbb{P}(\mathcal{E}) \to X$ natural projection;
- $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1) := \mathcal{O}(L), \quad H := \pi^* H_X, \quad -K_{\text{rel}} = 2L c_1 H;$
- $c_1(\mathcal{E}) = c_1 H_X \leftrightarrow c_1 \in \mathbb{Z}$, may assume $c_1 = -1, 0$;

•
$$c_2(\mathcal{E}) =: c_2\Sigma, \leftrightarrow c_2 \in \mathbb{Z};$$

• Discriminant: $\Delta(\mathcal{E}) = (c_1^2 - 4c_2/d)\Sigma := \Delta\Sigma;$

G. Occhetta

Setup

Splitting criteria

Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results

Grauert - Mulich Uniform bundles

Setup Rational curves

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles
- Contraction
- Stability
- Other results Grauert - Mülich Uniform bundles

Setup Rational curves

 M ⊂ RatCurves(X) irreducible component such that Locus(M) = X dominating family of rational curves; a curve belonging to such an M is a free curve

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles
- Stability
- Double structure
- Other results Grauert - Mülich Uniform bundles

Setup Rational curves

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- M ⊂ RatCurves(X) irreducible component such that Locus(M) = X dominating family of rational curves; a curve belonging to such an M is a free curve
- $\mu = H_X \cdot \mathcal{M};$

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions
- Stability
- Double structure
- Other results Grauert - Mülich Uniform bundles

Setup Rational curves

- M ⊂ RatCurves(X) irreducible component such that Locus(M) = X dominating family of rational curves; a curve belonging to such an M is a free curve
- $\mu = H_X \cdot \mathcal{M};$
- Splitting type of ℓ is (a, b) if ν* ε = O_{P¹}(a) ⊕ O_{P¹}(b);

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions
- Stability
- Double structure
- Other results Grauert - Mülich Uniform bundles

- M ⊂ RatCurves(X) irreducible component such that Locus(M) = X dominating family of rational curves; a curve belonging to such an M is a free curve
- $\mu = H_X \cdot \mathcal{M};$
- Splitting type of ℓ is (a,b) if $\nu^* \mathcal{E} = \mathcal{O}_{\mathbb{P}^1}(a) \oplus \mathcal{O}_{\mathbb{P}^1}(b)$;
- $\tau(\ell) = |a b|/\mu;$

Setup Rational curves

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions
- Stability
- Double structure
- Other results Grauert - Mülich Uniform bundles

- M ⊂ RatCurves(X) irreducible component such that Locus(M) = X dominating family of rational curves; a curve belonging to such an M is a free curve
- $\mu = H_X \cdot \mathcal{M};$
- Splitting type of ℓ is (a,b) if $\nu^* \mathcal{E} = \mathcal{O}_{\mathbb{P}^1}(a) \oplus \mathcal{O}_{\mathbb{P}^1}(b)$;
- $\tau(\ell) = |a b|/\mu;$
- $\mathcal{M}^t \subset \mathcal{M}$: curves of \mathcal{M} with $\tau(\ell) = t \in (1/\mu)\mathbb{Z}$;

Setup Rational curves

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions
- Stability
- Double structure
- Other results Grauert - Mülich Uniform bundles

- M ⊂ RatCurves(X) irreducible component such that Locus(M) = X dominating family of rational curves; a curve belonging to such an M is a free curve
- $\mu = H_X \cdot \mathcal{M};$
- Splitting type of ℓ is (a,b) if $\nu^* \mathcal{E} = \mathcal{O}_{\mathbb{P}^1}(a) \oplus \mathcal{O}_{\mathbb{P}^1}(b)$;
- $\tau(\ell) = |a b|/\mu;$
- $\mathcal{M}^t \subset \mathcal{M}$: curves of \mathcal{M} with $\tau(\ell) = t \in (1/\mu)\mathbb{Z}$;
- *M*^t ⊂ RatCurves(P(*E*)) family of minimal sections over curves parametrized by *M*^t;

Setup Rational curves

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions
- Stability
- Double structure
- Other results Grauert - Mülich Uniform bundles

- M ⊂ RatCurves(X) irreducible component such that Locus(M) = X dominating family of rational curves; a curve belonging to such an M is a free curve
- $\mu = H_X \cdot \mathcal{M};$
- Splitting type of ℓ is (a,b) if $\nu^* \mathcal{E} = \mathcal{O}_{\mathbb{P}^1}(a) \oplus \mathcal{O}_{\mathbb{P}^1}(b)$;
- $\tau(\ell) = |a b|/\mu;$
- $\mathcal{M}^t \subset \mathcal{M}$: curves of \mathcal{M} with $\tau(\ell) = t \in (1/\mu)\mathbb{Z}$;
- *M*^t ⊂ RatCurves(P(*E*)) family of minimal sections over curves parametrized by *M*^t;
- $\mathcal{M}_x \subset \mathcal{M}$: curves of \mathcal{M} passing through *x*.

Setup Rational curves

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

G. Occhetta

Setup

Splitting criteria

Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results

Grauert - Mülicl

Uniform bundles

Setup Stability

< □ > < @ > < E > < E > E のQ@

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability
- Other results Grauert - Mülich Uniform bundles

• $\beta := \min\{b \in \mathbb{Z} \mid H^0(X, \mathcal{E}(b)) \neq 0\}.$

Setup Stability

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability
- Other results Grauert - Mülich Uniform bundles

Setup Stability

<ロト < 同ト < 三ト < 三ト < 三ト < 回 < つ < ○</p>

- $\beta := \min\{b \in \mathbb{Z} \mid H^0(X, \mathcal{E}(b)) \neq 0\}.$
- \mathcal{E} is stable (semistable) iff $\beta > -c_1/2$ ($\beta \ge -c_1/2$).

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

Setup Stability

- $\beta := \min\{b \in \mathbb{Z} \mid H^0(X, \mathcal{E}(b)) \neq 0\}.$
- \mathcal{E} is stable (semistable) iff $\beta > -c_1/2$ ($\beta \ge -c_1/2$).
- $\Delta > 0$ implies \mathcal{E} not semistable;

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

Setup Stability

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- $\beta := \min\{b \in \mathbb{Z} \mid H^0(X, \mathcal{E}(b)) \neq 0\}.$
- \mathcal{E} is stable (semistable) iff $\beta > -c_1/2$ ($\beta \ge -c_1/2$).
- $\Delta > 0$ implies \mathcal{E} not semistable;
- $\Delta = 0$ implies \mathcal{E} not semistable, unless \mathcal{E} is trivial.

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

• $\beta := \min\{b \in \mathbb{Z} \mid H^0(X, \mathcal{E}(b)) \neq 0\}.$

- \mathcal{E} is stable (semistable) iff $\beta > -c_1/2$ ($\beta \ge -c_1/2$).
- $\Delta > 0$ implies \mathcal{E} not semistable;
- $\Delta = 0$ implies \mathcal{E} not semistable, unless \mathcal{E} is trivial.

If
$$\Delta = 0$$
 either $c_1(\mathcal{E}) = c_2(\mathcal{E}) = 0$ or $c_1(S^2\mathcal{E}(1)) = c_2(S^2\mathcal{E}(1)) = 0$.

Setup

Stability

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

Setup Stability

- $\beta := \min\{b \in \mathbb{Z} \mid H^0(X, \mathcal{E}(b)) \neq 0\}.$
- \mathcal{E} is stable (semistable) iff $\beta > -c_1/2$ ($\beta \ge -c_1/2$).
- $\Delta > 0$ implies \mathcal{E} not semistable;
- $\Delta = 0$ implies \mathcal{E} not semistable, unless \mathcal{E} is trivial.

If
$$\Delta = 0$$
 either $c_1(\mathcal{E}) = c_2(\mathcal{E}) = 0$ or $c_1(S^2\mathcal{E}(1)) = c_2(S^2\mathcal{E}(1)) = 0$.

Mehta -Ramanathan: Any stable vector bundle with trivial c_1 and c_2 is given by an irreducible unitary representation of $\pi_1(X)$.

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

Setup Stability

- $\beta := \min\{b \in \mathbb{Z} \mid H^0(X, \mathcal{E}(b)) \neq 0\}.$
- \mathcal{E} is stable (semistable) iff $\beta > -c_1/2$ ($\beta \ge -c_1/2$).
- $\Delta > 0$ implies \mathcal{E} not semistable;
- $\Delta = 0$ implies \mathcal{E} not semistable, unless \mathcal{E} is trivial.

If
$$\Delta = 0$$
 either $c_1(\mathcal{E}) = c_2(\mathcal{E}) = 0$ or $c_1(S^2\mathcal{E}(1)) = c_2(S^2\mathcal{E}(1)) = 0$.

Mehta -Ramanathan: Any stable vector bundle with trivial c_1 and c_2 is given by an irreducible unitary representation of $\pi_1(X)$. Being X Fano, $\pi_1(X)$ is trivial.

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

Setup Stability

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- $\beta := \min\{b \in \mathbb{Z} \mid H^0(X, \mathcal{E}(b)) \neq 0\}.$
- \mathcal{E} is stable (semistable) iff $\beta > -c_1/2$ ($\beta \ge -c_1/2$).
- $\Delta > 0$ implies \mathcal{E} not semistable;
- $\Delta = 0$ implies \mathcal{E} not semistable, unless \mathcal{E} is trivial.

If
$$\Delta = 0$$
 either $c_1(\mathcal{E}) = c_2(\mathcal{E}) = 0$ or $c_1(S^2\mathcal{E}(1)) = c_2(S^2\mathcal{E}(1)) = 0$.

Mehta -Ramanathan: Any stable vector bundle with trivial c_1 and c_2 is given by an irreducible unitary representation of $\pi_1(X)$. Being X Fano, $\pi_1(X)$ is trivial.

If \mathcal{E} is semistable (and not stable) then $h^0(\mathcal{E}) \neq 0$ and $h^0(\mathcal{E}(-1)) = 0$ so that \mathcal{E} is trivial, as $c_2 = 0$.

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

Setup Stability

- $\beta := \min\{b \in \mathbb{Z} \mid H^0(X, \mathcal{E}(b)) \neq 0\}.$
- \mathcal{E} is stable (semistable) iff $\beta > -c_1/2$ ($\beta \ge -c_1/2$).
- $\Delta > 0$ implies \mathcal{E} not semistable;
- $\Delta = 0$ implies \mathcal{E} not semistable, unless \mathcal{E} is trivial.

If
$$\Delta = 0$$
 either $c_1(\mathcal{E}) = c_2(\mathcal{E}) = 0$ or $c_1(S^2\mathcal{E}(1)) = c_2(S^2\mathcal{E}(1)) = 0$.

Mehta -Ramanathan: Any stable vector bundle with trivial c_1 and c_2 is given by an irreducible unitary representation of $\pi_1(X)$. Being X Fano, $\pi_1(X)$ is trivial.

If \mathcal{E} is semistable (and not stable) then $h^0(\mathcal{E}) \neq 0$ and $h^0(\mathcal{E}(-1)) = 0$ so that \mathcal{E} is trivial, as $c_2 = 0$.

In the second case we use that $S^2 \mathcal{E}(1)$ is polystable (sum of stables).

G. Occhetta

Setup

Splitting criteria

Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results

Grauert - Mulich Uniform bundles

$\begin{array}{c} Setup\\ \textbf{Cones of } \mathbb{P}(\mathcal{E}) \end{array}$

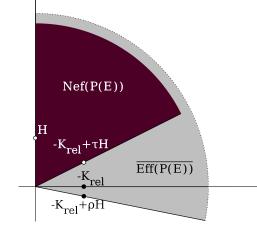
< □ > < @ > < E > < E > E のQ@

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

$\begin{array}{c} Setup\\ \text{Cones of } \mathbb{P}(\mathcal{E}) \end{array}$

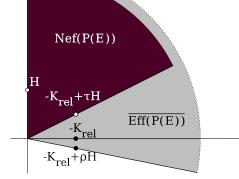


G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

• $-K_{rel} + \tau H$ is the second ray of Nef($\mathbb{P}(\mathcal{E})$);



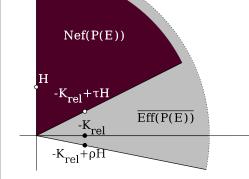
G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

- $-K_{rel} + \tau H$ is the second ray of Nef($\mathbb{P}(\mathcal{E})$);
- $-K_{rel} + \rho H$ is the second ray of $\overline{\text{Eff}(\mathbb{P}(\mathcal{E}))}$.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~



G. Occhetta

Setup

Splitting criteria

Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results

Grauert - Mülic

Uniform bundles

Splitting criteria Numerical splitting...

< □ > < @ > < E > < E > E のQ@

G. Occhetta

Setup

Splitting criteria

Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Splitting criteria Numerical splitting...

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

A (slight) generalization of a result of Ancona, Peternell and Wiśniewski

G. Occhetta

Setu

Splitting criteria

Splitting criteria

Applications

Fano bundles Contractions

Stability

Other results Grauert - Mülich Uniform bundles

Splitting criteria Numerical splitting...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A (slight) generalization of a result of Ancona, Peternell and Wiśniewski Lemma (1)

Assume that, for some rational number q there is a surface $S \subset \mathbb{P}(\mathcal{E})$ such that $\pi_{|S}$ is finite and that $(L - qH) \cdot C = 0$ for every $C \subset S$. Then

$$c_2 = dq(c_1 - q).$$

G. Occhetta

Setu

Splitting criteria

Splitting criteria

Applications

Fano bundles Contractions Stability

Other results Grauert - Mülich Uniform bundles

Splitting criteria Numerical splitting...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A (slight) generalization of a result of Ancona, Peternell and Wiśniewski Lemma (1)

Assume that, for some rational number q there is a surface $S \subset \mathbb{P}(\mathcal{E})$ such that $\pi_{|S}$ is finite and that $(L - qH) \cdot C = 0$ for every $C \subset S$. Then

$$c_2 = dq(c_1 - q).$$

Proof.

By the relative Euler sequence restricted to S

$$0 \to (\omega_{\mathbb{P}(\mathcal{E})/X}(1))|_{S} \longrightarrow (\pi^{*}\mathcal{E})|_{S} \longrightarrow (\mathcal{O}(1))|_{S} \to 0.$$

G. Occhetta

Setu

Splitting criteria

Splitting criteria

Applications

Fano bundles Contractions Stability

Other results Grauert - Mülich Uniform bundles

Splitting criteria Numerical splitting...

A (slight) generalization of a result of Ancona, Peternell and Wiśniewski Lemma (1)

Assume that, for some rational number q there is a surface $S \subset \mathbb{P}(\mathcal{E})$ such that $\pi_{|S}$ is finite and that $(L - qH) \cdot C = 0$ for every $C \subset S$. Then

$$c_2 = dq(c_1 - q).$$

Proof.

By the relative Euler sequence restricted to S

 $0 \to (\omega_{\mathbb{P}(\mathcal{E})/X}(1))|_{S} \longrightarrow (\pi^{*}\mathcal{E})|_{S} \longrightarrow (\mathcal{O}(1))|_{S} \to 0.$ we get that: $c_{2}((\pi^{*}\mathcal{E})|_{S}) = (c_{1}(-L+c_{1}H) \cdot c_{1}(L))|_{S}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

G. Occhetta

Setu

Splitting criteria

Splitting criteria

Applications

Fano bundles Contractions Stability

Other results Grauert - Mülich Uniform bundles

Splitting criteria Numerical splitting...

A (slight) generalization of a result of Ancona, Peternell and Wiśniewski Lemma (1)

Assume that, for some rational number q there is a surface $S \subset \mathbb{P}(\mathcal{E})$ such that $\pi_{|S}$ is finite and that $(L - qH) \cdot C = 0$ for every $C \subset S$. Then

$$c_2 = dq(c_1 - q).$$

Proof.

By the relative Euler sequence restricted to S

 $0 \rightarrow (\omega_{\mathbb{P}(\mathcal{E})/X}(1))|_{S} \longrightarrow (\pi^{*}\mathcal{E})|_{S} \longrightarrow (\mathcal{O}(1))|_{S} \rightarrow 0.$ we get that: $c_{2}((\pi^{*}\mathcal{E})|_{S}) = (c_{1}(-L+c_{1}H) \cdot c_{1}(L))|_{S}.$ Using that $L_{|S} \equiv_{\text{num}} qH_{|S}$, we deduce

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ◆日 ▶

G. Occhetta

Setuj

Splitting criteria

Splitting criteria

Applications

Fano bundles Contractions Stability

Other results Grauert - Mülich Uniform bundles

Splitting criteria Numerical splitting...

A (slight) generalization of a result of Ancona, Peternell and Wiśniewski Lemma (1)

Assume that, for some rational number q there is a surface $S \subset \mathbb{P}(\mathcal{E})$ such that $\pi_{|S|}$ is finite and that $(L - qH) \cdot C = 0$ for every $C \subset S$. Then

$$c_2 = dq(c_1 - q).$$

Proof.

By the relative Euler sequence restricted to S

 $0 \rightarrow (\omega_{\mathbb{P}(\mathcal{E})/X}(1))|_{S} \longrightarrow (\pi^{*}\mathcal{E})|_{S} \longrightarrow (\mathcal{O}(1))|_{S} \rightarrow 0.$ we get that: $c_{2}((\pi^{*}\mathcal{E})|_{S}) = (c_{1}(-L+c_{1}H) \cdot c_{1}(L))|_{S}.$ Using that $L_{|S} \equiv_{\text{num}} qH_{|S}$, we deduce

$$c_2((\pi^*\mathcal{E})_{|S}) = d(c_1 - q)q(\pi^*\Sigma)_{|S}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

G. Occhetta

Setup

Splitting criteria

Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results

Grauert - Mülic

Uniform bundles

Splitting criteria ... and splitting

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

G. Occhetta

Setup

Splitting criteria

Splitting criteria

Applications

Fano bundles

Contractions

Stability

Other results Grauert - Mülich Uniform bundles

Splitting criteria ... and splitting

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The following was proved by Ballico for $X = \mathbb{P}^n$ and \mathcal{M} the family of lines; his proof applies verbatim in our setting

G. Occhetta

Setup

Splitting criteria

Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Splitting criteria ... and splitting

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The following was proved by Ballico for $X = \mathbb{P}^n$ and \mathcal{M} the family of lines; his proof applies verbatim in our setting

Lemma (2)

Assume that $c_2 = dr(c_1 - r)$ for some rational number r and that there exists a curve $\ell \in \mathcal{M}$ such that the splitting type of \mathcal{E} is (a, b) with

$$|a-b| \le \mu |2r-c_1|$$

then E splits.

G. Occhetta

Setup

Splitting criteria

Splitting criteria

Applications

Fano bundles

Contractions

Double structur

Other results Grauert - Mülich Uniform bundles

Splitting criteria ... and splitting

The following was proved by Ballico for $X = \mathbb{P}^n$ and \mathcal{M} the family of lines; his proof applies verbatim in our setting

Lemma (2)

Assume that $c_2 = dr(c_1 - r)$ for some rational number r and that there exists a curve $\ell \in \mathcal{M}$ such that the splitting type of \mathcal{E} is (a, b) with

$$|a-b| \le \mu |2r-c_1|$$

then \mathcal{E} splits.

If there is a surface as in Lemma (1) containing a minimal section over a curve in \mathcal{M} both conditions are satisfied.

G. Occhetta

Setup

Splitting criteria

Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results

Grauert - Mülicl

Uniform bundles

Splitting criteria

G. Occhetta

Setu

Splitting criteria

Splitting criteria

Applications

Fano bundles Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

Splitting criteria

<ロト < 同ト < 三ト < 三ト < 三ト < 回 > への

Corollary

Assume that there is a surface $S \subset X$, which contains a free rational curve, and such that \mathcal{E}_{1S} splits. Then \mathcal{E} splits.

G. Occhetta

Setu

Splitting criteria

Splitting criteria

Applications

- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

Splitting criteria

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Corollary

Assume that there is a surface $S \subset X$, which contains a free rational curve, and such that \mathcal{E}_{1S} splits. Then \mathcal{E} splits.

Corollary

Assume that there exists a rational number r such that $r\mu \in \mathbb{Z}$ and

 $\widetilde{\mathcal{M}}_{y}^{r\mu}$ contains a complete curve *T* for some $y \in \mathbb{P}(\mathcal{E})$.

Then \mathcal{E} splits.

G. Occhetta

Setuj

Splitting criteria

Splitting criteria

Applications

- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

Splitting criteria

Corollary

Assume that there is a surface $S \subset X$, which contains a free rational curve, and such that $\mathcal{E}_{|S}$ splits. Then \mathcal{E} splits.

Corollary

Assume that there exists a rational number r such that $r\mu \in \mathbb{Z}$ and

 $\widetilde{\mathcal{M}}_{y}^{r\mu}$ contains a complete curve *T* for some $y \in \mathbb{P}(\mathcal{E})$.

Then \mathcal{E} splits.

Proof.

Let *S* be the locus of curves parametrized by the complete curve *T*; in *S* every curve is numerically proportional to a curve of $\widetilde{\mathcal{M}}_{\nu}^{r\mu}$.

G. Occhetta

Setup

Splitting criteria

Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results

Uniform bundles

Splitting criteria Applications

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

G. Occhetta

Setu

Splitting criteria Splitting criteria

Applications

- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

Splitting criteria Applications

<ロト < 同ト < 三ト < 三ト < 三ト < 回 < つ < ○</p>

Corollary

Assume that \mathcal{E} is indecomposable. If $-K_{rel} + \tau H$ is semiample then any fiber of the second contraction has dimension less than or equal to one.

G. Occhetta

Setu

Splitting criteria Splitting criteria

Applications

- Fano bundles Contractions Stability Double structure
- Grauert Mülich Uniform bundles

Splitting criteria Applications

Corollary

Assume that \mathcal{E} is indecomposable. If $-K_{rel} + \tau H$ is semiample then any fiber of the second contraction has dimension less than or equal to one.

Proof.

If the second contraction has a fiber F of dimension at least two, we take S to be a surface contained in F and we apply Lemmata (1) and (2).

G. Occhetta

Setu

Splitting criteria Splitting criteria

Applications

Fano bundles Contractions Stability Double structure Other results

Grauert - Mülich Uniform bundles

Splitting criteria Applications

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Corollary

Assume that \mathcal{E} is indecomposable. If $-K_{rel} + \tau H$ is semiample then any fiber of the second contraction has dimension less than or equal to one.

Proof.

If the second contraction has a fiber F of dimension at least two, we take S to be a surface contained in F and we apply Lemmata (1) and (2).

Proposition

Assume that \mathcal{M}_x is proper for a general $x \in X$, that $\beta \leq 0$ and that

- $\tau < 2i_X 2\beta c_1 4/\mu$ if $(c_1, \beta) \neq (0, 0)$;
- $\tau < 2i_X 6/\mu$, $if(c_1, \beta) = (0, 0)$.

Then \mathcal{E} splits as a sum of line bundles.

G. Occhetta

Setup

Splitting criteria Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Idea of proof.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

G. Occhetta

Setup

Splitting criteria Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Idea of proof.

Assume we are in case $(c_1, \beta) \neq (0, 0)$.

◆□ > ◆ □ > ● □ >

G. Occhetta

Setu

Splitting criteria Splitting criteria

Applications

Fano bundles Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

Idea of proof.

Assume we are in case $(c_1, \beta) \neq (0, 0)$.

The existence of $D \in |L + \beta H|$ excludes splitting types with τ small with respect to β .

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

G. Occhetta

Setup

Splitting criteria Splitting criteria

Applications

Fano bundles Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

Idea of proof.

Assume we are in case $(c_1, \beta) \neq (0, 0)$.

The existence of $D \in |L + \beta H|$ excludes splitting types with τ small with respect to β .

Moreover D has negative intersection with minimal sections.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

G. Occhetta

Setup

Splitting criteria Splitting criteria

Applications

Fano bundles Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

Idea of proof.

Assume we are in case $(c_1, \beta) \neq (0, 0)$.

The existence of $D \in |L + \beta H|$ excludes splitting types with τ small with respect to β .

Moreover D has negative intersection with minimal sections.

Therefore for a general $x \in X$ the existence of a complete curve in \mathcal{M}_x^t implies the existence of a complete curve in $\widetilde{\mathcal{M}}_y^t$

G. Occhetta

Setup

Splitting criteria Splitting criteria

Applications

Fano bundles Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

Idea of proof.

Assume we are in case $(c_1, \beta) \neq (0, 0)$.

The existence of $D \in |L + \beta H|$ excludes splitting types with τ small with respect to β .

Moreover D has negative intersection with minimal sections.

Therefore for a general $x \in X$ the existence of a complete curve in \mathcal{M}_x^t implies the existence of a complete curve in $\widetilde{\mathcal{M}}_y^t$

G. Occhetta

Setup

Splitting criteria Splitting criteria

Applications

Fano bundles Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

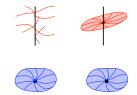
Idea of proof.

Assume we are in case $(c_1, \beta) \neq (0, 0)$.

The existence of $D \in |L + \beta H|$ excludes splitting types with τ small with respect to β .

Moreover D has negative intersection with minimal sections.

Therefore for a general $x \in X$ the existence of a complete curve in \mathcal{M}_x^t implies the existence of a complete curve in $\widetilde{\mathcal{M}}_y^t$



G. Occhetta

Setup

Splitting criteria Splitting criteria

Applications

Fano bundles Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

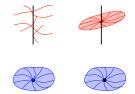
Idea of proof.

Assume we are in case $(c_1, \beta) \neq (0, 0)$.

The existence of $D \in |L + \beta H|$ excludes splitting types with τ small with respect to β .

Moreover D has negative intersection with minimal sections.

Therefore for a general $x \in X$ the existence of a complete curve in \mathcal{M}_x^t implies the existence of a complete curve in $\widetilde{\mathcal{M}}_y^t$



イロト イポト イヨト イヨト 三日

San

If the number of possible splitting types is less than or equal to the dimension of \mathcal{M}_x we get a complete curve in \mathcal{M}_x^a for some *a*.

G. Occhetta

Setup

Splitting criteria Splitting criteria

Applications

Fano bundles Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

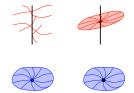
Idea of proof.

Assume we are in case $(c_1, \beta) \neq (0, 0)$.

The existence of $D \in |L + \beta H|$ excludes splitting types with τ small with respect to β .

Moreover D has negative intersection with minimal sections.

Therefore for a general $x \in X$ the existence of a complete curve in \mathcal{M}_x^t implies the existence of a complete curve in $\widetilde{\mathcal{M}}_y^t$



If the number of possible splitting types is less than or equal to the dimension of \mathcal{M}_x we get a complete curve in \mathcal{M}_x^a for some *a*.

We then compute the maximum number of possible splitting types and the dimension of \mathcal{M}_x in terms of the invariants.

G. Occhetta

Setup

Splitting criteria

Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results

Uniform bundles

Splitting criteria Applications

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

G. Occhetta

Setup

Splitting criteria Splitting criteria

Applications

Fano bundles Contractions Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Splitting criteria Applications

<ロト < 同ト < 三ト < 三ト < 三ト < 回 < つ < ○</p>

Corollary (3)

Assume that $\Delta \ge 0$ and that $\tau < 2i_X + \sqrt{\Delta} - 4/\mu$. Then \mathcal{E} splits.

G. Occhetta

Setup

Splitting criteria Splitting criteria

Applications

Fano bundles Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

Splitting criteria Applications

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Corollary (3)

Assume that $\Delta \ge 0$ and that $\tau < 2i_X + \sqrt{\Delta} - 4/\mu$. Then \mathcal{E} splits.

Proof.

 \mathcal{E} is not stable, hence $\beta \leq 0$. In Solá's talk we saw that

$$-2\beta-c_1\geq\sqrt{\Delta},$$

so we conclude by the Proposition.

G. Occhetta

Setup

Splitting criteria Splitting criteria

Applications

Fano bundles Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

Splitting criteria Applications

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Corollary (3)

Assume that $\Delta \ge 0$ and that $\tau < 2i_X + \sqrt{\Delta} - 4/\mu$. Then \mathcal{E} splits.

Proof.

 \mathcal{E} is not stable, hence $\beta \leq 0$. In Solá's talk we saw that

$$-2\beta-c_1\geq\sqrt{\Delta},$$

so we conclude by the Proposition.

Remark

The bound in the above Corollary is better than the bound one gets from Castelnuovo-Mumford regularity.

G. Occhetta

Setup

Splitting criteria Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles Generalities

< □ > < @ > < E > < E > E のQ@

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles Generalities

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

From now on we assume that ${\mathcal E}$ is a Fano bundle, i.e. that ${\mathbb P}({\mathcal E})$ is a Fano manifold.

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles Generalities

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

From now on we assume that \mathcal{E} is a Fano bundle, i.e. that $\mathbb{P}(\mathcal{E})$ is a Fano manifold. This is equivalent to

 $\tau < i_X$

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles Generalities

From now on we assume that \mathcal{E} is a Fano bundle, i.e. that $\mathbb{P}(\mathcal{E})$ is a Fano manifold. This is equivalent to

 $\tau < i_X$

In particular $-K_{rel} + \tau H$ is semiample and is the supporting divisor of a Mori contraction $\varphi : \mathbb{P}(\mathcal{E}) \to Y$, which we call the **second contraction**.

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles Generalities

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

From now on we assume that \mathcal{E} is a Fano bundle, i.e. that $\mathbb{P}(\mathcal{E})$ is a Fano manifold. This is equivalent to

 $\tau < i_X$

In particular $-K_{rel} + \tau H$ is semiample and is the supporting divisor of a Mori contraction $\varphi : \mathbb{P}(\mathcal{E}) \to Y$, which we call the **second contraction**.

By the canonical bundle formula

$$-K_{\mathbb{P}(\mathcal{E})} = 2L + (i_X - c_1)H$$

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles Generalities

From now on we assume that \mathcal{E} is a Fano bundle, i.e. that $\mathbb{P}(\mathcal{E})$ is a Fano manifold. This is equivalent to

$$\tau < i_X$$

In particular $-K_{rel} + \tau H$ is semiample and is the supporting divisor of a Mori contraction $\varphi : \mathbb{P}(\mathcal{E}) \to Y$, which we call the **second contraction**.

By the canonical bundle formula

$$-K_{\mathbb{P}(\mathcal{E})} = 2L + (i_X - c_1)H$$

we see that

$$i_{\mathbb{P}(\mathcal{E})} = \begin{cases} 2 & \text{if } i_X - c_1 \equiv 0 \mod 2\\ 1 & \text{if } i_X - c_1 \not\equiv 0 \mod 2 \end{cases}$$

G. Occhetta

Setup

Splitting criteria Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles Examples

< □ > < @ > < E > < E > E のQ@

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions Stability Double struct

Other results Grauert - Mülich Uniform bundles

Fano bundles Examples

X	Blow-ups	Conic bundles	\mathbb{P}^1 -bundles
\mathbb{P}^2	\mathbb{Q}^3 along line	Divisor of type	$\mathbb{P}(T_{\mathbb{P}^2})$
	\mathbb{P}^3 along Γ_3	$(2,1)$ in $\mathbb{P}^2 \times \mathbb{P}^2$	
\mathbb{P}^3			$\mathbb{P}(\mathcal{N})$
\mathbb{Q}^3		$\mathbb{P}(\pi^*\mathcal{N})$	$\mathbb{P}(\mathcal{S})$
\mathbb{Q}^5			$\mathbb{P}(\mathcal{C})$
V_{4}^{3}		$\mathbb{P}(\mathcal{Q} _{V_4})$	
V_{5}^{3}	\mathbb{P}^4 along $S(V_5)$		
$K(G_2)$			$\mathbb{P}(\mathcal{Q})$

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions Stability Double struct

Other results Grauert - Mülich Uniform bundles

Fano bundles Examples

< ロ > < 同 > < 三 > < 三 > 、 三 < の < 0</p>

X	Blow-ups	Conic bundles	\mathbb{P}^1 -bundles
\mathbb{P}^2	\mathbb{Q}^3 along line	Divisor of type	$\mathbb{P}(T_{\mathbb{P}^2})$
	\mathbb{P}^3 along Γ_3	$(2,1)$ in $\mathbb{P}^2 \times \mathbb{P}^2$	
\mathbb{P}^3			$\mathbb{P}(\mathcal{N})$
\mathbb{Q}^3		$\mathbb{P}(\pi^*\mathcal{N})$	$\mathbb{P}(\mathcal{S})$
\mathbb{Q}^5			$\mathbb{P}(\mathcal{C})$
V_{4}^{3}		$\mathbb{P}(\mathcal{Q} _{V_4})$	
V_{5}^{3}	\mathbb{P}^4 along $S(V_5)$		
$K(G_2)$			$\mathbb{P}(\mathcal{Q})$

Table: Known indecomposable Fano bundles on Fanos with $b_2 = b_4 = 1$

• \mathcal{N} null-correlation bundle;

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions Stability Double struct

Other results Grauert - Mülich Uniform bundles

Fano bundles Examples

X	Blow-ups	Conic bundles	\mathbb{P}^1 -bundles
\mathbb{P}^2	\mathbb{Q}^3 along line	Divisor of type	$\mathbb{P}(T_{\mathbb{P}^2})$
	\mathbb{P}^3 along Γ_3	$(2,1)$ in $\mathbb{P}^2 \times \mathbb{P}^2$	
\mathbb{P}^3			$\mathbb{P}(\mathcal{N})$
\mathbb{Q}^3		$\mathbb{P}(\pi^*\mathcal{N})$	$\mathbb{P}(\mathcal{S})$
\mathbb{Q}^5			$\mathbb{P}(\mathcal{C})$
V_{4}^{3}		$\mathbb{P}(\mathcal{Q} _{V_4})$	
V_{5}^{3}	\mathbb{P}^4 along $S(V_5)$		
$K(G_2)$			$\mathbb{P}(\mathcal{Q})$

- \mathcal{N} null-correlation bundle;
- *S* spinor bundle;

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions Stability Double struct

Other results Grauert - Mülich Uniform bundles

Fano bundles Examples

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

X	Blow-ups	Conic bundles	\mathbb{P}^1 -bundles
\mathbb{P}^2	\mathbb{Q}^3 along line	Divisor of type	$\mathbb{P}(T_{\mathbb{P}^2})$
	\mathbb{P}^3 along Γ_3	$(2,1)$ in $\mathbb{P}^2 \times \mathbb{P}^2$	
\mathbb{P}^3			$\mathbb{P}(\mathcal{N})$
\mathbb{Q}^3		$\mathbb{P}(\pi^*\mathcal{N})$	$\mathbb{P}(\mathcal{S})$
\mathbb{Q}^5			$\mathbb{P}(\mathcal{C})$
V_{4}^{3}		$\mathbb{P}(\mathcal{Q} _{V_4})$	
V_{5}^{3}	\mathbb{P}^4 along $S(V_5)$		
$K(G_2)$			$\mathbb{P}(\mathcal{Q})$

- \mathcal{N} null-correlation bundle;
- S spinor bundle;
- *C* Cayley bundle;

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions Stability Double struct

Other results Grauert - Mülich Uniform bundles

Fano bundles Examples

X	Blow-ups	Conic bundles	\mathbb{P}^1 -bundles
\mathbb{P}^2	\mathbb{Q}^3 along line	Divisor of type	$\mathbb{P}(T_{\mathbb{P}^2})$
	\mathbb{P}^3 along Γ_3	$(2,1)$ in $\mathbb{P}^2 \times \mathbb{P}^2$	
\mathbb{P}^3			$\mathbb{P}(\mathcal{N})$
\mathbb{Q}^3		$\mathbb{P}(\pi^*\mathcal{N})$	$\mathbb{P}(\mathcal{S})$
\mathbb{Q}^5			$\mathbb{P}(\mathcal{C})$
V_{4}^{3}		$\mathbb{P}(\mathcal{Q} _{V_4})$	
V_{5}^{3}	\mathbb{P}^4 along $S(V_5)$		
$K(G_2)$			$\mathbb{P}(\mathcal{Q})$

- \mathcal{N} null-correlation bundle;
- S spinor bundle;
- C Cayley bundle;
- Q universal quotient bundle.

G. Occhetta

Setup

Splitting criteria

Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results Grauert - Mülich

Uniform bundles

Fano bundles

Contractions

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles Contractions

< □ > < @ > < E > < E > E のQ@

For simplicity we assume from now on that $\mu = 1$.

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles Contractions

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

For simplicity we assume from now on that $\mu = 1$.

Denote by R_2 the second extremal ray, and by *C* a rational curve of minimal degree spanning R_2 .

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles Contractions

For simplicity we assume from now on that $\mu = 1$.

Denote by R_2 the second extremal ray, and by *C* a rational curve of minimal degree spanning R_2 .

Lemma

If \mathcal{E} is indecomposable then the second contraction $\varphi : \mathbb{P}(\mathcal{E}) \to Y$, its length and the Fano threshold of \mathcal{E} are

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles Contractions

For simplicity we assume from now on that $\mu = 1$.

Denote by R_2 the second extremal ray, and by *C* a rational curve of minimal degree spanning R_2 .

Lemma

If \mathcal{E} is indecomposable then the second contraction $\varphi : \mathbb{P}(\mathcal{E}) \to Y$, its length and the Fano threshold of \mathcal{E} are

1 A \mathbb{P}^1 -bundle, $l(R_2) = 2, \tau = i_X - \frac{2}{H \cdot C};$

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles Contractions

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

For simplicity we assume from now on that $\mu = 1$.

Denote by R_2 the second extremal ray, and by *C* a rational curve of minimal degree spanning R_2 .

Lemma

If \mathcal{E} is indecomposable then the second contraction $\varphi : \mathbb{P}(\mathcal{E}) \to Y$, its length and the Fano threshold of \mathcal{E} are

- **1** A \mathbb{P}^1 -bundle, $l(R_2) = 2, \tau = i_X \frac{2}{H \cdot C};$
- **2** a conic bundle with reducible fibers, $l(R_2) = 1$, $\tau = i_X \frac{1}{H \cdot C}$;

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles Contractions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For simplicity we assume from now on that $\mu = 1$.

Denote by R_2 the second extremal ray, and by *C* a rational curve of minimal degree spanning R_2 .

Lemma

If \mathcal{E} is indecomposable then the second contraction $\varphi : \mathbb{P}(\mathcal{E}) \to Y$, its length and the Fano threshold of \mathcal{E} are

- **1** A \mathbb{P}^1 -bundle, $l(R_2) = 2, \tau = i_X \frac{2}{H \cdot C};$
- **2** a conic bundle with reducible fibers, $l(R_2) = 1$, $\tau = i_X \frac{1}{H \cdot C}$;
- 3 the blow-up of a codimension two smooth subvariety, $l(R_2) = 1$, $\tau = i_X - \frac{1}{H \cdot C}$.

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions Stability Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles Contractions

For simplicity we assume from now on that $\mu = 1$.

Denote by R_2 the second extremal ray, and by *C* a rational curve of minimal degree spanning R_2 .

Lemma

If \mathcal{E} is indecomposable then the second contraction $\varphi : \mathbb{P}(\mathcal{E}) \to Y$, its length and the Fano threshold of \mathcal{E} are

- **1** A \mathbb{P}^1 -bundle, $l(R_2) = 2, \tau = i_X \frac{2}{H \cdot C};$
- **2** a conic bundle with reducible fibers, $l(R_2) = 1$, $\tau = i_X \frac{1}{H \cdot C}$;
- 3 the blow-up of a codimension two smooth subvariety, $l(R_2) = 1$, $\tau = i_X - \frac{1}{H \cdot C}$.

In all cases Y is smooth and Fano.

G. Occhetta

Setup

Splitting criteria

Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results Grauert - Mülich Uniform bundles **Fano bundles**

Two useful formulae

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions

Stability Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles

Two useful formulae

<ロト < 同ト < 三ト < 三ト < 三ト < 回 > への

Since $-K_{rel} + \tau H$ is semiample, if $\Delta < 0$ we have the following two formulae (seen in Solá's talk)

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions

Stability Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles

Two useful formulae

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Since $-K_{rel} + \tau H$ is semiample, if $\Delta < 0$ we have the following two formulae (seen in Solá's talk)

$$\arg(\tau + \sqrt{\Delta}) = \frac{\pi}{n+1} \qquad \text{fiber type}$$
$$\arg(\rho + \sqrt{\Delta}) + n \arg(\tau + \sqrt{\Delta}) = \pi \quad \text{divisorial}$$

G. Occhetta

Setup

Splitting criteria

Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results Grauert - Mülich

Uniform bundles

Fano bundles Stability

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles Stability

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Theorem (Grauert-Schneider for Fanos)

If \mathcal{E} is not stable and indecomposable then $X \simeq \mathbb{P}^2$ and \mathcal{E} is a bundle whose projectivization is the blow-up of a smooth three-dimensional quadric along a line.

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles Stability

Theorem (Grauert-Schneider for Fanos)

If \mathcal{E} is not stable and indecomposable then $X \simeq \mathbb{P}^2$ and \mathcal{E} is a bundle whose projectivization is the blow-up of a smooth three-dimensional quadric along a line.

Proof. By Corollary (3), \mathcal{E} splits unless possibly when $c_1 = \beta = 0$.

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles Stability

Theorem (Grauert-Schneider for Fanos)

If \mathcal{E} is not stable and indecomposable then $X \simeq \mathbb{P}^2$ and \mathcal{E} is a bundle whose projectivization is the blow-up of a smooth three-dimensional quadric along a line.

Proof. By Corollary (3), \mathcal{E} splits unless possibly when $c_1 = \beta = 0$. A divisor $E \in |L|$ is not nef, otherwise we have $\tau = 0$ and \mathcal{E} splits.

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles Stability

Theorem (Grauert-Schneider for Fanos)

If \mathcal{E} is not stable and indecomposable then $X \simeq \mathbb{P}^2$ and \mathcal{E} is a bundle whose projectivization is the blow-up of a smooth three-dimensional quadric along a line.

Proof. By Corollary (3), \mathcal{E} splits unless possibly when $c_1 = \beta = 0$. A divisor $E \in |L|$ is not nef, otherwise we have $\tau = 0$ and \mathcal{E} splits. In particular $E \cdot C < 0$, hence $\varphi : \mathbb{P}(\mathcal{E}) \to Y$ is a smooth blow-up, $E = \operatorname{Exc}(\varphi), E \cdot C = -1$. It follows that

G. Occhetta

- Setup
- Splitting criteria Splitting criteria Applications
- Fano bundles
- Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles Stability

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Theorem (Grauert-Schneider for Fanos)

If \mathcal{E} is not stable and indecomposable then $X \simeq \mathbb{P}^2$ and \mathcal{E} is a bundle whose projectivization is the blow-up of a smooth three-dimensional quadric along a line.

Proof. By Corollary (3), \mathcal{E} splits unless possibly when $c_1 = \beta = 0$. A divisor $E \in |L|$ is not nef, otherwise we have $\tau = 0$ and \mathcal{E} splits. In particular $E \cdot C < 0$, hence $\varphi : \mathbb{P}(\mathcal{E}) \to Y$ is a smooth blow-up,

 $E = \operatorname{Exc}(\varphi), E \cdot C = -1$. It follows that

• $\rho = 0;$

•
$$l(R_2) = 1;$$

•
$$\tau = i_X - \frac{1}{H \cdot C}$$
.

G. Occhetta

- Setu
- Splitting criteria Splitting criteria Applications
- Fano bundles
- Stability
- Double structure
- Other results Grauert - Mülich Uniform bundles

Fano bundles Stability

Theorem (Grauert-Schneider for Fanos)

If \mathcal{E} is not stable and indecomposable then $X \simeq \mathbb{P}^2$ and \mathcal{E} is a bundle whose projectivization is the blow-up of a smooth three-dimensional quadric along a line.

Proof. By Corollary (3), \mathcal{E} splits unless possibly when $c_1 = \beta = 0$. A divisor $E \in |L|$ is not nef, otherwise we have $\tau = 0$ and \mathcal{E} splits.

In particular $E \cdot C < 0$, hence $\varphi : \mathbb{P}(\mathcal{E}) \to Y$ is a smooth blow-up, $E = \operatorname{Exc}(\varphi), E \cdot C = -1$. It follows that

- $\rho = 0;$
- $l(R_2) = 1;$

•
$$\tau = i_X - \frac{1}{H \cdot C}$$
.

Notice that $\beta = 0$, then $c_2 > 0$, hence $\Delta < 0$.

G. Occhetta

Setup

Splitting criteria Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Using the (anti)canonical bundle formula

$$1 = l(R_2) = -K_{\mathbb{P}(\mathcal{E})} \cdot C$$

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

G. Occhetta

Setup

Splitting criteria Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Using the (anti)canonical bundle formula

$$1 = l(R_2) = -K_{\mathbb{P}(\mathcal{E})} \cdot C = (2L + i_X H) \cdot C = -2 + i_X,$$

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Using the (anti)canonical bundle formula

$$1 = l(R_2) = -K_{\mathbb{P}(\mathcal{E})} \cdot C = (2L + i_X H) \cdot C = -2 + i_X,$$

< □ > < @ > < E > < E > E のQ@

we get $i_X = 3$.

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Using the (anti)canonical bundle formula

$$1 = l(R_2) = -K_{\mathbb{P}(\mathcal{E})} \cdot C = (2L + i_X H) \cdot C = -2 + i_X,$$

we get $i_X = 3$.

By the "useful formula" for the divisorial case we have

$$\arg(\tau + \sqrt{\Delta}) = \frac{\pi}{2n} \quad \Rightarrow \quad \frac{4c_2}{d} = -\Delta = \tau^2 \tan^2\left(\frac{\pi}{2n}\right)$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

G. Occhetta

Setu

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Using the (anti)canonical bundle formula

$$1 = l(R_2) = -K_{\mathbb{P}(\mathcal{E})} \cdot C = (2L + i_X H) \cdot C = -2 + i_X,$$

we get $i_X = 3$.

By the "useful formula" for the divisorial case we have

$$\arg(\tau + \sqrt{\Delta}) = \frac{\pi}{2n} \quad \Rightarrow \quad \frac{4c_2}{d} = -\Delta = \tau^2 \tan^2\left(\frac{\pi}{2n}\right)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Number theory tells us that n = 2, 3.

G. Occhetta

Setu

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Using the (anti)canonical bundle formula

$$1 = l(R_2) = -K_{\mathbb{P}(\mathcal{E})} \cdot C = (2L + i_X H) \cdot C = -2 + i_X,$$

we get $i_X = 3$.

By the "useful formula" for the divisorial case we have

$$\arg(\tau + \sqrt{\Delta}) = \frac{\pi}{2n} \quad \Rightarrow \quad \frac{4c_2}{d} = -\Delta = \tau^2 \tan^2\left(\frac{\pi}{2n}\right)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Number theory tells us that n = 2, 3.

If n = 3, *X* is a smooth quadric \mathbb{Q}^3 ; the formula above gives a non-integral value for c_2 .

G. Occhetta

Setu

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Using the (anti)canonical bundle formula

$$1 = l(R_2) = -K_{\mathbb{P}(\mathcal{E})} \cdot C = (2L + i_X H) \cdot C = -2 + i_X,$$

we get $i_X = 3$.

By the "useful formula" for the divisorial case we have

$$\arg(\tau + \sqrt{\Delta}) = \frac{\pi}{2n} \quad \Rightarrow \quad \frac{4c_2}{d} = -\Delta = \tau^2 \tan^2\left(\frac{\pi}{2n}\right)$$

Number theory tells us that n = 2, 3.

If n = 3, *X* is a smooth quadric \mathbb{Q}^3 ; the formula above gives a non-integral value for c_2 .

If n = 2, X is \mathbb{P}^2 ; the formula above gives $c_2 = 1$ and we conclude by the classification given by Szurek and Wiśniewski.

G. Occhetta

Setup

Splitting criteria

Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles

Double \mathbb{P}^1 -bundle structure

< □ > < @ > < E > < E > E のQ@

G. Occhetta

Setup

- Splitting criteria
- Applications
- Fano bundles
- Contractions
- Stability
- Double structure
- Other results Grauert - Mülich Uniform bundles

Fano bundles

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Double \mathbb{P}^1 -bundle structure

X	Y	bundle
\mathbb{P}^2	\mathbb{P}^2	$T_{\mathbb{P}^2}$
\mathbb{P}^3	\mathbb{Q}^3	\mathcal{N}
\mathbb{Q}^3	\mathbb{P}^3	S
\mathbb{Q}^5	$K(G_2)$	\mathcal{C}
$K(G_2)$	\mathbb{Q}^5	Q

G. Occhetta

Setup

- Splitting criteria Splitting criteria
- Applications
- Fano bundles
- Contraction
- Stability
- Double structure
- Other results Grauert - Mülich Uniform bundles

Fano bundles

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ = □ ● ○ ○ ○ ○

Double \mathbb{P}^1 -bundle structure

X	Y	bundle
\mathbb{P}^2	\mathbb{P}^2	$T_{\mathbb{P}^2}$
\mathbb{P}^3	\mathbb{Q}^3	\mathcal{N}
\mathbb{Q}^3	\mathbb{P}^3	S
\mathbb{Q}^5	$K(G_2)$	\mathcal{C}
$K(G_2)$	\mathbb{Q}^5	Q

Table: Known indecomposable double \mathbb{P}^1 -bundle structure

• \mathcal{N} null-correlation bundle;

G. Occhetta

Setup

- Splitting criteria Splitting criteria
- Applications
- Fano bundles
- Stability
- Double structure
- Other results Grauert - Mülich Uniform bundles

Fano bundles

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ = □ ● ○ ○ ○ ○

Double \mathbb{P}^1 -bundle structure

X	Y	bundle
\mathbb{P}^2	\mathbb{P}^2	$T_{\mathbb{P}^2}$
\mathbb{P}^3	\mathbb{Q}^3	\mathcal{N}
\mathbb{Q}^3	\mathbb{P}^3	S
\mathbb{Q}^5	$K(G_2)$	\mathcal{C}
$K(G_2)$	\mathbb{Q}^5	Q

- \mathcal{N} null-correlation bundle;
- S spinor bundle;

G. Occhetta

Setup

- Splitting criteria Splitting criteria
- Applications
- Fano bundles
- Stability
- Double structure
- Other results Grauert - Mülich Uniform bundles

Fano bundles

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Double \mathbb{P}^1 **-bundle** structure

X	Y	bundle
\mathbb{P}^2	\mathbb{P}^2	$T_{\mathbb{P}^2}$
\mathbb{P}^3	\mathbb{Q}^3	\mathcal{N}
\mathbb{Q}^3	\mathbb{P}^3	S
\mathbb{Q}^5	$K(G_2)$	\mathcal{C}
$K(G_2)$	\mathbb{Q}^5	Q

- \mathcal{N} null-correlation bundle;
- S spinor bundle;
- Q universal quotient bundle;

G. Occhetta

Setup

- Splitting criteria Splitting criteria
- Applications
- Fano bundles
- Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Double \mathbb{P}^1 -bundle structure

X	Y	bundle
\mathbb{P}^2	\mathbb{P}^2	$T_{\mathbb{P}^2}$
\mathbb{P}^3	\mathbb{Q}^3	\mathcal{N}
\mathbb{Q}^3	\mathbb{P}^3	S
\mathbb{Q}^5	$K(G_2)$	\mathcal{C}
$K(G_2)$	\mathbb{Q}^5	Q

- \mathcal{N} null-correlation bundle;
- S spinor bundle;
- Q universal quotient bundle;
- C Cayley bundle.

G. Occhetta

Setup

Splitting criteria

Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles

Double \mathbb{P}^1 -bundle structure

< □ > < @ > < E > < E > E のQ@

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles

<ロト < 同ト < 三ト < 三ト < 三ト < 回 > への

Double \mathbb{P}^1 -bundle structure

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Double \mathbb{P}^1 **-bundle** structure

Theorem

For a Fano bundle $\mathcal E$ the following are equivalent

1 $i_X - c_1(\mathcal{E}) \equiv 0 \pmod{2};$

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Double \mathbb{P}^1 **-bundle** structure

Theorem

- **1** $i_X c_1(\mathcal{E}) \equiv 0 \pmod{2};$
- **2** $\mathbb{P}(\mathcal{E})$ has a second contraction which is a \mathbb{P}^1 -bundle;

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Double \mathbb{P}^1 **-bundle structure**

Theorem

- 1 $i_X c_1(\mathcal{E}) \equiv 0 \pmod{2};$
- **2** $\mathbb{P}(\mathcal{E})$ has a second contraction which is a \mathbb{P}^1 -bundle;
- **3** (X, \mathcal{E}) is one of the following

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Double \mathbb{P}^1 -bundle structure

Theorem

- **1** $i_X c_1(\mathcal{E}) \equiv 0 \pmod{2};$
- **2** $\mathbb{P}(\mathcal{E})$ has a second contraction which is a \mathbb{P}^1 -bundle;
- 3 (X, \mathcal{E}) is one of the following 1 $(\mathbb{P}^2, T_{\mathbb{P}^2});$

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Double \mathbb{P}^1 -bundle structure

Theorem

- **1** $i_X c_1(\mathcal{E}) \equiv 0 \pmod{2};$
- **2** $\mathbb{P}(\mathcal{E})$ has a second contraction which is a \mathbb{P}^1 -bundle;
- **3** (X, \mathcal{E}) is one of the following
 - **1** $(\mathbb{P}^2, T_{\mathbb{P}^2});$
 - **2** $(\mathbb{P}^3, \mathcal{N})$, with \mathcal{N} a null-correlation bundle;

G Occhetta

Double structure

Uniform bundles

Fano bundles

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Double \mathbb{P}^1 **-bundle structure**

Theorem

- **1** $i_X c_1(\mathcal{E}) \equiv 0 \pmod{2};$
- **2** $\mathbb{P}(\mathcal{E})$ has a second contraction which is a \mathbb{P}^1 -bundle;
- **3** (X, \mathcal{E}) is one of the following
 - **1** $(\mathbb{P}^2, T_{\mathbb{P}^2})$;

 - 2 (P³, N), with N a null-correlation bundle;
 3 (Q³, S) with S the restriction of a spinor bundle;

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Double \mathbb{P}^1 -bundle structure

Theorem

- 1 $i_X c_1(\mathcal{E}) \equiv 0 \pmod{2};$
- **2** $\mathbb{P}(\mathcal{E})$ has a second contraction which is a \mathbb{P}^1 -bundle;
- **3** (X, \mathcal{E}) is one of the following
 - **1** $(\mathbb{P}^2, T_{\mathbb{P}^2});$
 - **2** $(\mathbb{P}^3, \mathcal{N})$, with \mathcal{N} a null-correlation bundle;
 - **3** (\mathbb{Q}^3, S) with S the restriction of a spinor bundle;
 - 4 $(\mathbb{Q}^5, \mathcal{C})$ with \mathcal{C} a Cayley bundle;

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Double \mathbb{P}^1 -bundle structure

Theorem

- 1 $i_X c_1(\mathcal{E}) \equiv 0 \pmod{2};$
- **2** $\mathbb{P}(\mathcal{E})$ has a second contraction which is a \mathbb{P}^1 -bundle;
- **3** (X, \mathcal{E}) is one of the following
 - **1** $(\mathbb{P}^2, T_{\mathbb{P}^2});$
 - **2** $(\mathbb{P}^3, \mathcal{N})$, with \mathcal{N} a null-correlation bundle;
 - **3** (\mathbb{Q}^3, S) with S the restriction of a spinor bundle;
 - **4** $(\mathbb{Q}^5, \mathcal{C})$ with \mathcal{C} a Cayley bundle;
 - **5** $(K(G_2), Q)$, with Q the restriction of the universal quotient bundle.

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Double \mathbb{P}^1 **-bundle** structure

Theorem

For a Fano bundle \mathcal{E} the following are equivalent

- 1 $i_X c_1(\mathcal{E}) \equiv 0 \pmod{2};$
- **2** $\mathbb{P}(\mathcal{E})$ has a second contraction which is a \mathbb{P}^1 -bundle;
- **3** (X, \mathcal{E}) is one of the following
 - **1** $(\mathbb{P}^2, T_{\mathbb{P}^2});$
 - **2** $(\mathbb{P}^3, \mathcal{N})$, with \mathcal{N} a null-correlation bundle;
 - **3** (\mathbb{Q}^3, S) with S the restriction of a spinor bundle;
 - **4** $(\mathbb{Q}^5, \mathcal{C})$ with \mathcal{C} a Cayley bundle;
 - **5** $(K(G_2), Q)$, with Q the restriction of the universal quotient bundle.

$$(1) \Rightarrow (2).$$

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Fano bundles

Double \mathbb{P}^1 **-bundle** structure

Theorem

For a Fano bundle \mathcal{E} the following are equivalent

- 1 $i_X c_1(\mathcal{E}) \equiv 0 \pmod{2};$
- **2** $\mathbb{P}(\mathcal{E})$ has a second contraction which is a \mathbb{P}^1 -bundle;
- **3** (X, \mathcal{E}) is one of the following
 - **1** $(\mathbb{P}^2, T_{\mathbb{P}^2});$
 - **2** $(\mathbb{P}^3, \mathcal{N})$, with \mathcal{N} a null-correlation bundle;
 - **3** (\mathbb{Q}^3, S) with S the restriction of a spinor bundle;
 - **4** $(\mathbb{Q}^5, \mathcal{C})$ with \mathcal{C} a Cayley bundle;
 - **5** $(K(G_2), Q)$, with Q the restriction of the universal quotient bundle.

 $(1) \Rightarrow (2).$

Condition (1) implies that $i_{\mathbb{P}(\mathcal{E})} = 2$, hence $l(R_2) = 2$.

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆日 ●

G. Occhetta

Setup

Splitting criteria Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

 $(2) \Rightarrow (3).$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles Contractions Stability

Double structure

Other results Grauert - Mülich Uniform bundles

$(2) \Rightarrow (3).$

Assume that $\varphi : \mathbb{P}(\mathcal{E}) \to Y$ makes $\mathbb{P}(\mathcal{E})$ a \mathbb{P}^1 -bundle over a smooth (Fano) variety *Y*.

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles Contractions Stability

Double structure

Other results Grauert - Mülich Uniform bundles $(2) \Rightarrow (3).$

Assume that $\varphi : \mathbb{P}(\mathcal{E}) \to Y$ makes $\mathbb{P}(\mathcal{E})$ a \mathbb{P}^1 -bundle over a smooth (Fano) variety *Y*. Denote by \mathcal{F} the normalized rank two vector bundle on *Y* whose projectivization is $\mathbb{P}(\mathcal{E})$.

<ロト < 同ト < 三ト < 三ト < 三ト < 回 < つ < ○</p>

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability

Double structure

Other results Grauert - Mülich Uniform bundles

$(2) \Rightarrow (3).$

Assume that $\varphi : \mathbb{P}(\mathcal{E}) \to Y$ makes $\mathbb{P}(\mathcal{E})$ a \mathbb{P}^1 -bundle over a smooth (Fano) variety *Y*. Denote by \mathcal{F} the normalized rank two vector bundle on *Y* whose projectivization is $\mathbb{P}(\mathcal{E})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Using
$$\operatorname{Pic}(\mathbb{P}(\mathcal{E})) = \langle L, H \rangle = \langle \overline{L}, \overline{H} \rangle$$
 we get that

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability

Double structure

Other results Grauert - Mülich Uniform bundles

$$(2) \Rightarrow (3).$$

Assume that $\varphi : \mathbb{P}(\mathcal{E}) \to Y$ makes $\mathbb{P}(\mathcal{E})$ a \mathbb{P}^1 -bundle over a smooth (Fano) variety *Y*. Denote by \mathcal{F} the normalized rank two vector bundle on *Y* whose projectivization is $\mathbb{P}(\mathcal{E})$.

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Using $\operatorname{Pic}(\mathbb{P}(\mathcal{E})) = \langle L, H \rangle = \langle \overline{L}, \overline{H} \rangle$ we get that

• $H \cdot \overline{f} = 1$;

•
$$\tau = i_X - 2;$$

•
$$-K_{rel} + \tau H = 2\overline{H};$$

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability

Double structure

Other results Grauert - Mülich Uniform bundles

$$(2) \Rightarrow (3).$$

(

Assume that $\varphi : \mathbb{P}(\mathcal{E}) \to Y$ makes $\mathbb{P}(\mathcal{E})$ a \mathbb{P}^1 -bundle over a smooth (Fano) variety *Y*. Denote by \mathcal{F} the normalized rank two vector bundle on *Y* whose projectivization is $\mathbb{P}(\mathcal{E})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Using $\operatorname{Pic}(\mathbb{P}(\mathcal{E})) = \langle L, H \rangle = \langle \overline{L}, \overline{H} \rangle$ we get that

- $H \cdot \overline{f} = 1$;
- $\tau = i_X 2;$

•
$$-K_{rel} + \tau H = 2\overline{H};$$

- $\overline{H} \cdot f = 1;$
- $\overline{\tau} = i_Y 2;$

•
$$-\overline{K}_{rel} + \overline{\tau}\overline{H} = 2H;$$

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability

Double structure

Other results Grauert - Mülich Uniform bundles

$$(2) \Rightarrow (3).$$

(

Assume that $\varphi : \mathbb{P}(\mathcal{E}) \to Y$ makes $\mathbb{P}(\mathcal{E})$ a \mathbb{P}^1 -bundle over a smooth (Fano) variety *Y*. Denote by \mathcal{F} the normalized rank two vector bundle on *Y* whose projectivization is $\mathbb{P}(\mathcal{E})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Using $\operatorname{Pic}(\mathbb{P}(\mathcal{E})) = \langle L, H \rangle = \langle \overline{L}, \overline{H} \rangle$ we get that

- $H \cdot \overline{f} = 1$;
- $\tau = i_X 2;$

•
$$-K_{rel} + \tau H = 2\overline{H};$$

• $\overline{H} \cdot f = 1;$

•
$$\overline{\tau} = i_Y - 2$$

•
$$-\overline{K}_{rel}+\overline{\tau}\overline{H}=2H;$$

Set $d_X = H_X^n$ and $d_Y = H_Y^n$.

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability

Double structure

Other results Grauert - Mülich Uniform bundles

$$(2) \Rightarrow (3).$$

(

Assume that $\varphi : \mathbb{P}(\mathcal{E}) \to Y$ makes $\mathbb{P}(\mathcal{E})$ a \mathbb{P}^1 -bundle over a smooth (Fano) variety *Y*. Denote by \mathcal{F} the normalized rank two vector bundle on *Y* whose projectivization is $\mathbb{P}(\mathcal{E})$.

Using $\operatorname{Pic}(\mathbb{P}(\mathcal{E})) = \langle L, H \rangle = \langle \overline{L}, \overline{H} \rangle$ we get that

- $H \cdot \overline{f} = 1$;
- $\tau = i_X 2;$

•
$$-K_{rel} + \tau H = 2\overline{H};$$

• $\overline{H} \cdot f = 1;$

•
$$\overline{\tau} = i_Y - 2i_Y$$

•
$$-\overline{K}_{rel}+\overline{\tau}\overline{H}=2H;$$

Set $d_X = H_X^n$ and $d_Y = H_Y^n$. We have

$$d_Y = H\overline{H}^n \qquad d_X = \overline{H}H^n$$

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

We can compute

$$\frac{d_Y}{d_X} = \frac{(-K_{rel} + \tau H)^n H}{2^n L H^n} \qquad \frac{d_X}{d_Y} = \frac{(-\overline{K}_{rel} + \overline{\tau} \overline{H})^n \overline{H}}{2^n \overline{L} \overline{H}^n}$$

< □ > < @ > < E > < E > E のQ@

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles Contractions

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

We can compute

$$\frac{d_Y}{d_X} = \frac{(-K_{rel} + \tau H)^n H}{2^n L H^n} \qquad \frac{d_X}{d_Y} = \frac{(-\overline{K}_{rel} + \overline{\tau} \overline{H})^n \overline{H}}{2^n \overline{L} \, \overline{H}^n}$$

< □ > < @ > < E > < E > E のQ@

and simplify using $(-K_{rel})^2 = \Delta H^2$,

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles Contractions

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

We can compute

$$\frac{d_Y}{d_X} = \frac{(-K_{rel} + \tau H)^n H}{2^n L H^n} \qquad \frac{d_X}{d_Y} = \frac{(-\overline{K}_{rel} + \overline{\tau} \overline{H})^n \overline{H}}{2^n \overline{L} \, \overline{H}^n}$$

< □ > < @ > < E > < E > E のQ@

and simplify using $(-K_{rel})^2 = \Delta H^2$, $H^{n+1} = 0$,

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles Contractions

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

We can compute

$$\frac{d_Y}{d_X} = \frac{(-K_{rel} + \tau H)^n H}{2^n L H^n} \qquad \frac{d_X}{d_Y} = \frac{(-\overline{K}_{rel} + \overline{\tau} \overline{H})^n \overline{H}}{2^n \overline{L} \overline{H}^n}$$

and simplify using
$$(-K_{rel})^2 = \Delta H^2$$
, $H^{n+1} = 0$, $\Delta = \tau^2 \tan^2\left(\frac{\pi}{n+1}\right)$

< □ > < @ > < E > < E > E のQ@

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles Contractions Stability

Double structure

Other results Grauert - Mülich Uniform bundles

We can compute

$$\frac{d_Y}{d_X} = \frac{(-K_{rel} + \tau H)^n H}{2^n L H^n} \qquad \frac{d_X}{d_Y} = \frac{(-\overline{K}_{rel} + \overline{\tau} \overline{H})^n \overline{H}}{2^n \overline{L} \overline{H}^n}$$

and simplify using $(-K_{rel})^2 = \Delta H^2$, $H^{n+1} = 0$, $\Delta = \tau^2 \tan^2 \left(\frac{\pi}{n+1}\right)$ and the corresponding relations for overlined quantities.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles Contractions Stability

Double structure

Other results Grauert - Mülich Uniform bundles

We can compute

$$\frac{d_Y}{d_X} = \frac{(-K_{rel} + \tau H)^n H}{2^n L H^n} \qquad \frac{d_X}{d_Y} = \frac{(-\overline{K}_{rel} + \overline{\tau} \overline{H})^n \overline{H}}{2^n \overline{L} \overline{H}^n}$$

and simplify using $(-K_{rel})^2 = \Delta H^2$, $H^{n+1} = 0$, $\Delta = \tau^2 \tan^2 \left(\frac{\pi}{n+1}\right)$ and the corresponding relations for overlined quantities.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Multiplying the two formulae we finally get

$$(i_X - 2)(i_Y - 2) = \tau \overline{\tau} =$$

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles Contractions Stability

Double structure

Other results Grauert - Mülich Uniform bundles

We can compute

$$\frac{d_Y}{d_X} = \frac{(-K_{rel} + \tau H)^n H}{2^n L H^n} \qquad \frac{d_X}{d_Y} = \frac{(-\overline{K}_{rel} + \overline{\tau} \overline{H})^n \overline{H}}{2^n \overline{L} \overline{H}^n}$$

and simplify using $(-K_{rel})^2 = \Delta H^2$, $H^{n+1} = 0$, $\Delta = \tau^2 \tan^2 \left(\frac{\pi}{n+1}\right)$ and the corresponding relations for overlined quantities.

Multiplying the two formulae we finally get

$$(i_X - 2)(i_Y - 2) = \tau \overline{\tau} = 4\cos^2\left(\frac{\pi}{n+1}\right)$$

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles Contractions Stability

Double structure

Other results Grauert - Mülich Uniform bundles

We can compute

$$\frac{d_Y}{d_X} = \frac{(-K_{rel} + \tau H)^n H}{2^n L H^n} \qquad \frac{d_X}{d_Y} = \frac{(-\overline{K}_{rel} + \overline{\tau} \overline{H})^n \overline{H}}{2^n \overline{L} \overline{H}^n}$$

and simplify using $(-K_{rel})^2 = \Delta H^2$, $H^{n+1} = 0$, $\Delta = \tau^2 \tan^2 \left(\frac{\pi}{n+1}\right)$ and the corresponding relations for overlined quantities.

Multiplying the two formulae we finally get

$$(i_X - 2)(i_Y - 2) = \tau \overline{\tau} = 4\cos^2\left(\frac{\pi}{n+1}\right) = \begin{cases} 1 & \text{if } n = 2\\ 2 & \text{if } n = 3\\ 3 & \text{if } n = 5 \end{cases}$$

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Up to exchange X and Y the possible values of of i_X and i_Y are:

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Contractions

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Up to exchange X and Y the possible values of of i_X and i_Y are:

n	i_X	i_Y	X
2	3	3	\mathbb{P}^2
3	4	3	\mathbb{P}^3
5	5	3	\mathbb{Q}^5

< □ > < @ > < E > < E > E のQ@

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Up to exchange X and Y the possible values of of i_X and i_Y are:

n	i_X	i_Y	X
2	3	3	\mathbb{P}^2
3	4	3	\mathbb{P}^3
5	5	3	\mathbb{Q}^5

Using the formulae we compute (c_1, c_2) .

The tangent bundle of \mathbb{P}^2 , the null-correlation bundle on \mathbb{P}^3 and the Cayley bundle on \mathbb{Q}^5 are determined, among stable bundles, by their Chern classes.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Up to exchange X and Y the possible values of of i_X and i_Y are:

n	i_X	i_Y	X
2	3	3	\mathbb{P}^2
3	4	3	\mathbb{P}^3
5	5	3	\mathbb{Q}^5

Using the formulae we compute (c_1, c_2) .

The tangent bundle of \mathbb{P}^2 , the null-correlation bundle on \mathbb{P}^3 and the Cayley bundle on \mathbb{Q}^5 are determined, among stable bundles, by their Chern classes.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $(3) \Rightarrow (2).$

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles Contractions Stability

Double structure

Other results Grauert - Mülich Uniform bundles Up to exchange X and Y the possible values of of i_X and i_Y are:

n	i_X	i_Y	X
2	3	3	\mathbb{P}^2
3	4	3	\mathbb{P}^3
5	5	3	\mathbb{Q}^5

Using the formulae we compute (c_1, c_2) .

The tangent bundle of \mathbb{P}^2 , the null-correlation bundle on \mathbb{P}^3 and the Cayley bundle on \mathbb{Q}^5 are determined, among stable bundles, by their Chern classes.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $(3) \Rightarrow (2).$

Direct computation.

G. Occhetta

Setup

Splitting criteria

Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results

Grauert - Mülich

Uniform bundles

Minimal sections and divisors

(and a Grauert - Mülich type theorem)

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundle

Contraction

Stability

Double structury

Other results Grauert - Mülich

Uniform bundles

Minimal sections and divisors

(and a Grauert - Mülich type theorem)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proposition (4)

Assume that \mathcal{M}_x is irreducible for $x \in X$ general and let (a, b) with $a \leq b$ be the general splitting type of \mathcal{E} .

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundle

Contraction

Double structure

Other results Grauert - Mülich Uniform bundles

Minimal sections and divisors

(and a Grauert - Mülich type theorem)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proposition (4)

Assume that \mathcal{M}_x is irreducible for $x \in X$ general and let (a, b) with $a \leq b$ be the general splitting type of \mathcal{E} . The closure of the locus of the minimal sections over a general curve is either

a unisecant divisor in |L - bH|

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Minimal sections and divisors

(and a Grauert - Mülich type theorem)

Proposition (4)

Assume that \mathcal{M}_x is irreducible for $x \in X$ general and let (a, b) with $a \leq b$ be the general splitting type of \mathcal{E} . The closure of the locus of the minimal sections over a general curve is either

a unisecant divisor in |L - bH| *or the whole* $\mathbb{P}(\mathcal{E})$ *; in this case* $b - a \leq 1$.

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles Contractions

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Minimal sections and divisors

(and a Grauert - Mülich type theorem)

Proposition (4)

Assume that \mathcal{M}_x is irreducible for $x \in X$ general and let (a, b) with $a \leq b$ be the general splitting type of \mathcal{E} . The closure of the locus of the minimal sections over a general curve is either

a unisecant divisor in |L - bH| *or the whole* $\mathbb{P}(\mathcal{E})$ *; in this case* $b - a \leq 1$.

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles

Stability

Double structure

Other results Grauert - Mülich Uniform bundles

Minimal sections and divisors

(and a Grauert - Mülich type theorem)

Proposition (4)

Assume that \mathcal{M}_x is irreducible for $x \in X$ general and let (a, b) with $a \leq b$ be the general splitting type of \mathcal{E} . The closure of the locus of the minimal sections over a general curve is either

a unisecant divisor in |L - bH| or

the whole $\mathbb{P}(\mathcal{E})$; in this case $b - a \leq 1$.

G. Occhetta

Setup

Splitting criteria Splitting criteria Applications

Fano bundles Contractions

Double structure

Other results Grauert - Mülich Uniform bundles

Minimal sections and divisors

(and a Grauert - Mülich type theorem)

Proposition (4)

Assume that \mathcal{M}_x is irreducible for $x \in X$ general and let (a, b) with $a \leq b$ be the general splitting type of \mathcal{E} . The closure of the locus of the minimal sections over a general curve is either

a unisecant divisor in |L - bH| *or the whole* $\mathbb{P}(\mathcal{E})$ *; in this case* $b - a \leq 1$.

Corollary (G-M for Fanos)

Let \mathcal{M} be a covering family of rational curves on X such that \mathcal{M}_x is irreducible for general $x \in X$. Let (a, b) with $a \leq b$ be the general splitting type of \mathcal{E} . If \mathcal{E} is semistable, then $b - a \leq 1$.

G. Occhetta

Setup

Splitting criteria

Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results

Grauert - Mülich

Uniform bundles

Irreducibility of \mathcal{M}_x What is known

< □ > < @ > < E > < E > E のQ@

G. Occhetta

Setup

- Splitting criteria Splitting criteria
- Applications
- Fano bundles
- Contractions

Stability

Double structure

Other results

Grauert - Mülich Uniform bundles

Irreducibility of \mathcal{M}_x What is known

< ロ > < 同 > < 三 > < 三 > 、 三 < の < 0</p>

Let \mathcal{M} be a minimal dominating family for X. Then

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability

Double structure

Other results

Grauert - Mülich Uniform bundles

Irreducibility of \mathcal{M}_x What is known

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Let \mathcal{M} be a minimal dominating family for X. Then

• If dim $\mathcal{M}_x \geq \frac{\dim X - 1}{2}$ then \mathcal{M}_x is irreducible (Kebekus and Kovács);

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability

Grauert - Mülich Uniform bundles

Irreducibility of \mathcal{M}_x What is known

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Let \mathcal{M} be a minimal dominating family for X. Then

- If dim $\mathcal{M}_x \geq \frac{\dim X 1}{2}$ then \mathcal{M}_x is irreducible (Kebekus and Kovács);
- If Pic(X) ≃ Z and M_x is positive dimensional, it is irreducible in all the known examples;

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability

Other results

Grauert - Mülich Uniform bundles

Irreducibility of \mathcal{M}_x What is known

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Let \mathcal{M} be a minimal dominating family for X. Then

- If dim $\mathcal{M}_x \geq \frac{\dim X 1}{2}$ then \mathcal{M}_x is irreducible (Kebekus and Kovács);
- If Pic(X) ≃ Z and M_x is positive dimensional, it is irreducible in all the known examples;
- If $\operatorname{Pic}(X) \not\simeq \mathbb{Z}$ there are examples with dim $\mathcal{M}_x = \frac{\dim X 3}{2}$ and \mathcal{M}_x reducible for all $x \in X$.

G. Occhetta

Setup

Splitting criteria

Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results

Grauert - Mülich

Uniform bundles

Uniform bundles

A condition for splitting

< □ > < @ > < E > < E > E のQ@

G. Occhetta

Setup

- Splitting criteria Splitting criteria
- . . .

04.1.114

Double structur

Other results

Grauert - Mülich Uniform bundles

Uniform bundles A condition for splitting

Lemma (5)

Assume that \mathcal{E} is uniform of type (a, b) with a < b with respect to an unsplit covering family \mathcal{M} of rational curves on X, and that $H^0(\mathcal{E}(-b)) \neq 0$. Then $\mathcal{E} = \mathcal{O}_X(a) \oplus \mathcal{O}_X(b)$.

G. Occhetta

Setup

Splitting criteria

Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results

Grauert - Mülicl

Uniform bundles

Uniform bundles

Classification

< □ > < @ > < E > < E > E のQ@

G. Occhetta

Setu

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

Uniform bundles Classification

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem

Assume that \mathcal{M} is unsplit and that \mathcal{M}_x is irreducible for a general $x \in X$. If \mathcal{E} is indecomposable and uniform with respect to \mathcal{M} , then (X, \mathcal{E}) is either $(\mathbb{P}^2, T_{\mathbb{P}^2})$, $(\mathbb{Q}^3, \mathcal{S})$ or $(K(G_2), \mathcal{Q})$.

G. Occhetta

Setu

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

Uniform bundles Classification

Theorem

Assume that \mathcal{M} is unsplit and that \mathcal{M}_x is irreducible for a general $x \in X$. If \mathcal{E} is indecomposable and uniform with respect to \mathcal{M} , then (X, \mathcal{E}) is either $(\mathbb{P}^2, T_{\mathbb{P}^2})$, $(\mathbb{Q}^3, \mathcal{S})$ or $(K(G_2), \mathcal{Q})$.

Proof.

By Proposition (4) and Lemma (5) we have b - a = 1 and that the family of minimal sections is covering.

G. Occhetta

Setu

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

Uniform bundles Classification

Theorem

Assume that \mathcal{M} is unsplit and that \mathcal{M}_x is irreducible for a general $x \in X$. If \mathcal{E} is indecomposable and uniform with respect to \mathcal{M} , then (X, \mathcal{E}) is either $(\mathbb{P}^2, T_{\mathbb{P}^2})$, $(\mathbb{Q}^3, \mathcal{S})$ or $(K(G_2), \mathcal{Q})$.

Proof.

By Proposition (4) and Lemma (5) we have b - a = 1 and that the family of minimal sections is covering.

Since \mathcal{M} is unsplit and \mathcal{E} is uniform also \mathcal{M} is unsplit.

G. Occhetta

Setuj

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

Uniform bundles Classification

Theorem

Assume that \mathcal{M} is unsplit and that \mathcal{M}_x is irreducible for a general $x \in X$. If \mathcal{E} is indecomposable and uniform with respect to \mathcal{M} , then (X, \mathcal{E}) is either $(\mathbb{P}^2, T_{\mathbb{P}^2})$, $(\mathbb{Q}^3, \mathcal{S})$ or $(K(G_2), \mathcal{Q})$.

Proof.

By Proposition (4) and Lemma (5) we have b - a = 1 and that the family of minimal sections is covering.

Since \mathcal{M} is unsplit and \mathcal{E} is uniform also $\widetilde{\mathcal{M}}$ is unsplit.

If there is a surface in a $rc\widetilde{\mathcal{M}}$ equivalence class the bundle splits.

G. Occhetta

Setu

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

Uniform bundles Classification

Theorem

Assume that \mathcal{M} is unsplit and that \mathcal{M}_x is irreducible for a general $x \in X$. If \mathcal{E} is indecomposable and uniform with respect to \mathcal{M} , then (X, \mathcal{E}) is either $(\mathbb{P}^2, T_{\mathbb{P}^2})$, $(\mathbb{Q}^3, \mathcal{S})$ or $(K(G_2), \mathcal{Q})$.

Proof.

By Proposition (4) and Lemma (5) we have b - a = 1 and that the family of minimal sections is covering.

Since \mathcal{M} is unsplit and \mathcal{E} is uniform also $\widetilde{\mathcal{M}}$ is unsplit.

If there is a surface in a $rc\widetilde{\mathcal{M}}$ equivalence class the bundle splits. So all the classes are one-dimensional and the family is extremal by a result of Bonavero, Casagrande and Druel.

G. Occhetta

Setup

- Splitting criteria Splitting criteria Applications
- Fano bundles Contractions Stability Double structure
- Other results Grauert - Mülich Uniform bundles

Uniform bundles Classification

Theorem

Assume that \mathcal{M} is unsplit and that \mathcal{M}_x is irreducible for a general $x \in X$. If \mathcal{E} is indecomposable and uniform with respect to \mathcal{M} , then (X, \mathcal{E}) is either $(\mathbb{P}^2, T_{\mathbb{P}^2})$, $(\mathbb{Q}^3, \mathcal{S})$ or $(K(G_2), \mathcal{Q})$.

Proof.

By Proposition (4) and Lemma (5) we have b - a = 1 and that the family of minimal sections is covering.

Since \mathcal{M} is unsplit and \mathcal{E} is uniform also $\widetilde{\mathcal{M}}$ is unsplit.

If there is a surface in a $rc\widetilde{\mathcal{M}}$ equivalence class the bundle splits. So all the classes are one-dimensional and the family is extremal by a result of Bonavero, Casagrande and Druel.

The second contraction is a \mathbb{P}^1 -bundle, and we apply the previous theorem, checking uniformity in the classification.

G. Occhetta

Setup

Splitting criteria

Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results

Grauert - Mülich

Uniform bundles

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

G. Occhetta

Setup

Splitting criteria

Splitting criteria

Applications

Fano bundles

Contractions

Stability

Double structure

Other results

Grauert - Mülicl

Uniform bundles

THANK YOU!

< □ > < @ > < E > < E > E のQ@