Vector bundles on Fano manifolds

Roberto Muñoz, Gianluca Occhetta and Luis Solá Conde (work in progress)

Trento, July 2010

< 17 ▶

Introduction

Two classical theorems revisited Fano threshold and splitting Applications Goals Set up

Main objectives

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

Goals Set up

Main objectives

1 Extend to some Fano manifolds classical theorems about vector bundles on the projective space.

Goals Set up

Main objectives

- 1 Extend to some Fano manifolds classical theorems about vector bundles on the projective space.
- 2 Find splitting criteria for rank two vector bundles on some Fano manifolds in terms of their "Fanitude".

Goals Set up

Set-up: manifolds

X Fano manifold $\iff -K_X$ ample.

Goals Set up

(日)

3

Set-up: manifolds

X Fano manifold $\iff -K_X$ ample.

 $r_X = \max\{m \in \mathbb{N} \mid -K_X = mL \text{ with } L \in \operatorname{Pic}(X)\} \text{ index of } X.$

Goals Set up

Set-up: manifolds

X Fano manifold
$$\iff -K_X$$
 ample.

 $r_X = \max\{m \in \mathbb{N} \mid -K_X = mL \text{ with } L \in \operatorname{Pic}(X)\} \text{ index of } X.$

X smooth complex projective Fano variety with $Pic(X) = \mathbb{Z}\langle H \rangle$.

$$-K_X = r_X H$$

(日)

3

Goals Set up

Set-up: manifolds

X Fano manifold
$$\iff -K_X$$
 ample.

$$r_X = \max\{m \in \mathbb{N} \mid -K_X = mL \text{ with } L \in \operatorname{Pic}(X)\} \text{ index of } X.$$

X smooth complex projective Fano variety with $Pic(X) = \mathbb{Z}\langle H \rangle$.

$$-K_X = r_X H$$

(日) (同) (三) (三)

3

Two recurring assumptions:

Goals Set up

Set-up: manifolds

X Fano manifold
$$\iff -K_X$$
 ample.

 $r_X = \max\{m \in \mathbb{N} \mid -K_X = mL \text{ with } L \in \operatorname{Pic}(X)\} \text{ index of } X.$

X smooth complex projective Fano variety with $Pic(X) = \mathbb{Z} \langle H \rangle$.

$$-K_X = r_X H$$

Two recurring assumptions:

 X is covered by lines; a line is a rational curve ℓ such that H · ℓ = 1;

(日) (同) (三) (三)

Goals Set up

Set-up: manifolds

X Fano manifold
$$\iff -K_X$$
 ample.

 $r_X = \max\{m \in \mathbb{N} \mid -K_X = mL \text{ with } L \in \operatorname{Pic}(X)\} \text{ index of } X.$

X smooth complex projective Fano variety with $\operatorname{Pic}(X) = \mathbb{Z} \langle H \rangle$.

$$-K_X = r_X H$$

Two recurring assumptions:

- X is covered by lines; a line is a rational curve ℓ such that $H \cdot \ell = 1$;
- $H^4(X,\mathbb{Z}) = \mathbb{Z}\langle H \rangle.$

Goals Set up

Set-up: bundles

E rank r vector bundle over X.

Goals Set up

Set-up: bundles

E rank r vector bundle over X.

Two main cases:

Goals Set up

Э

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Set-up: bundles

E rank r vector bundle over X.

Two main cases:

• E of rank two;

Goals **Set up**

< 4 → < Ξ

- ∢ ≣ ▶

э

Set-up: bundles

E rank r vector bundle over X.

Two main cases:

- E of rank two;
- E uniform of any rank.

Goals **Set up**

Set-up: bundles

E rank r vector bundle over X.

Two main cases:

- E of rank two;
- E uniform of any rank.

Notation

Goals **Set up**

Set-up: bundles

E rank r vector bundle over X.

Two main cases:

- E of rank two;
- E uniform of any rank.

Notation

If *I* is an integer E(I) denotes the bundle $E \otimes \mathcal{O}_X(IH)$;

Goals **Set up**

Set-up: bundles

E rank r vector bundle over X.

Two main cases:

- E of rank two;
- E uniform of any rank.

Notation

If *I* is an integer E(I) denotes the bundle $E \otimes \mathcal{O}_X(IH)$; $\mathcal{O}(1)$ is the tautological line bundle on $\mathbb{P}(E)$;

Goals Set up

Set-up: bundles

E rank r vector bundle over X.

Two main cases:

- E of rank two;
- E uniform of any rank.

Notation

If *I* is an integer *E*(*I*) denotes the bundle $E \otimes \mathcal{O}_X(IH)$; $\mathcal{O}(1)$ is the tautological line bundle on $\mathbb{P}(E)$; $\pi : \mathbb{P}(E) \to X$ is the natural projection.

Goals Set up

Set-up: bundles

E rank r vector bundle over X.

Two main cases:

- E of rank two;
- E uniform of any rank.

Notation

If *I* is an integer E(I) denotes the bundle $E \otimes \mathcal{O}_X(IH)$; $\mathcal{O}(1)$ is the tautological line bundle on $\mathbb{P}(E)$; $\pi : \mathbb{P}(E) \to X$ is the natural projection. The first Chern class is identified with an integer c_1 .

Goals Set up

E.

▲□ > ▲圖 > ▲ 圖 > ▲ 圖 > →

Set-up: rational curves

Family of rational curves: $V \subset \text{Ratcurves}^n(X)$ irreducible

Goals Set up

Set-up: rational curves

Family of rational curves: $V \subset \text{Ratcurves}^n(X)$ irreducible

 $\begin{array}{c}
U \xrightarrow{i} X \\
\downarrow \\
\downarrow \\
V
\end{array}$

《口》《聞》《臣》《臣》

E.

Goals Set up

Set-up: rational curves

Family of rational curves: $V \subset \text{Ratcurves}^n(X)$ irreducible

3

Locus(V) = i(U), $V_x = p(i^{-1}(x))$, Locus(V_x) = $i(p^{-1}(V_x))$.

Goals Set up

Set-up: rational curves

Family of rational curves: $V \subset \text{Ratcurves}^n(X)$ irreducible

Locus(V) = i(U), $V_x = p(i^{-1}(x))$, Locus(V_x) = $i(p^{-1}(V_x))$.

V is called unsplit if V is proper,

Goals Set up

Set-up: rational curves

Family of rational curves: $V \subset \text{Ratcurves}^n(X)$ irreducible

Locus(V) = i(U), $V_x = p(i^{-1}(x))$, Locus(V_x) = $i(p^{-1}(V_x))$.

V is called unsplit if V is proper, generically unsplit if, for a general x and a general y in $Locus(V_x)$ there is a finite number of curves in V passing through x and y.

Goals Set up

Set-up: rational curves

Family of rational curves: $V \subset \text{Ratcurves}^n(X)$ irreducible

Locus(V) = i(U), $V_x = p(i^{-1}(x))$, Locus(V_x) = $i(p^{-1}(V_x))$.

V is called unsplit if *V* is proper, generically unsplit if, for a general *x* and a general *y* in Locus(V_x) there is a finite number of curves in *V* passing through *x* and *y*.

If V is generically unsplit and covering, then

Goals Set up

Set-up: rational curves

Family of rational curves: $V \subset \text{Ratcurves}^n(X)$ irreducible

Locus(V) = i(U), $V_x = p(i^{-1}(x))$, Locus(V_x) = $i(p^{-1}(V_x))$.

V is called unsplit if *V* is proper, generically unsplit if, for a general *x* and a general *y* in Locus(V_x) there is a finite number of curves in *V* passing through *x* and *y*.

If V is generically unsplit and covering, then

 $\dim V = \dim \operatorname{Locus}(V) + \dim \operatorname{Locus}(V_X) - 2 = \dim X - K_X \cdot V - 1$

Goals Set up

Set-up: VMRT

X manifold, \mathcal{M} family of rational curves such that \mathcal{M}_x is proper for the general $x \in X$,

Goals Set up

- ∢ ≣ ▶

<⊡> < </>

э

Set-up: VMRT

X manifold, \mathcal{M} family of rational curves such that \mathcal{M}_x is proper for the general $x \in X$,

 \mathcal{M}_{x} subspace parametrizing curves passing through x,

Goals Set up

Set-up: VMRT

X manifold, \mathscr{M} family of rational curves such that \mathscr{M}_x is proper for the general $x \in X$, \mathscr{M}_x subspace parametrizing curves passing through x, the Variety of Minimal Rational Tangents

Goals Set up

Set-up: VMRT

X manifold, \mathcal{M} family of rational curves such that \mathcal{M}_x is proper for the general $x \in X$,

 \mathcal{M}_{x} subspace parametrizing curves passing through x,

the Variety of Minimal Rational Tangents is the image in $\mathbb{P}(T_X|_x^{\vee})$ of the tangent morphism, which maps a curve passing through x to its tangent direction.

Goals Set up

Set-up: VMRT

X manifold, \mathcal{M} family of rational curves such that \mathcal{M}_x is proper for the general $x \in X$,

 \mathcal{M}_{x} subspace parametrizing curves passing through x,

the Variety of Minimal Rational Tangents is the image in $\mathbb{P}(T_X|_x^{\vee})$ of the tangent morphism, which maps a curve passing through x to its tangent direction.

X	VMRT _x
\mathbb{P}^n	\mathbb{P}^{n-1}
\mathbb{Q}^n	\mathbb{Q}^{n-2}
$\mathbb{G}(k,n)$	$\mathbb{P}^k imes \mathbb{P}^{n-k-1}$
QG(m-1, 2m-1)	$\mathbb{G}(1,m-1)$

Introduction

Goals Set up

Set-up: splitting type

 $\ell \subset X$ rational curve;

Goals Set up

Set-up: splitting type

$\ell \subset X$ rational curve; the pull-back of E via the normalization

$$\nu:\mathbb{P}^1\to\ell$$

Э

(日) (同) (三) (三)

Goals Set up

Set-up: splitting type

 $\ell \subset X$ rational curve; the pull-back of E via the normalization

$$v: \mathbb{P}^1 \to \ell$$

э

splits as $\mathscr{O}_{\mathbb{P}^1}(a_1) \oplus \cdots \oplus \mathscr{O}_{\mathbb{P}^1}(a_r)$ with $\sum a_i = (H \cdot \ell)c_1$.

Goals **Set up**

Set-up: splitting type

 $\ell \subset X$ rational curve; the pull-back of E via the normalization

$$v: \mathbb{P}^1 \to \ell$$

splits as $\mathscr{O}_{\mathbb{P}^1}(a_1) \oplus \cdots \oplus \mathscr{O}_{\mathbb{P}^1}(a_r)$ with $\sum a_i = (H \cdot \ell)c_1$.

We say that *E* has splitting type (a_1, \ldots, a_r) with respect to ℓ . (The splitting type is always ordered with $a_1 \le a_2 \le \cdots \le a_r$.)

Goals **Set up**

Set-up: splitting type

 $\ell \subset X$ rational curve; the pull-back of E via the normalization

$$v: \mathbb{P}^1 \to \ell$$

splits as $\mathscr{O}_{\mathbb{P}^1}(a_1) \oplus \cdots \oplus \mathscr{O}_{\mathbb{P}^1}(a_r)$ with $\sum a_i = (H \cdot \ell)c_1$.

We say that *E* has splitting type (a_1, \ldots, a_r) with respect to ℓ . (The splitting type is always ordered with $a_1 \le a_2 \le \cdots \le a_r$.)

Let \mathcal{M} be a proper family of rational curves covering X.
Goals **Set up**

Set-up: splitting type

 $\ell \subset X$ rational curve; the pull-back of E via the normalization

$$v: \mathbb{P}^1 \to \ell$$

splits as $\mathscr{O}_{\mathbb{P}^1}(a_1) \oplus \cdots \oplus \mathscr{O}_{\mathbb{P}^1}(a_r)$ with $\sum a_i = (H \cdot \ell)c_1$.

We say that *E* has splitting type (a_1, \ldots, a_r) with respect to ℓ . (The splitting type is always ordered with $a_1 \le a_2 \le \cdots \le a_r$.)

Let \mathcal{M} be a proper family of rational curves covering X. We say that E is uniform with respect to \mathcal{M} if the splitting type of E is the same on any curve parametrized by \mathcal{M} .

<mark>Grauert-Mülich</mark> Uniform bundles

Grauert-Mülich theorem

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQC

Grauert-Mülich Uniform bundles

Grauert-Mülich theorem

Theorem

Let \mathcal{M} be a covering family of lines for X with irreducible VMRT at a general point. Let E be of rank two, normalized and semistable.

Grauert-Mülich Uniform bundles

Grauert-Mülich theorem

Theorem

Let \mathcal{M} be a covering family of lines for X with irreducible VMRT at a general point. Let E be of rank two, normalized and semistable. Then, for a general $\ell \in \mathcal{M}$ the splitting type of E is (0,0) or (-1,0).

Grauert-Mülich Uniform bundles

Grauert-Mülich theorem

Theorem

Let \mathscr{M} be a covering family of lines for X with irreducible VMRT at a general point. Let E be of rank two, normalized and semistable. Then, for a general $\ell \in \mathscr{M}$ the splitting type of E is (0,0) or (-1,0).

General splitting of E

 $(-a+c_1,a)$, with a > 0;

Grauert-Mülich Uniform bundles

Grauert-Mülich theorem

Theorem

Let \mathscr{M} be a covering family of lines for X with irreducible VMRT at a general point. Let E be of rank two, normalized and semistable. Then, for a general $\ell \in \mathscr{M}$ the splitting type of E is (0,0) or (-1,0).

General splitting of E

$$(-a+c_1,a)$$
, with $a > 0$;

 $\mathscr{M}_0\subset \mathscr{M}$ corresponding open subset. \mathscr{U} and \mathscr{U}_0 universal families.

Grauert-Mülich Uniform bundles

Grauert-Mülich theorem

Theorem

Let \mathscr{M} be a covering family of lines for X with irreducible VMRT at a general point. Let E be of rank two, normalized and semistable. Then, for a general $\ell \in \mathscr{M}$ the splitting type of E is (0,0) or (-1,0).

General splitting of E

$$(-a+c_1,a)$$
, with $a > 0$;

 $\mathscr{M}_0 \subset \mathscr{M}$ corresponding open subset. \mathscr{U} and \mathscr{U}_0 universal families. $\mathscr{M}_0 \ni \ell \leftrightarrow \ell_a$, section of $\mathbb{P}(E|_\ell)$ determined by $E|_\ell \to \mathscr{O}_\ell(-a+c_1)$.

Grauert-Mülich Uniform bundles

Grauert-Mülich theorem

Theorem

Let \mathscr{M} be a covering family of lines for X with irreducible VMRT at a general point. Let E be of rank two, normalized and semistable. Then, for a general $\ell \in \mathscr{M}$ the splitting type of E is (0,0) or (-1,0).

General splitting of E

$$(-a+c_1,a)$$
, with $a > 0$;

 $\mathcal{M}_0 \subset \mathcal{M}$ corresponding open subset. \mathscr{U} and \mathscr{U}_0 universal families. $\mathcal{M}_0 \ni \ell \leftrightarrow \ell_a$, section of $\mathbb{P}(E|_{\ell})$ determined by $E|_{\ell} \to \mathscr{O}_{\ell}(-a+c_1)$.

<mark>Grauert-Mülich</mark> Uniform bundles

<mark>Grauert-Mülich</mark> Uniform bundles

 \mathcal{M}_0 family on X dim $\mathcal{M}_0 = \dim X + \dim \operatorname{Locus}(\mathcal{M}_0)_x - 2 = \dim X + r_X - 3$

Grauert-Mülich Uniform bundles

 \mathcal{M}_0 family on X dim $\mathcal{M}_0 = \dim X + \dim \operatorname{Locus}(\mathcal{M}_0)_x - 2 = \dim X + r_X - 3$

 $\widetilde{\mathcal{M}}_0$ family on $\mathbb{P}(E)$

Grauert-Mülich Uniform bundles

(日) (同) (三) (三)

э

 \mathcal{M}_0 family on X dim $\mathcal{M}_0 = \dim X + \dim \operatorname{Locus}(\mathcal{M}_0)_x - 2 = \dim X + r_X - 3$

 $\widetilde{\mathcal{M}}_0$ family on $\mathbb{P}(E)$ dim $\widetilde{\mathcal{M}}_0$ = dim Locus $(\widetilde{\mathcal{M}}_0)$ + dim Locus $(\widetilde{\mathcal{M}}_0)_y$ - 2

Grauert-Mülich Uniform bundles

- < 同 ▶ < 三 ▶

 \mathcal{M}_0 family on X dim $\mathcal{M}_0 = \dim X + \dim \operatorname{Locus}(\mathcal{M}_0)_x - 2 = \dim X + r_X - 3$

 $\widetilde{\mathcal{M}}_0$ family on $\mathbb{P}(E)$ dim $\widetilde{\mathcal{M}}_0$ = dim Locus $(\widetilde{\mathcal{M}}_0)$ + dim Locus $(\widetilde{\mathcal{M}}_0)_y$ - 2

If $\widetilde{\mathscr{M}}_0$ were dominating then

Grauert-Mülich Uniform bundles

- 4 同 6 - 4 三 6 - 4 三 6

 \mathcal{M}_0 family on X dim $\mathcal{M}_0 = \dim X + \dim \operatorname{Locus}(\mathcal{M}_0)_x - 2 = \dim X + r_X - 3$

 $\widetilde{\mathcal{M}}_0$ family on $\mathbb{P}(E)$ dim $\widetilde{\mathcal{M}}_0$ = dim Locus $(\widetilde{\mathcal{M}}_0)$ + dim Locus $(\widetilde{\mathcal{M}}_0)_y$ - 2

If $\widetilde{\mathcal{M}}_0$ were dominating then $\dim \widetilde{\mathcal{M}}_0 = \dim \mathbb{P}(E) - K_{\mathbb{P}(E)} \cdot \widetilde{\mathcal{M}}_0 - 3.$

Grauert-Mülich Uniform bundles

 \mathcal{M}_0 family on X dim $\mathcal{M}_0 = \dim X + \dim \operatorname{Locus}(\mathcal{M}_0)_x - 2 = \dim X + r_X - 3$

 $\widetilde{\mathcal{M}}_0$ family on $\mathbb{P}(E)$ dim $\widetilde{\mathcal{M}}_0$ = dim Locus $(\widetilde{\mathcal{M}}_0)$ + dim Locus $(\widetilde{\mathcal{M}}_0)_y$ - 2

If $\widetilde{\mathcal{M}}_0$ were dominating then $\dim \widetilde{\mathcal{M}}_0 = \dim \mathbb{P}(E) - K_{\mathbb{P}(E)} \cdot \widetilde{\mathcal{M}}_0 - 3.$

$$-K_{\mathbb{P}(E)}\cdot\widetilde{\mathscr{M}_0}=-K_X\cdot\mathscr{M}_0$$

Grauert-Mülich Uniform bundles

 \mathcal{M}_0 family on X dim $\mathcal{M}_0 = \dim X + \dim \operatorname{Locus}(\mathcal{M}_0)_x - 2 = \dim X + r_X - 3$

$$\widetilde{\mathscr{M}}_0$$
 family on $\mathbb{P}(E)$
dim $\widetilde{\mathscr{M}}_0$ = dim Locus $(\widetilde{\mathscr{M}}_0)$ + dim Locus $(\widetilde{\mathscr{M}}_0)_y$ - 2

If $\widetilde{\mathcal{M}}_0$ were dominating then $\dim \widetilde{\mathcal{M}}_0 = \dim \mathbb{P}(E) - K_{\mathbb{P}(E)} \cdot \widetilde{\mathcal{M}}_0 - 3.$

$$-K_{\mathbb{P}(E)}\cdot\widetilde{\mathscr{M}_0}=-K_X\cdot\mathscr{M}_0$$

Recalling that

$$-K_{\mathbb{P}(E)}=2\mathscr{O}(1)+(r_X-c_1)\pi^*H$$

(日) (同) (三) (三)

э

Grauert-Mülich Uniform bundles

 \mathcal{M}_0 family on X dim $\mathcal{M}_0 = \dim X + \dim \operatorname{Locus}(\mathcal{M}_0)_x - 2 = \dim X + r_X - 3$

$$\widetilde{\mathscr{M}}_0$$
 family on $\mathbb{P}(E)$
dim $\widetilde{\mathscr{M}}_0$ = dim Locus $(\widetilde{\mathscr{M}}_0)$ + dim Locus $(\widetilde{\mathscr{M}}_0)_y$ - 2

If $\widetilde{\mathcal{M}}_0$ were dominating then $\dim \widetilde{\mathcal{M}}_0 = \dim \mathbb{P}(E) - K_{\mathbb{P}(E)} \cdot \widetilde{\mathcal{M}}_0 - 3.$

$$-K_{\mathbb{P}(E)}\cdot\widetilde{\mathscr{M}_0}=-K_X\cdot\mathscr{M}_0$$

Recalling that

$$-K_{\mathbb{P}(E)}=2\mathscr{O}(1)+(r_X-c_1)\pi^*H$$

we have

$$-2a+r_X-c_1=r_X$$

(日) (同) (三) (三)

э

contradicting the assumptions.

<mark>Grauert-Mülich</mark> Uniform bundles

Since \mathcal{M}_0 is dominant, the closure of the image of ψ is a divisor in $\mathbb{P}(E)$.

(日) (同) (三) (三)

э

Since \mathcal{M}_0 is dominant, the closure of the image of ψ is a divisor in $\mathbb{P}(E)$. By the irreducibility of the VMRT this divisor meets the general fiber in a point,

Grauert-Mülich Uniform bundles

Since \mathcal{M}_0 is dominant, the closure of the image of ψ is a divisor in $\mathbb{P}(E)$. By the irreducibility of the VMRT this divisor meets the general fiber in a point, therefore it corresponds to an element in

 $H^{0}(\mathbb{P}(E), \mathscr{O}(1) \otimes \pi^{*}\mathscr{O}_{X}(b)) \cong H^{0}(X, E(b)) \cong \operatorname{Hom}_{X}(\mathscr{O}_{X}(-b), E)$

for some *b*.

Since \mathcal{M}_0 is dominant, the closure of the image of ψ is a divisor in $\mathbb{P}(E)$. By the irreducibility of the VMRT this divisor meets the general fiber in a point, therefore it corresponds to an element in

 $H^{0}(\mathbb{P}(E), \mathscr{O}(1) \otimes \pi^{*} \mathscr{O}_{X}(b)) \cong H^{0}(X, E(b)) \cong \operatorname{Hom}_{X}(\mathscr{O}_{X}(-b), E)$

for some *b*. Restricting to ℓ we see that -b = a.

Grauert-Mülich Uniform bundles

Since \mathcal{M}_0 is dominant, the closure of the image of ψ is a divisor in $\mathbb{P}(E)$. By the irreducibility of the VMRT this divisor meets the general fiber in a point, therefore it corresponds to an element in

 $H^{0}(\mathbb{P}(E), \mathscr{O}(1) \otimes \pi^{*}\mathscr{O}_{X}(b)) \cong H^{0}(X, E(b)) \cong \operatorname{Hom}_{X}(\mathscr{O}_{X}(-b), E)$

for some *b*. Restricting to ℓ we see that -b = a.

We thus get a nonzero morphism

$$\mathscr{O}_X(a) \longrightarrow E,$$

contradicting the semistability of E.

Grauert-Mülich Uniform bundles

Uniform bundles

X Fano manifold of Picard number one.

Grauert-Mülich Uniform bundles

Э

(日) (同) (三) (三)

Uniform bundles

X Fano manifold of Picard number one.*M* unsplit covering family of rational curves.

Grauert-Mülich Uniform bundles

Uniform bundles

X Fano manifold of Picard number one. \mathscr{M} unsplit covering family of rational curves. $u(X, \mathscr{M})$ the maximum positive integer verifying that every \mathscr{M} -uniform vector bundle on X of rank $\leq u(X, \mathscr{M})$ splits.

Grauert-Mülich Uniform bundles

Uniform bundles

X Fano manifold of Picard number one. \mathscr{M} unsplit covering family of rational curves. $u(X,\mathscr{M})$ the maximum positive integer verifying that every \mathscr{M} -uniform vector bundle on X of rank $\leq u(X,\mathscr{M})$ splits.

If X is homogeneous then T_X is a homogeneous bundle so that is indecomposable. In particular $u(X, \mathcal{M}) < \dim X$.

Grauert-Mülich Uniform bundles

Uniform bundles

X Fano manifold of Picard number one. \mathscr{M} unsplit covering family of rational curves. $u(X, \mathscr{M})$ the maximum positive integer verifying that every \mathscr{M} -uniform vector bundle on X of rank $\leq u(X, \mathscr{M})$ splits.

If X is homogeneous then T_X is a homogeneous bundle so that is indecomposable. In particular $u(X, \mathcal{M}) < \dim X$.

Theorem

Let $r \leq \dim \mathcal{M}_x$ be a positive integer. If for any $x \in X$ the *s*-th Chow group $\operatorname{Ch}^{s}(\mathcal{M}_x)$ has rank one $\forall s \leq [r/2]$, then $r \leq u(X, \mathcal{M})$, i.e. every uniform vector bundle of rank *r* splits as sums of line bundles.

Introduction

Two classical theorems revisited Fano threshold and splitting Applications Grauert-Mülich Uniform bundles

Grauert-Mülich Uniform bundles

• By induction on the rank

Grauert-Mülich Uniform bundles

3

- By induction on the rank
- Assume that *E* has splitting type $(a_1, \ldots, a_k, \ldots, a_r)$ with $0 = a_1 = \cdots = a_k < a_{k+1} \le \cdots \le a_r$, where $k \le [r/2]$.

Grauert-Mülich Uniform bundles

- By induction on the rank
- Assume that *E* has splitting type $(a_1, \ldots, a_k, \ldots, a_r)$ with $0 = a_1 = \cdots = a_k < a_{k+1} \le \cdots \le a_r$, where $k \le \lfloor r/2 \rfloor$.

Grauert-Mülich Uniform bundles

- By induction on the rank
- Assume that *E* has splitting type $(a_1, \ldots, a_k, \ldots, a_r)$ with $0 = a_1 = \cdots = a_k < a_{k+1} \le \cdots \le a_r$, where $k \le \lfloor r/2 \rfloor$.

We get maps *M_x* → G(*k*−1, P(*E_x*)), ∀*x* ∈ *X*. If they are constant, we construct a uniform quotient *E*₀ of *E* of rank *k*.

Grauert-Mülich Uniform bundles

• *E*₀ is uniform of type (0,0,...,0);

Grauert-Mülich Uniform bundles

• *E*₀ is uniform of type (0,0,...,0); by a theorem of Andreatta and Wiśniewski it splits.

Grauert-Mülich Uniform bundles

《曰》《聞》《臣》《臣》

3

- *E*₀ is uniform of type (0,0,...,0); by a theorem of Andreatta and Wiśniewski it splits.
- $0 \longrightarrow F \longrightarrow E \longrightarrow E_0 \longrightarrow 0.$

Grauert-Mülich Uniform bundles

(日)

3

- *E*₀ is uniform of type (0,0,...,0); by a theorem of Andreatta and Wiśniewski it splits.
- $0 \longrightarrow F \longrightarrow E \longrightarrow E_0 \longrightarrow 0.$

No non constant maps from \mathcal{M}_{x} to the Grassmannian.
Grauert-Mülich Uniform bundles

3

- *E*₀ is uniform of type (0,0,...,0); by a theorem of Andreatta and Wiśniewski it splits.
- $0 \longrightarrow F \longrightarrow E \longrightarrow E_0 \longrightarrow 0.$

No non constant maps from \mathcal{M}_{x} to the Grassmannian.

 $1 \;\; \phi: \mathscr{M}_{\mathsf{X}} \to \mathbb{G}(k-1,r-1)$ provides the universal exact sequence

Grauert-Mülich Uniform bundles

- *E*₀ is uniform of type (0,0,...,0); by a theorem of Andreatta and Wiśniewski it splits.
- $0 \longrightarrow F \longrightarrow E \longrightarrow E_0 \longrightarrow 0.$

No non constant maps from \mathcal{M}_{x} to the Grassmannian.

 $1 \;\; \phi: \mathscr{M}_{\mathsf{X}} \to \mathbb{G}(k-1,r-1)$ provides the universal exact sequence

$$0 \to \phi^* \mathscr{S}^{\vee} \to \mathscr{O}^{\oplus r} \to \phi^* \mathscr{Q} \to 0.$$

3

Grauert-Mülich Uniform bundles

- *E*₀ is uniform of type (0,0,...,0); by a theorem of Andreatta and Wiśniewski it splits.
- $0 \longrightarrow F \longrightarrow E \longrightarrow E_0 \longrightarrow 0.$

No non constant maps from \mathcal{M}_{x} to the Grassmannian.

1 $\phi: \mathscr{M}_x \to \mathbb{G}(k-1, r-1)$ provides the universal exact sequence

$$0 \to \phi^* \mathscr{S}^{\vee} \to \mathscr{O}^{\oplus r} \to \phi^* \mathscr{Q} \to 0.$$

2 The equality of Chern classes implies $c_1(\phi^* \mathscr{S}^{\vee}) = 0$, i.e ϕ is constant.

Grauert-Mülich Uniform bundles

(日) (同) (三) (三)

3

Corollary

Let $X \subset \mathbb{P}^N$ be a Fano manifold of Picard number one covered by a family \mathscr{L} of linear subspaces of dimension $d \geq 2$,

Grauert-Mülich Uniform bundles

Corollary

Let $X \subset \mathbb{P}^N$ be a Fano manifold of Picard number one covered by a family \mathscr{L} of linear subspaces of dimension $d \ge 2$, and assume that at every point $x \in X$ the VMRT of X at x is chain-connected by the corresponding linear spaces of dimension d - 1.

Grauert-Mülich Uniform bundles

Corollary

Let $X \subset \mathbb{P}^N$ be a Fano manifold of Picard number one covered by a family \mathscr{L} of linear subspaces of dimension $d \ge 2$, and assume that at every point $x \in X$ the VMRT of X at x is chain-connected by the corresponding linear spaces of dimension d - 1. Let E be a vector bundle on X verifying that $E|_L$ is a direct sum of linebundles for every L of \mathscr{L} .

Grauert-Mülich Uniform bundles

Corollary

Let $X \subset \mathbb{P}^N$ be a Fano manifold of Picard number one covered by a family \mathscr{L} of linear subspaces of dimension $d \ge 2$, and assume that at every point $x \in X$ the VMRT of X at x is chain-connected by the corresponding linear spaces of dimension d - 1. Let E be a vector bundle on X verifying that $E|_L$ is a direct sum of linebundles for every L of \mathscr{L} . Then E is a direct sum of line bundles.

Grauert-Mülich Uniform bundles

Uniform vector bundles over Hermitian symmetric spaces

◆□ > ◆□ > ◆豆 > ◆豆 > ~豆 - つへの

Grauert-Mülich Uniform bundles

Uniform vector bundles over Hermitian symmetric spaces

X	$\mathcal{M}_{x} = VMRT$	u(X)
\mathbb{P}^n	\mathbb{P}^{n-1}	n-1
$\mathbb{G}(k,n)$	$\mathbb{P}^k imes \mathbb{P}^{n-k-1}$	$\min\{k+1, n-k\}$
\mathbb{Q}^{2k}	\mathbb{Q}^{2k-2}	$\geq 2k-3$
\mathbb{Q}^{2k-1}	\mathbb{Q}^{2k-3}	$\geq 2k-3$
QG(m-1,2m-1)	$\mathbb{G}(1,m-1)$	m-1
LG(m-1,2m-1)	$v_2(\mathbb{P}^{m-1})$	$\geq m-2$

Table: Splitting threshold for Hermitian symmetric spaces

∃ ► < ∃ ►</p>

< 17 ▶

Grauert-Mülich Uniform bundles

Uniform vector bundles over Hermitian symmetric spaces

Х	$\mathcal{M}_{x} = VMRT$	u(X)
\mathbb{P}^n	\mathbb{P}^{n-1}	n-1
$\mathbb{G}(k,n)$	$\mathbb{P}^k imes \mathbb{P}^{n-k-1}$	$\min\{k+1, n-k\}$
\mathbb{Q}^{2k}	\mathbb{Q}^{2k-2}	$\geq 2k-3$
\mathbb{Q}^{2k-1}	\mathbb{Q}^{2k-3}	$\geq 2k-3$
QG(m-1,2m-1)	$\mathbb{G}(1,m-1)$	m-1
LG(m-1,2m-1)	$v_2(\mathbb{P}^{m-1})$	$\geq m-2$

Table: Splitting threshold for Hermitian symmetric spaces

For $\mathbb{G}(k, n)$ and QG(m-1, 2m-1) the equality is characterized.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Fano threshold of a bundle

▲口 > ▲母 > ▲目 > ▲目 > ▲目 > ● ●

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Э

Fano threshold of a bundle

The Fano threshold of E is the real number

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Э

▲□ > ▲圖 > ▲ 圖 > ▲ 圖 > →

Fano threshold of a bundle

The Fano threshold of E is the real number

$$t(E) = \inf \left\{ \tau \Big| \text{ the } \mathbb{Q} \text{-vector bundle } E\left(rac{-c_1 + r_X + \tau}{\operatorname{rk} E}
ight) \text{ is ample }
ight\}$$

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

(日) (同) (三) (三)

э

Fano threshold of a bundle

The Fano threshold of E is the real number

$$t(E) = \inf \left\{ \tau \middle| \text{ the } \mathbb{Q} \text{-vector bundle } E\left(\frac{-c_1 + r_X + \tau}{\operatorname{rk} E}\right) \text{ is ample } \right\}$$

Equivalently, the numerical class $-K_{\mathbb{P}(E)} + t(E)\pi^*H$ is nef but not ample on $\mathbb{P}(E)$.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Fano threshold of a bundle

The Fano threshold of E is the real number

$$t(E) = \inf \left\{ \tau \middle| \text{ the } \mathbb{Q} \text{-vector bundle } E\left(\frac{-c_1 + r_X + \tau}{\operatorname{rk} E}\right) \text{ is ample } \right\}$$

Equivalently, the numerical class $-K_{\mathbb{P}(E)} + t(E)\pi^*H$ is nef but not ample on $\mathbb{P}(E)$.

Remark

Notice that, since π^*H is nef, $\mathbb{P}(E)$ is a Fano manifold if and only if t(E) < 0. In this case E is called a Fano bundle.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Fano threshold: examples

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Fano threshold: examples

Examples

• Let E be a direct sum of line bundles: $E \simeq \mathcal{O}(a_1) \oplus \cdots \oplus \mathcal{O}(a_r)$ with $a_1 \leq a_2 \leq \cdots \leq a_r$; then $t(E) = -r_X + \sum a_i - ra_1$.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

(日) (同) (三) (三)

Fano threshold: examples

- Let E be a direct sum of line bundles: $E \simeq \mathcal{O}(a_1) \oplus \cdots \oplus \mathcal{O}(a_r)$ with $a_1 \leq a_2 \leq \cdots \leq a_r$; then $t(E) = -r_X + \sum a_i - ra_1$.
- The Fano threshold of the tangent bundle of Pⁿ is t(T_{Pⁿ}) = −n.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Fano threshold: examples

- Let E be a direct sum of line bundles: $E \simeq \mathcal{O}(a_1) \oplus \cdots \oplus \mathcal{O}(a_r)$ with $a_1 \leq a_2 \leq \cdots \leq a_r$; then $t(E) = -r_X + \sum a_i - ra_1$.
- ② The Fano threshold of the tangent bundle of Pⁿ is
 t(T_{Pⁿ}) = −n.
- Solution Let \mathscr{Q} be the quotient bundle on the Grassmannian of lines $\mathbb{G}(1,k)$, then its Fano threshold is $t(\mathscr{Q}) = -k$.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splittir

Ξ.

Rational width

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Rational width

From now on we assume that rk E = 2.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

(日)

3

Rational width

From now on we assume that rk E = 2.

• Given a rational curve ℓ in X of splitting type (a, b), we set

$$d(E_{|\ell}) := b - a, \qquad d(E, \ell) := \frac{d(E_{|\ell})}{H \cdot \ell}$$

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Rational width

From now on we assume that rk E = 2.

• Given a rational curve ℓ in X of splitting type (a, b), we set

$$d(E_{|\ell}) := b - a, \qquad d(E,\ell) := rac{d(E_{|\ell})}{H \cdot \ell}$$

 \bullet Given a particular family ${\mathscr M}$ of rational curves

$$d(E, \mathscr{M}) := \sup \left\{ d(E, \ell) \middle| \quad \ell \in \mathscr{M} \right\}.$$

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

- 4 同 6 4 日 6 4 日 6

Rational width

From now on we assume that rk E = 2.

• Given a rational curve ℓ in X of splitting type (a, b), we set

$$d(E_{|\ell}) := b - a, \qquad d(E,\ell) := rac{d(E_{|\ell})}{H \cdot \ell}$$

 \bullet Given a particular family ${\mathscr M}$ of rational curves

$$d(E, \mathscr{M}) := \sup \left\{ d(E, \ell) \middle| \quad \ell \in \mathscr{M} \right\}.$$

• Finally $d(E) := \sup \left\{ d(E, \ell) \middle| \quad \ell \in \mathsf{Ratcurves}^n(X) \right\}$

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Rational width

From now on we assume that rk E = 2.

• Given a rational curve ℓ in X of splitting type (a, b), we set

$$d(E_{|\ell}) := b - a, \qquad d(E, \ell) := rac{d(E_{|\ell})}{H \cdot \ell}$$

 \bullet Given a particular family ${\mathscr M}$ of rational curves

$$d(E, \mathscr{M}) := \sup \left\{ d(E, \ell) \middle| \quad \ell \in \mathscr{M} \right\}.$$

 Finally d(E) := sup {d(E, ℓ) | ℓ ∈ Ratcurvesⁿ(X)} is called the rational width of E.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Rational width

From now on we assume that rk E = 2.

• Given a rational curve ℓ in X of splitting type (a, b), we set

$$d(E_{|\ell}) := b - a, \qquad d(E, \ell) := rac{d(E_{|\ell})}{H \cdot \ell}$$

 \bullet Given a particular family ${\mathscr M}$ of rational curves

$$d(E, \mathscr{M}) := \sup \left\{ d(E, \ell) \middle| \quad \ell \in \mathscr{M} \right\}.$$

 Finally d(E) := sup {d(E, ℓ) | ℓ ∈ Ratcurvesⁿ(X)} is called the rational width of E.

The nefness of
$$E\left(rac{-c_1+r_X+t}{2}
ight)$$
 easily implies that $d\leq r_X+t$.

Fano threshold and splitting

Fano threshold

E.

《口》《聞》《臣》《臣》

Examples

Examples

1 The null-correlation bundle \mathcal{N} on \mathbb{P}^3 :

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

(日) (同) (三) (三)

э

Examples

Examples

The null-correlation bundle N on P³: for the general line the splitting type is (0,0) and there are lines of splitting type (-1,1), so d(N) ≥ 2.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Examples

Examples

The null-correlation bundle N on P³: for the general line the splitting type is (0,0) and there are lines of splitting type (-1,1), so d(N) ≥ 2. Since N(1) is globally generated we have t(N) ≤ -2.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

(日) (同) (三) (三)

Examples

Examples

The null-correlation bundle N on P³: for the general line the splitting type is (0,0) and there are lines of splitting type (-1,1), so d(N) ≥ 2. Since N(1) is globally generated we have t(N) ≤ -2. From d ≤ r_X + t we get d(N) = 2 and t(N) = -2.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

(日) (同) (三) (三)

Examples

Examples

The null-correlation bundle N on P³: for the general line the splitting type is (0,0) and there are lines of splitting type (-1,1), so d(N) ≥ 2. Since N(1) is globally generated we have t(N) ≤ -2. From d ≤ r_X + t we get d(N) = 2 and t(N) = -2.

2 The instanton bundles on \mathbb{P}^3 :

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Examples

- The null-correlation bundle \mathscr{N} on \mathbb{P}^3 : for the general line the splitting type is (0,0) and there are lines of splitting type (-1,1), so $d(\mathscr{N}) \ge 2$. Since $\mathscr{N}(1)$ is globally generated we have $t(\mathscr{N}) \le -2$. From $d \le r_X + t$ we get $d(\mathscr{N}) = 2$ and $t(\mathscr{N}) = -2$.
- ② The instanton bundles on P³: for the general line the splitting type is (0,0); there are lines of splitting type (−1,1) and (−2,2) and E(2) is globally generated.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Examples

- The null-correlation bundle N on P³: for the general line the splitting type is (0,0) and there are lines of splitting type (-1,1), so d(N) ≥ 2. Since N(1) is globally generated we have t(N) ≤ -2. From d ≤ r_X + t we get d(N) = 2 and t(N) = -2.
- The instanton bundles on P³: for the general line the splitting type is (0,0); there are lines of splitting type (-1,1) and (-2,2) and E(2) is globally generated.
 As above we get d(E) = 4 and t(E) = 0.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Examples

- The null-correlation bundle N on P³: for the general line the splitting type is (0,0) and there are lines of splitting type (-1,1), so d(N) ≥ 2. Since N(1) is globally generated we have t(N) ≤ -2. From d ≤ r_X + t we get d(N) = 2 and t(N) = -2.
- The instanton bundles on P³: for the general line the splitting type is (0,0); there are lines of splitting type (-1,1) and (-2,2) and E(2) is globally generated.
 As above we get d(E) = 4 and t(E) = 0.
- **(3)** The Horrocks–Mumford bundle F_{HM} on \mathbb{P}^4 :

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Examples

- The null-correlation bundle N on P³: for the general line the splitting type is (0,0) and there are lines of splitting type (-1,1), so d(N) ≥ 2. Since N(1) is globally generated we have t(N) ≤ -2. From d ≤ r_X + t we get d(N) = 2 and t(N) = -2.
- The instanton bundles on P³: for the general line the splitting type is (0,0); there are lines of splitting type (-1,1) and (-2,2) and E(2) is globally generated.
 As above we get d(E) = 4 and t(E) = 0.
- **3** The Horrocks–Mumford bundle F_{HM} on \mathbb{P}^4 : its splitting types are: (2,3), (1,4), (0,5) and (-1,6) and $F_{HM}(1)$ is globally generated.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Examples

- The null-correlation bundle N on P³: for the general line the splitting type is (0,0) and there are lines of splitting type (-1,1), so d(N) ≥ 2. Since N(1) is globally generated we have t(N) ≤ -2. From d ≤ r_X + t we get d(N) = 2 and t(N) = -2.
- The instanton bundles on P³: for the general line the splitting type is (0,0); there are lines of splitting type (-1,1) and (-2,2) and E(2) is globally generated.
 As above we get d(E) = 4 and t(E) = 0.
- The Horrocks–Mumford bundle F_{HM} on P⁴: its splitting types are: (2,3), (1,4), (0,5) and (−1,6) and F_{HM}(1) is globally generated. In particular t(F_{HM}) = 2 and d(F_{HM}) = 7.
Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

E.

《口》《聞》《臣》《臣》

Intersection theory on $\mathbb{P}(E)$

From now on $H^4(X,\mathbb{Z}) \cong \mathbb{Z}H^2$.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Intersection theory on $\mathbb{P}(E)$

From now on $H^4(X,\mathbb{Z}) \cong \mathbb{Z}H^2$.

 $\overline{\operatorname{Nef}(\mathbb{P}(E))}$ the nef cone.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

(日) (同) (三) (三)

Intersection theory on $\mathbb{P}(E)$

From now on $H^4(X,\mathbb{Z}) \cong \mathbb{Z}H^2$.

 $\overline{\operatorname{Nef}(\mathbb{P}(E))}$ the nef cone. $\overline{\operatorname{Eff}(\mathbb{P}(E))}$ the pseudoeffective cone.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

(日) (同) (三) (三)

э

Intersection theory on $\mathbb{P}(E)$

From now on $H^4(X,\mathbb{Z}) \cong \mathbb{Z}H^2$.

 $\overline{\operatorname{Nef}(\mathbb{P}(E))}$ the nef cone. $\overline{\operatorname{Eff}(\mathbb{P}(E))}$ the pseudoeffective cone.

$$L = c_1(\mathscr{O}_{\mathbb{P}(E)}(1)), \quad \mathscr{H} = \pi^* H, \quad m := (-c_1 + r_X + t)/2.$$

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Intersection theory on $\mathbb{P}(E)$

From now on $H^4(X,\mathbb{Z}) \cong \mathbb{Z}H^2$.

 $\overline{\operatorname{Nef}(\mathbb{P}(E))}$ the nef cone. $\overline{\operatorname{Eff}(\mathbb{P}(E))}$ the pseudoeffective cone.

 $L = c_1(\mathscr{O}_{\mathbb{P}(E)}(1)), \quad \mathscr{H} = \pi^*H, \quad m := (-c_1 + r_X + t)/2.$

The cone $\overline{\operatorname{Nef}(\mathbb{P}(E))}$ is generated by \mathscr{H} and $L+m\mathscr{H}$.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Intersection theory on $\mathbb{P}(E)$

From now on $H^4(X,\mathbb{Z}) \cong \mathbb{Z}H^2$.

 $\overline{\operatorname{Nef}(\mathbb{P}(E))}$ the nef cone. $\overline{\operatorname{Eff}(\mathbb{P}(E))}$ the pseudoeffective cone.

 $L = c_1(\mathcal{O}_{\mathbb{P}(E)}(1)), \quad \mathscr{H} = \pi^* H, \quad m := (-c_1 + r_X + t)/2.$

The cone $Nef(\mathbb{P}(E))$ is generated by \mathscr{H} and $L + m\mathscr{H}$. The cone $\overline{Eff(\mathbb{P}(E))}$ is generated by \mathscr{H} and $L + \alpha \mathscr{H}$.

▲ロ▶ ▲屈▶ ▲臣▶ ▲臣▶ 三臣 めんの

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Intersection theory on $\mathbb{P}(E)$

From now on $H^4(X,\mathbb{Z}) \cong \mathbb{Z}H^2$.

 $\frac{\operatorname{Nef}(\mathbb{P}(E))}{\operatorname{Eff}(\mathbb{P}(E))}$ the nef cone.

 $L = c_1(\mathcal{O}_{\mathbb{P}(E)}(1)), \quad \mathscr{H} = \pi^* H, \quad m := (-c_1 + r_X + t)/2.$

The cone $Nef(\mathbb{P}(E))$ is generated by \mathcal{H} and $L + m\mathcal{H}$. The cone $\overline{Eff(\mathbb{P}(E))}$ is generated by \mathcal{H} and $L + \alpha \mathcal{H}$.

The main idea we will use is that

$$(L+lpha'\mathscr{H})(L+m\mathscr{H})^j\mathscr{H}^{n-j}\geq 0, ext{ for all } j\in\{0,\ldots,n\}, lpha'\geq lpha_j$$

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

<ロ> <部> < 部> < き> < き> < き)</p>

Bundles with $\Delta < 0$

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

・ロト ・四ト ・ヨト ・ヨト

3

Bundles with $\Delta < 0$

From the nefness of $L + m\mathcal{H}$ we have

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

3

《曰》《聞》《臣》《臣》

Bundles with $\Delta < 0$

From the nefness of $L + m\mathcal{H}$ we have

 $(L+m\mathscr{H})^{j+1}\mathscr{H}^{n-j} \ge 0$, for all $j \in \{0,\ldots,n\}$.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

イロト イ団ト イヨト イヨト

3

Bundles with $\Delta < 0$

From the nefness of $L + m\mathcal{H}$ we have

$$(L+m\mathscr{H})^{j+1}\mathscr{H}^{n-j} \ge 0$$
, for all $j \in \{0,\ldots,n\}$.

Recalling the Chern-Wu relation:

$$L^2 - c_1 \mathcal{LH} + c_2 \mathcal{H}^2 = 0$$

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

(日) (同) (三) (三)

э

Bundles with $\Delta < 0$

From the nefness of $L + m\mathcal{H}$ we have

$$(L+m\mathscr{H})^{j+1}\mathscr{H}^{n-j} \ge 0$$
, for all $j \in \{0,\ldots,n\}$.

Recalling the Chern-Wu relation:

$$L^2 - c_1 \mathcal{LH} + c_2 \mathcal{H}^2 = 0$$

and doing some computations...

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Bundles with $\Delta < 0$

From the nefness of $L + m\mathcal{H}$ we have

$$(L+m\mathscr{H})^{j+1}\mathscr{H}^{n-j} \ge 0$$
, for all $j \in \{0,\ldots,n\}$.

Recalling the Chern-Wu relation:

$$L^2 - c_1 \mathcal{LH} + c_2 \mathcal{H}^2 = 0$$

and doing some computations...

Proposition

$$-\Delta \leq (r_X + t)^2 \tan^2\left(\frac{\pi}{n+1}\right),$$

and equality holds if $L + m\mathcal{H}$ is semiample.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

<ロ> <部> < 部> < き> < き> < き)</p>

Bundles with $\Delta = 0$

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Bundles with $\Delta = 0$

Assume that $\Delta = 0$ and that $t(E) \leq \min\{r_X, 2n - r_X\}$;

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Э

(日)

Bundles with $\Delta = 0$

Assume that $\Delta = 0$ and that $t(E) \le \min\{r_X, 2n - r_X\}$; then E is the trivial bundle.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

(日) (同) (三) (三)

Bundles with $\Delta = 0$

Assume that $\Delta = 0$ and that $t(E) \le \min\{r_X, 2n - r_X\}$; then E is the trivial bundle.

The first assumption allows us to apply Le Potier Vanishing and get

$$\chi(X,E) = h^0(X,E) - h^1(X,E).$$

Fano threshold Intersection theory on ℙ(E) Numerical splitting and splitting

- 4 同 2 4 日 2 4 日 2 4

Bundles with $\Delta = 0$

Assume that $\Delta = 0$ and that $t(E) \le \min\{r_X, 2n - r_X\}$; then E is the trivial bundle.

The first assumption allows us to apply Le Potier Vanishing and get

$$\chi(X,E) = h^0(X,E) - h^1(X,E).$$

By Riemann-Roch $\chi(X, E) = \chi(X, \mathscr{O}_X^{\oplus 2}) = 2$, we get $H^0(X, E) \neq 0$.

Fano threshold Intersection theory on ℙ(E) Numerical splitting and splitting

Bundles with $\Delta = 0$

Assume that $\Delta = 0$ and that $t(E) \le \min\{r_X, 2n - r_X\}$; then E is the trivial bundle.

The first assumption allows us to apply Le Potier Vanishing and get

$$\chi(X,E) = h^0(X,E) - h^1(X,E).$$

By Riemann-Roch $\chi(X, E) = \chi(X, \mathscr{O}_X^{\oplus 2}) = 2$, we get $H^0(X, E) \neq 0$.

The second assumption gives $\alpha > -1$, hence $H^0(X, E(-1)) = 0$.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Bundles with $\Delta > 0$

E is not semistable;

Fano threshold Intersection theory on ℙ(E) Numerical splitting and splitting

3

《曰》《聞》《臣》《臣》

Bundles with $\Delta > 0$

E is not semistable; $\mathscr{O}_X(\beta)$ maximal destabilizing subsheaf.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

(日)

3

Bundles with $\Delta > 0$

E is not semistable; $\mathscr{O}_X(\beta)$ maximal destabilizing subsheaf. Since $\beta > c_1/2$, we have $-\beta \leq 0$.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

3

Bundles with $\Delta > 0$

E is not semistable; $\mathscr{O}_X(\beta)$ maximal destabilizing subsheaf. Since $\beta > c_1/2$, we have $-\beta \leq 0$. $H^0(X, E(-\beta)) \neq 0$, but $H^0(X, E(-\beta - 1)) = 0$,

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

<ロ> (四) (四) (三) (三) (三) (三)

Bundles with $\Delta > 0$

E is not semistable; $\mathscr{O}_X(\beta)$ maximal destabilizing subsheaf. Since $\beta > c_1/2$, we have $-\beta \leq 0$. $H^0(X, E(-\beta)) \neq 0$, but $H^0(X, E(-\beta - 1)) = 0$, hence

 $\ \, \bullet \leq -\beta;$

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Bundles with $\Delta > 0$

E is not semistable; $\mathscr{O}_X(\beta)$ maximal destabilizing subsheaf. Since $\beta > c_1/2$, we have $-\beta \le 0$. $H^0(X, E(-\beta)) \ne 0$, but $H^0(X, E(-\beta - 1)) = 0$, hence

 $\ \, \mathbf{0} \ \, \alpha \leq -\beta;$

 The zero locus of a section of E(−β) has pure codim 2 and c₂(E(−β)) ≥ 0;

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Bundles with $\Delta > 0$

E is not semistable; $\mathscr{O}_X(\beta)$ maximal destabilizing subsheaf. Since $\beta > c_1/2$, we have $-\beta \le 0$. $H^0(X, E(-\beta)) \ne 0$, but $H^0(X, E(-\beta - 1)) = 0$, hence

$$\ \, \bullet \leq -\beta;$$

The zero locus of a section of E(−β) has pure codim 2 and c₂(E(−β)) ≥ 0;

$$c_2(E(k)) = c_2 + kc_1 + k^2$$

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Bundles with $\Delta > 0$

E is not semistable; $\mathscr{O}_X(\beta)$ maximal destabilizing subsheaf. Since $\beta > c_1/2$, we have $-\beta \le 0$. $H^0(X, E(-\beta)) \ne 0$, but $H^0(X, E(-\beta - 1)) = 0$, hence

$$\ \, \bullet \leq -\beta;$$

The zero locus of a section of E(−β) has pure codim 2 and c₂(E(−β)) ≥ 0;

$$c_2(E(k)) = c_2 + kc_1 + k^2$$
$$* = -\frac{c_1 + \sqrt{\Delta}}{2}$$

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

...and doing some computations...

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

E.

《曰》《聞》《臣》《臣》

...and doing some computations...

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

...and doing some computations...

Proposition $-\frac{c_{1}+\sqrt{\Delta}}{2}-\varepsilon \leq \alpha \leq -\beta \leq -\frac{c_{1}+\sqrt{\Delta}}{2}.$ where $\varepsilon = \frac{\sqrt{\Delta}(r_{X}+t-\sqrt{\Delta})^{n}}{(r_{X}+t+\sqrt{\Delta})^{n}-(r_{X}+t-\sqrt{\Delta})^{n}}$

▲ロ ▶ ▲厨 ▶ ▲臣 ▶ ▲臣 ▶ ○臣 ○ ����

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

...and doing some computations...

Proposition $-\frac{c_{1}+\sqrt{\Delta}}{2} - \varepsilon \leq \alpha \leq -\beta \leq -\frac{c_{1}+\sqrt{\Delta}}{2}.$ where $\varepsilon = \frac{\sqrt{\Delta}(r_{X}+t-\sqrt{\Delta})^{n}}{(r_{X}+t+\sqrt{\Delta})^{n}-(r_{X}+t-\sqrt{\Delta})^{n}}$

In particular, if $-\frac{c_1+\sqrt{\Delta}}{2}$ is an integer and arepsilon < 1 the bundle splits.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

æ.

Numerical splitting

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

(日) (同) (三) (三)

э

Numerical splitting

A vector bundle E on X is called numerically split if it has the same Chern classes as a direct sum of line bundles.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Numerical splitting

A vector bundle E on X is called numerically split if it has the same Chern classes as a direct sum of line bundles.

In particular a rank two vector bundle *E* is called numerically split of type $(a, b) \in \mathbb{Z}^2$ with $a \leq b$ iff $c_1 = a + b$, $c_2 = ab$.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

- 4 同 2 4 日 2 4 日 2 4

Numerical splitting

A vector bundle E on X is called numerically split if it has the same Chern classes as a direct sum of line bundles.

In particular a rank two vector bundle *E* is called numerically split of type $(a, b) \in \mathbb{Z}^2$ with $a \leq b$ iff $c_1 = a + b$, $c_2 = ab$.

Notice that $\Delta = (a+b)^2 - 4ab = (a-b)^2$ and $\frac{-c_1 - \sqrt{\Delta}}{2} = -b$.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Numerical splitting

A vector bundle E on X is called numerically split if it has the same Chern classes as a direct sum of line bundles.

In particular a rank two vector bundle *E* is called numerically split of type $(a, b) \in \mathbb{Z}^2$ with $a \leq b$ iff $c_1 = a + b$, $c_2 = ab$.

Notice that $\Delta = (a+b)^2 - 4ab = (a-b)^2$ and $\frac{-c_1 - \sqrt{\Delta}}{2} = -b$.

Moreover, if $t \leq n-1$ then $\varepsilon < 1$, hence
Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Numerical splitting

A vector bundle E on X is called numerically split if it has the same Chern classes as a direct sum of line bundles.

In particular a rank two vector bundle *E* is called numerically split of type $(a, b) \in \mathbb{Z}^2$ with $a \leq b$ iff $c_1 = a + b$, $c_2 = ab$.

Notice that
$$\Delta = (a+b)^2 - 4ab = (a-b)^2$$
 and $\frac{-c_1 - \sqrt{\Delta}}{2} = -b$.

Moreover, if $t \leq n-1$ then $\varepsilon < 1$, hence

Proposition

A numerically split bundle *E* such that $t(E) \le n-1$ splits.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Rational curves and numerical splitting

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

(日) (同) (三) (三)

э

Rational curves and numerical splitting

Let \mathcal{M} be the family of lines in X.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Rational curves and numerical splitting

Let \mathcal{M} be the family of lines in X.

Let C_a be a minimal section over a line on which the splitting type of the bundle is $(-a+c_1, a)$ with $a \ge 0$.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Rational curves and numerical splitting

Let \mathcal{M} be the family of lines in X.

Let C_a be a minimal section over a line on which the splitting type of the bundle is $(-a+c_1, a)$ with $a \ge 0$.

 \mathcal{M}^{a} the family of minimal sections over lines of type $(-a+c_{1},a)$.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Rational curves and numerical splitting

Let \mathcal{M} be the family of lines in X.

Let C_a be a minimal section over a line on which the splitting type of the bundle is $(-a+c_1, a)$ with $a \ge 0$.

 \mathcal{M}^{a} the family of minimal sections over lines of type $(-a+c_1,a)$.

Lemma (A-P-W)

If, for some $y \in \mathbb{P}(E)$, $(\mathcal{M}^a)_y$ contains a complete curve, then E is numerically split.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

(日)

3

How to get numerical splitting

Proposition

If $h^0(X, E(-c_1-1)) > 0$ and $t < r_X - 2$ then E splits numerically.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

(日)

3

How to get numerical splitting

Proposition

If $h^0(X, E(-c_1-1)) > 0$ and $t < r_X - 2$ then E splits numerically.

 $D \in |\mathscr{O}(1) - (c_1 + 1)\mathscr{H}|.$

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

How to get numerical splitting

Proposition

If $h^0(X, E(-c_1-1)) > 0$ and $t < r_X - 2$ then E splits numerically.

 $D \in |\mathcal{O}(1) - (c_1 + 1)\mathcal{H}|$. For a general $x \in X$ the divisor D meets the fiber over x in a point y, therefore the existence of a complete curve in \mathcal{M}_x^a (downstairs!) implies numerical splitting.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

- 4 同 2 4 日 2 4 日 2 4

How to get numerical splitting

Proposition

If $h^0(X, E(-c_1-1)) > 0$ and $t < r_X - 2$ then E splits numerically.

 $D \in |\mathcal{O}(1) - (c_1 + 1)\mathcal{H}|$. For a general $x \in X$ the divisor D meets the fiber over x in a point y, therefore the existence of a complete curve in \mathcal{M}^a_x (downstairs!) implies numerical splitting.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

- 4 同 2 4 日 2 4 日 2 4

How to get numerical splitting

Proposition

If $h^0(X, E(-c_1-1)) > 0$ and $t < r_X - 2$ then E splits numerically.

 $D \in |\mathcal{O}(1) - (c_1 + 1)\mathcal{H}|$. For a general $x \in X$ the divisor D meets the fiber over x in a point y, therefore the existence of a complete curve in \mathcal{M}^a_x (downstairs!) implies numerical splitting.

$$\mathbf{1} \quad \dim \mathcal{M}_{x}^{a^{max}} = \mathbf{0};$$

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

How to get numerical splitting

Proposition

If $h^0(X, E(-c_1-1)) > 0$ and $t < r_X - 2$ then E splits numerically.

 $D \in |\mathcal{O}(1) - (c_1 + 1)\mathcal{H}|$. For a general $x \in X$ the divisor D meets the fiber over x in a point y, therefore the existence of a complete curve in \mathcal{M}_x^a (downstairs!) implies numerical splitting.

$$dim \mathscr{M}_{x}^{a^{max}} = 0; dim \overline{\mathscr{M}_{x}^{a}} - dim (\overline{\mathscr{M}_{x}^{a}} \cap \cup_{b>a} \mathscr{M}_{x}^{b}) \le 1$$

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

How to get numerical splitting

Proposition

If $h^0(X, E(-c_1-1)) > 0$ and $t < r_X - 2$ then E splits numerically.

 $D \in |\mathcal{O}(1) - (c_1 + 1)\mathcal{H}|$. For a general $x \in X$ the divisor D meets the fiber over x in a point y, therefore the existence of a complete curve in \mathcal{M}^a_x (downstairs!) implies numerical splitting.

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \text{dim}\, \mathscr{M}_{x}^{a^{max}} = 0; \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \text{dim}\, \overline{\mathscr{M}_{x}^{a}} - \dim(\overline{\mathscr{M}_{x}^{a}} \cap \cup_{b > a} \mathscr{M}_{x}^{b}) \leq 1. \\ \end{array} \\ \\ \begin{array}{l} \text{n particular} \ \#\{\mathscr{M}_{x}^{a}\} \geq \dim \mathscr{M}_{x} + 1 = r_{X}. \end{array} \end{array}$$

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

How to get numerical splitting

Proposition

If $h^0(X, E(-c_1-1)) > 0$ and $t < r_X - 2$ then E splits numerically.

 $D \in |\mathcal{O}(1) - (c_1 + 1)\mathcal{H}|$. For a general $x \in X$ the divisor D meets the fiber over x in a point y, therefore the existence of a complete curve in \mathcal{M}_x^a (downstairs!) implies numerical splitting.

• dim
$$\mathcal{M}_{X}^{a^{max}} = 0$$
;
• dim $\overline{\mathcal{M}_{X}^{a}} - \dim(\overline{\mathcal{M}_{X}^{a}} \cap \bigcup_{b>a} \mathcal{M}_{X}^{b}) \leq 1$.
In particular $\#\{\mathcal{M}_{X}^{a}\} \geq \dim \mathcal{M}_{X} + 1 = r_{X}$.
Since $\#\{\mathcal{M}_{X}^{a}\} \leq a^{max} + 1$ and $2a^{max} \leq d(E) \leq r_{X} + t$ we get the bound.

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Summing up

Corollary

Let *E* be a non split bundle with $t < r_X - 2$;

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQC

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

Summing up

Corollary

Let E be a non split bundle with $t < r_X - 2$; then E is semistable,

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQC

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

(日) (同) (三) (三)

3

Summing up

Corollary

Let E be a non split bundle with $t < r_X - 2; \;$ then E is semistable, with $\Delta < 0$

Fano threshold Intersection theory on $\mathbb{P}(E)$ Numerical splitting and splitting

(日) (同) (三) (三)

3

Summing up

Corollary

Let E be a non split bundle with $t < r_X - 2; \;$ then E is semistable, with $\Delta < 0 \;$ and such that

$$-\Delta \leq (r_X+t)^2 an^2 \left(rac{\pi}{n+1}
ight).$$

Applications

Applications

Theorem

For $X = \mathbb{P}^n$, with $n \ge 4$ every rank two bundle with t < 1 splits.

E.

イロト イ団ト イヨト イヨト

Applications

Theorem

For $X = \mathbb{P}^n$, with $n \ge 4$ every rank two bundle with t < 1 splits.

Using the Corollary, we have a finite (and small) number of possibilities for c_1 and c_2 , and most of them are ruled out by the Schwarzemberger's conditions.

Applications

Theorem

For $X = \mathbb{P}^n$, with $n \ge 4$ every rank two bundle with t < 1 splits.

Using the Corollary, we have a finite (and small) number of possibilities for c_1 and c_2 , and most of them are ruled out by the Schwarzemberger's conditions.

In the remaining cases but one we use Riemann-Roch to contradict the semistability of E.

Applications

Theorem

For $X = \mathbb{P}^n$, with $n \ge 4$ every rank two bundle with t < 1 splits.

Using the Corollary, we have a finite (and small) number of possibilities for c_1 and c_2 , and most of them are ruled out by the Schwarzemberger's conditions.

In the remaining cases but one we use Riemann-Roch to contradict the semistability of E.

The last case is n = 4, $c_1 = -1$ and $c_2 = 4$, which leads to the Horrocks-Mumford bundle, which has t = 2.

Applications

Theorem

For $X = \mathbb{P}^n$, with $n \ge 4$ every rank two bundle with t < 1 splits.

Using the Corollary, we have a finite (and small) number of possibilities for c_1 and c_2 , and most of them are ruled out by the Schwarzemberger's conditions.

In the remaining cases but one we use Riemann-Roch to contradict the semistability of E.

The last case is n = 4, $c_1 = -1$ and $c_2 = 4$, which leads to the Horrocks-Mumford bundle, which has t = 2.

(日) (문) (문) (문) (문)

Fano bundles on $\mathbb{G}(1,k)$

Fano bundles on $\mathbb{G}(1,k)$

Corollary

A Fano bundle E on $\mathbb{G}(1,k)$, $k \ge 5$ either splits as a sum of line bundles or is isomorphic to a twist of the universal bundle \mathcal{Q} .

э

< ∰ ▶ < ≡ ▶</p>

Fano bundles on $\mathbb{G}(1,k)$

Corollary

A Fano bundle E on $\mathbb{G}(1,k)$, $k \ge 5$ either splits as a sum of line bundles or is isomorphic to a twist of the universal bundle \mathcal{Q} .

The restriction of *E* to the maximal linear subspaces $\Omega(0, k)$ has, by adjunction t < 1, hence splits.

Fano bundles on $\mathbb{G}(1,k)$

Corollary

A Fano bundle E on $\mathbb{G}(1,k)$, $k \ge 5$ either splits as a sum of line bundles or is isomorphic to a twist of the universal bundle \mathcal{Q} .

The restriction of *E* to the maximal linear subspaces $\Omega(0, k)$ has, by adjunction t < 1, hence splits. Therefore *E* is uniform.

Fano bundles on $\mathbb{G}(1,k)$

Corollary

A Fano bundle E on $\mathbb{G}(1,k)$, $k \ge 5$ either splits as a sum of line bundles or is isomorphic to a twist of the universal bundle \mathcal{Q} .

The restriction of *E* to the maximal linear subspaces $\Omega(0, k)$ has, by adjunction t < 1, hence splits. Therefore *E* is uniform.

Remark

For k = 2,3 Fano bundles on $\mathbb{G}(1,k)$, were already classified.

Fano bundles on $\mathbb{G}(1,k)$

Corollary

A Fano bundle E on $\mathbb{G}(1,k)$, $k \ge 5$ either splits as a sum of line bundles or is isomorphic to a twist of the universal bundle \mathcal{Q} .

The restriction of *E* to the maximal linear subspaces $\Omega(0, k)$ has, by adjunction t < 1, hence splits. Therefore *E* is uniform.

Remark

For k = 2,3 Fano bundles on $\mathbb{G}(1,k)$, were already classified. The case k = 4 can be done in a different way (using again intersection theory in $\mathbb{P}(E)$ and Riemann-Roch).

Fano bundles on $\mathbb{G}(1,k)$

Corollary

A Fano bundle E on $\mathbb{G}(1,k)$, $k \ge 5$ either splits as a sum of line bundles or is isomorphic to a twist of the universal bundle \mathcal{Q} .

The restriction of *E* to the maximal linear subspaces $\Omega(0, k)$ has, by adjunction t < 1, hence splits. Therefore *E* is uniform.

Remark

For k = 2,3 Fano bundles on $\mathbb{G}(1,k)$, were already classified. The case k = 4 can be done in a different way (using again intersection theory in $\mathbb{P}(E)$ and Riemann-Roch).

Fano bundles on $\mathbb{G}(1,k)$

Corollary

A Fano bundle E on $\mathbb{G}(1,k)$, $k \ge 5$ either splits as a sum of line bundles or is isomorphic to a twist of the universal bundle \mathcal{Q} .

The restriction of *E* to the maximal linear subspaces $\Omega(0, k)$ has, by adjunction t < 1, hence splits. Therefore *E* is uniform.

Remark

For k = 2,3 Fano bundles on $\mathbb{G}(1,k)$, were already classified. The case k = 4 can be done in a different way (using again intersection theory in $\mathbb{P}(E)$ and Riemann-Roch).

Concluding remarks

Under which conditions...

is t rational?

② is there a rational curve $C \in \mathbb{P}(E)$ s. t. $K_{\mathbb{P}(E)} \cdot C = tH \cdot C$?

• is
$$-K_{\mathbb{P}(E)} + tH$$
 semiample?

Given $P_1, \ldots, P_k \in \mathbb{P}^2$ there exists E whose splitting type on a rational curve C:

• $E|_C = \mathcal{O}(-d) \oplus \mathcal{O}(d)$, being d the number of P'_i s on C.

- 4 同 2 4 日 2 4 日 2 4

Concluding remarks

Under which conditions...

- is t rational?
- ② is there a rational curve $C \in \mathbb{P}(E)$ s. t. $K_{\mathbb{P}(E)} \cdot C = tH \cdot C$?

• is
$$-K_{\mathbb{P}(E)} + tH$$
 semiample?

Given $P_1, \ldots, P_k \in \mathbb{P}^2$ there exists E whose splitting type on a rational curve C:

- $E|_C = \mathscr{O}(-d) \oplus \mathscr{O}(d)$, being d the number of P'_i s on C.
- $t(E) = 3 + 2\varepsilon(\mathscr{O}_{\mathbb{P}^2}(1); P_1, \dots, P_k)$ (ε the Seshadri constant.)

Concluding remarks

Under which conditions...

- is t rational?
- ② is there a rational curve $C \in \mathbb{P}(E)$ s. t. $K_{\mathbb{P}(E)} \cdot C = tH \cdot C$?

• is
$$-K_{\mathbb{P}(E)} + tH$$
 semiample?

Given $P_1, \ldots, P_k \in \mathbb{P}^2$ there exists E whose splitting type on a rational curve C:

- $E|_{\mathcal{C}} = \mathscr{O}(-d) \oplus \mathscr{O}(d)$, being d the number of P'_i s on C.
- $t(E) = 3 + 2\varepsilon(\mathscr{O}_{\mathbb{P}^2}(1); P_1, \dots, P_k)$ (ε the Seshadri constant.)
- It is conjectured $t(E) = 3 + 2\sqrt{k}$ for $k \ge 9$ (Nagata).
- Even if $t(E) \in \mathbb{Q}$, d(E) could be strictly smaller than $t(E) r_{\mathbb{P}^2}$.
- For k = 9 (general points): $d(E) < t(E) r_{\mathbb{P}^2}$.

Concluding remarks

Under which conditions...

- is t rational?
- ② is there a rational curve $C \in \mathbb{P}(E)$ s. t. $K_{\mathbb{P}(E)} \cdot C = tH \cdot C$?

• is
$$-K_{\mathbb{P}(E)} + tH$$
 semiample?

Given $P_1, \ldots, P_k \in \mathbb{P}^2$ there exists E whose splitting type on a rational curve C:

- $E|_{\mathcal{C}} = \mathscr{O}(-d) \oplus \mathscr{O}(d)$, being d the number of P'_i s on C.
- $t(E) = 3 + 2\varepsilon(\mathscr{O}_{\mathbb{P}^2}(1); P_1, \dots, P_k)$ (ε the Seshadri constant.)
- It is conjectured $t(E) = 3 + 2\sqrt{k}$ for $k \ge 9$ (Nagata).
- Even if $t(E) \in \mathbb{Q}$, d(E) could be strictly smaller than $t(E) r_{\mathbb{P}^2}$.
- For k = 9 (general points): $d(E) < t(E) r_{\mathbb{P}^2}$.
Introduction Two classical theorems revisited Fano threshold and splitting Applications

Concluding remarks

Assume that t < 0

- is t an integer?
- ② is there a minimal section C_a over a line such that $K_{\mathbb{P}(E)} \cdot C_a = tH \cdot C_a?$

- ∢ ≣ ▶

< 1 → 1 → 1 → 1

э