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Set-up: manifolds

X Fano manifold ⇐⇒ −KX ample.

rX = max{m ∈ N |−KX = mL with L ∈ Pic(X )} index of X .

X smooth complex projective Fano variety with Pic(X ) = Z〈H 〉.

−KX = rX H

Two recurring assumptions:

X is covered by lines; a line is a rational curve ` such that
H · ` = 1;

H4(X ,Z) = Z〈H〉.
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Set-up: bundles

E rank r vector bundle over X .

Two main cases:

E of rank two;

E uniform of any rank.

Notation

If l is an integer E (l) denotes the bundle E ⊗OX (lH);
O(1) is the tautological line bundle on P(E );
π : P(E )→ X is the natural projection.
The first Chern class is identified with an integer c1.
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Set-up: rational curves

Family of rational curves: V ⊂ Ratcurvesn(X) irreducible

U

p

��

i // X

V

Locus(V ) = i(U), Vx = p(i−1(x)), Locus(Vx) = i(p−1(Vx)).

V is called unsplit if V is proper, generically unsplit if, for a
general x and a general y in Locus(Vx) there is a finite number of
curves in V passing through x and y .

If V is generically unsplit and covering, then

dimV = dimLocus(V ) + dimLocus(Vx)−2 = dimX −KX ·V −1
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Set-up: VMRT

X manifold, M family of rational curves such that Mx is proper
for the general x ∈ X ,

Mx subspace parametrizing curves passing through x ,
the Variety of Minimal Rational Tangents is the image in P(TX |∨x )
of the tangent morphism, which maps a curve passing through x to
its tangent direction.

X VMRTx

Pn Pn−1

Qn Qn−2

G(k ,n) Pk ×Pn−k−1

QG (m−1,2m−1) G(1,m−1)
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Set-up: splitting type

`⊂ X rational curve;

the pull-back of E via the normalization

ν : P1→ `

splits as OP1(a1)⊕·· ·⊕OP1(ar ) with ∑ai = (H · `)c1.

We say that E has splitting type (a1, . . . ,ar ) with respect to `.
(The splitting type is always ordered with a1 ≤ a2 ≤ ·· · ≤ ar .)

Let M be a proper family of rational curves covering X .
We say that E is uniform with respect to M if the splitting type
of E is the same on any curve parametrized by M .
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Grauert-Mülich
Uniform bundles

Grauert-Mülich theorem

Theorem

Let M be a covering family of lines for X with irreducible VMRT at
a general point. Let E be of rank two, normalized and semistable.
Then, for a general ` ∈M the splitting type of E is (0,0) or (−1,0).

General splitting of E

(−a + c1,a), with a > 0;

M0 ⊂M corresponding open subset. U and U0 universal families.
M0 3 `↔ `a, section of P(E |`) determined by E |`→ O`(−a + c1).

U0
Ψ //

i
""DD

DD
DD

DD
D

p
}}||

||
||

||
P(E )

π

��
M0 X
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Uniform bundles
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Grauert-Mülich
Uniform bundles

M0 family on X

dimM0 = dimX + dimLocus(M0)x −2 = dimX + rX −3

M̃0 family on P(E )

dimM̃0 = dimLocus(M̃0) + dimLocus(M̃0)y −2

If M̃0 were dominating then

dimM̃0 = dimP(E )−KP(E) ·M̃0−3.

−KP(E) ·M̃0 =−KX ·M0

Recalling that
−KP(E) = 2O(1) + (rX − c1)π

∗H

we have
−2a + rX − c1 = rX

contradicting the assumptions.
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Uniform bundles

M0 family on X
dimM0 = dimX + dimLocus(M0)x −2 = dimX + rX −3

M̃0 family on P(E )

dimM̃0 = dimLocus(M̃0) + dimLocus(M̃0)y −2

If M̃0 were dominating then

dimM̃0 = dimP(E )−KP(E) ·M̃0−3.

−KP(E) ·M̃0 =−KX ·M0

Recalling that
−KP(E) = 2O(1) + (rX − c1)π

∗H

we have
−2a + rX − c1 = rX

contradicting the assumptions.



Introduction
Two classical theorems revisited

Fano threshold and splitting
Applications

Grauert-Mülich
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Since M0 is dominant, the closure of the image of ψ is a divisor in P(E ).

By the irreducibility of the VMRT this divisor meets the general fiber in a
point, therefore it corresponds to an element in

H0(P(E ),O(1)⊗π
∗OX (b))∼= H0(X ,E (b))∼= HomX (OX (−b),E )

for some b. Restricting to ` we see that −b = a.

We thus get a nonzero morphism

OX (a)−→ E ,

contradicting the semistability of E .
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Uniform bundles

Uniform bundles

X Fano manifold of Picard number one.

M unsplit covering family of rational curves.
u(X ,M ) the maximum positive integer verifying that every
M -uniform vector bundle on X of rank ≤ u(X ,M ) splits.

If X is homogeneous then TX is a homogeneous bundle so that is
indecomposable. In particular u(X ,M ) < dimX .

Theorem

Let r ≤ dimMx be a positive integer. If for any x ∈ X the s-th Chow
group Chs(Mx) has rank one ∀s ≤ [r/2], then r ≤ u(X ,M ), i.e. every
uniform vector bundle of rank r splits as sums of line bundles.
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By induction on the rank

Assume that E has splitting type (a1, . . . ,ak , . . . ,ar ) with
0 = a1 = · · ·= ak < ak+1 ≤ ·· · ≤ ar , where k ≤ [r/2].

P
(
p∗2(p2∗p

∗
1E∨)∨

)
UE

p̃2

��

##HH
HH

HH
HH

HH
� � //

p̃1

**
P(p∗1E )

��

// P(E )

π

��
U

p1 //

p2

��

X

P
(
(p2∗p

∗
1E∨)∨

)
ME

// M

We get maps Mx →G(k−1,P(Ex)), ∀x ∈ X . If they are
constant, we construct a uniform quotient E0 of E of rank k .
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E0 is uniform of type (0,0, . . . ,0);

by a theorem of Andreatta
and Wísniewski it splits.

0−→ F −→ E −→ E0 −→ 0.

No non constant maps from Mx to the Grassmannian.

1 φ : Mx →G(k−1, r−1) provides the universal exact sequence

0→ φ
∗S ∨→ O⊕r → φ

∗Q→ 0.

2 The equality of Chern classes implies c1(φ ∗S ∨) = 0, i.e φ is
constant.
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Corollary

Let X ⊂ PN be a Fano manifold of Picard number one covered by
a family L of linear subspaces of dimension d ≥ 2,

and assume
that at every point x ∈ X the VMRT of X at x is chain-connected
by the corresponding linear spaces of dimension d−1.
Let E be a vector bundle on X verifying that E |L is a direct sum of
linebundles for every L of L .
Then E is a direct sum of line bundles.
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Uniform bundles

Uniform vector bundles over Hermitian symmetric spaces

X Mx = VMRT u(X )

Pn Pn−1 n−1
G(k ,n) Pk ×Pn−k−1 min{k + 1,n−k}

Q2k Q2k−2 ≥ 2k−3
Q2k−1 Q2k−3 ≥ 2k−3

QG (m−1,2m−1) G(1,m−1) m−1
LG (m−1,2m−1) v2(Pm−1) ≥m−2

. . . . . . . . .

Table: Splitting threshold for Hermitian symmetric spaces

For G(k ,n) and QG (m−1,2m−1) the equality is characterized.
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Fano threshold of a bundle

The Fano threshold of E is the real number

t(E ) = inf

{
τ

∣∣∣ the Q-vector bundle E

(
−c1 + rX + τ

rkE

)
is ample

}
Equivalently, the numerical class −KP(E) + t(E )π∗H is nef but not
ample on P(E ).

Remark

Notice that, since π∗H is nef, P(E ) is a Fano manifold if and only
if t(E ) < 0. In this case E is called a Fano bundle.
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ample on P(E ).

Remark

Notice that, since π∗H is nef, P(E ) is a Fano manifold if and only
if t(E ) < 0. In this case E is called a Fano bundle.
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Examples

1 Let E be a direct sum of line bundles: E 'O(a1)⊕·· ·⊕O(ar )
with a1 ≤ a2 ≤ ·· · ≤ ar ; then t(E ) =−rX + ∑ai − ra1.

2 The Fano threshold of the tangent bundle of Pn is
t(TPn) =−n.

3 Let Q be the quotient bundle on the Grassmannian of lines
G(1,k), then its Fano threshold is t(Q) =−k.
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Rational width

From now on we assume that rkE = 2.

Given a rational curve ` in X of splitting type (a,b), we set

d(E|`) := b−a, d(E , `) :=
d(E|`)

H · `
Given a particular family M of rational curves

d(E ,M ) := sup
{

d(E , `)
∣∣ ` ∈M

}
.

Finally d(E ) := sup
{

d(E , `)
∣∣ ` ∈ Ratcurvesn(X)

}
is called the rational width of E .

The nefness of E

(
−c1 + rX + t

2

)
easily implies that d ≤ rX + t.
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Examples

1 The null-correlation bundle N on P3:

for the general line the splitting type is (0,0) and there are lines of
splitting type (−1,1), so d(N )≥ 2.
Since N (1) is globally generated we have t(N )≤−2.
From d ≤ rX + t we get d(N ) = 2 and t(N ) =−2.

2 The instanton bundles on P3: for the general line the splitting type
is (0,0); there are lines of splitting type (−1,1) and (−2,2) and
E (2) is globally generated.
As above we get d(E ) = 4 and t(E ) = 0.

3 The Horrocks–Mumford bundle FHM on P4: its splitting types are:
(2,3), (1,4), (0,5) and (−1,6) and FHM(1) is globally generated.
In particular t(FHM) = 2 and d(FHM) = 7.
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Intersection theory on P(E )

From now on H4(X ,Z)∼= ZH2.

Nef(P(E )) the nef cone.
Eff(P(E )) the pseudoeffective cone.

L = c1(OP(E)(1)), H = π
∗H, m := (−c1 + rX + t)/2.

The cone Nef(P(E )) is generated by H and L + mH .
The cone Eff(P(E )) is generated by H and L + αH .

The main idea we will use is that

(L + α
′H )(L + mH )jH n−j ≥ 0, for all j ∈ {0, . . . ,n},α ′ ≥ α,
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Bundles with ∆ < 0

From the nefness of L + mH we have

(L + mH )j+1H n−j ≥ 0, for all j ∈ {0, . . . ,n}.

Recalling the Chern-Wu relation:

L2− c1LH + c2H
2 = 0

and doing some computations...

Proposition

−∆≤ (rX + t)2 tan2

(
π

n + 1

)
,

and equality holds if L + mH is semiample.
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Bundles with ∆ = 0

Assume that ∆ = 0 and that t(E )≤min{rX ,2n− rX}; then E is
the trivial bundle.

The first assumption allows us to apply Le Potier Vanishing and get

χ(X ,E ) = h0(X ,E )−h1(X ,E ).

By Riemann-Roch χ(X ,E ) = χ(X ,O⊕2
X ) = 2, we get

H0(X ,E ) 6= 0.

The second assumption gives α >−1, hence H0(X ,E (−1)) = 0.
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Bundles with ∆ > 0

E is not semistable;

OX (β ) maximal destabilizing subsheaf.

Since β > c1/2, we have −β ≤ 0.

H0(X ,E (−β )) 6= 0, but H0(X ,E (−β −1)) = 0, hence

1 α ≤−β ;

2 The zero locus of a section of E (−β ) has pure codim 2 and
c2(E (−β ))≥ 0;

c2(E (k)) = c2 + kc1 + k2

= !

= " #

= *

=  c2

∗=−c1 +
√

∆

2
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...and doing some computations...

Proposition

−c1 +
√

∆

2
− ε ≤ α ≤−β ≤−c1 +

√
∆

2
.

where

ε =

√
∆
(
rX + t−

√
∆
)n(

rX + t +
√

∆
)n− (rX + t−

√
∆
)n

In particular, if −c1 +
√

∆

2
is an integer and ε < 1 the bundle splits.
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Numerical splitting

A vector bundle E on X is called numerically split if it has the
same Chern classes as a direct sum of line bundles.

In particular a rank two vector bundle E is called numerically split
of type (a,b) ∈ Z2 with a≤ b iff c1 = a + b, c2 = ab.

Notice that ∆ = (a + b)2−4ab = (a−b)2 and −c1−
√

∆
2 =−b.

Moreover, if t ≤ n−1 then ε < 1, hence

Proposition

A numerically split bundle E such that t(E )≤ n−1 splits.
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Rational curves and numerical splitting

Let M be the family of lines in X .

Let Ca be a minimal section over a line on which the splitting type
of the bundle is (−a + c1,a) with a≥ 0.

M̃ a the family of minimal sections over lines of type (−a + c1,a).

Lemma (A-P-W)

If, for some y ∈ P(E ), (M̃ a)y contains a complete curve, then E is
numerically split.
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How to get numerical splitting

Proposition

If h0(X ,E (−c1−1)) > 0 and t < rX −2 then E splits numerically.

D ∈ |O(1)− (c1 + 1)H |. For a general x ∈ X the divisor D meets
the fiber over x in a point y , therefore the existence of a complete
curve in M a

x (downstairs!) implies numerical splitting.

If E does not split numerically then

1 dimM amax

x = 0;

2 dimM a
x −dim(M a

x ∩∪b>aM
b
x )≤ 1.

In particular #{M a
x } ≥ dimMx + 1 = rX .

Since #{M a
x } ≤ amax + 1 and 2amax ≤ d(E )≤ rX + t we get the

bound.
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Summing up

Corollary

Let E be a non split bundle with t < rX −2;

then E is semistable,
with ∆ < 0 and such that

−∆≤ (rX + t)2 tan2

(
π

n + 1

)
.
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Theorem

For X = Pn, with n ≥ 4 every rank two bundle with t < 1 splits.

Using the Corollary, we have a finite (and small) number of
possibilities for c1 and c2, and most of them are ruled out by the
Schwarzemberger’s conditions.
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Fano bundles on G(1,k)

Corollary

A Fano bundle E on G(1,k), k ≥ 5 either splits as a sum of line
bundles or is isomorphic to a twist of the universal bundle Q.

The restriction of E to the maximal linear subspaces Ω(0,k) has,
by adjunction t < 1, hence splits. Therefore E is uniform.

Remark

For k = 2,3 Fano bundles on G(1,k), were already classified. The
case k = 4 can be done in a different way (using again intersection
theory in P(E ) and Riemann-Roch).
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Concluding remarks

Under which conditions. . .

1 is t rational?

2 is there a rational curve C ∈ P(E ) s. t. KP(E) ·C = tH ·C ?

3 is −KP(E) + tH semiample?

Given P1, . . . ,Pk ∈ P2 there exists E whose splitting type on a
rational curve C :

E |C = O(−d)⊕O(d), being d the number of P ′i s on C .

t(E ) = 3 + 2ε(OP2(1);P1, . . . ,Pk) (ε the Seshadri constant.)

It is conjectured t(E ) = 3 + 2
√

k for k ≥ 9 (Nagata).

Even if t(E ) ∈Q, d(E ) could be strictly smaller than
t(E )− rP2 .

For k = 9 (general points): d(E ) < t(E )− rP2 .
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Concluding remarks

Assume that t < 0

1 is t an integer?

2 is there a minimal section Ca over a line such that
KP(E) ·Ca = tH ·Ca?
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