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R. Muñoz and L.E. Solá Conde
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VMRT
Families of rational curves

X smooth complex projective variety of dimension n

Hom(P1,X) scheme parametrizing maps f : P1 → X

Hombir(P1,X) ⊂ Hom(P1,X) open subset

RatCurvesn(X) quotient of Homn
bir(P1,X) by Aut(P1)

Family of rational curves: V ⊂ RatCurvesn(X) irreducible component

U

π

��

i // X

V

V is dominating if i(U) = X;
V is minimal if Ṽx := π(i−1(x)) is proper for a general x in Locus(V).
For a general x ∈ X the normalization Vx of Ṽx is smooth.
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VMRT and
congruences of

lines

G. Occhetta

VMRT
Definition

Properties

Examples

Ir(reducibility)

Fano bundles
Why Fano bundles?

A classification
theorem

Congruences
Generalities

Special congruences

Severi varieties

Trisecants to
projected Severi

VMRT
Families of rational curves

X smooth complex projective variety of dimension n

Hom(P1,X) scheme parametrizing maps f : P1 → X

Hombir(P1,X) ⊂ Hom(P1,X) open subset

RatCurvesn(X) quotient of Homn
bir(P1,X) by Aut(P1)

Family of rational curves: V ⊂ RatCurvesn(X) irreducible component

U

π

��

i // X

V

V is dominating if i(U) = X;
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VMRT
Definition

Given a minimal dominating family V of rational curves on X and a
general point x ∈ X the rational tangent map is

τx : Vx // P(TX|∨x )

`→ P(T`|∨x )

associating to a curve through x its tangent direction at x.

We define the Variety of Minimal Rational Tangents to be

Cx = τx(Vx)
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VMRT
Properties

The subvariety

C := closure of
⋃

generalx∈X

Cx ⊂ P(T∨X )

is called the total variety of minimal rational tangents of V .

Theorem

• (Kebekus) τx : Vx → Cx is a finite morphism.
• (Hwang-Mok) τx : Vx → Cx is birational.
• Thus τx : Vx → Cx is the normalization.
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VMRT
Prime Fanos

The VMRT is defined for any uniruled variety.

X is a Fano manifold if −KX is ample.

Theorem (Mori 1979)
Fano manifolds are uniruled.

A prime Fano manifold is a Fano manifold such that Pic(X) ' Z〈HX〉.
The index rX of X is the largest integer such that

−KX ∼ rXHX
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VMRT
Properties

A rational curve f : P1 → C parametrized by V is called standard if

f ∗TX ' OP1(2)⊕OP1(1)⊕d ⊕O⊕n−d−1
P1 .

where d = −KX · C.

The tangent morphism is immersive at p ∈ Vx if and only if i(π−1(p)) is
a standard rational curve.

Proposition (Hwang)

1 Assume that X ⊂ PN , and that V is a family of lines. Then, for a
general x ∈ X, τx is an embedding and Cx is smooth.

2 If X is a prime Fano of dimension n such that rX ≥ (n + 1)/2 then
the VMRT at a general point is non degenerate.

3 The VMRT cannot be an irreducible linear subspace.
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general x ∈ X, τx is an embedding and Cx is smooth.

2 If X is a prime Fano of dimension n such that rX ≥ (n + 1)/2 then
the VMRT at a general point is non degenerate.

3 The VMRT cannot be an irreducible linear subspace.
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Question (Hwang 2000)
Is Cx irreducible if it has positive dimension? Is it at least true for prime
Fano manifolds?

• C′ smooth curve with a free Z2-action.
• π : C′ → C induced étale covering.
• Y = Ps × Ps, with a Z2-action exchanging the factors
• X′ = Y × C′ and X quotient by the product action of Z2.

X′ //

π′

��

C′

π

��
X

ϕ // C

The VRMT at every point of X is Ps−1 t Ps−1.
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Theorem (Hwang-Mok 2004)
Let X and X′ be prime Fano manifolds. Assume that at a general point
x ∈ X the VMRT Cx is non-linear and of positive dimension.

Let f : U → U′ be a biholomorphic map from U ⊂ X onto U′ ⊂ X′ such
that the differential df sends each irreducible component of C(X)U to an
irreducible component of C(X′)U′ biholomorphically.
Then f extends to a biholomorphic map F : X → X′.

X has the target rigidity property if, given an holomorphic surjective map
f : Y → X, all deformations of f come from automorphisms of the target.

Theorem (Hwang-Mok 2004)
Let X be a prime Fano manifold, X 6= Pn.
Assume that at a general point x ∈ X the VMRT Cx(X) is non-linear and
of positive dimension.
Then X has the target rigidity property.
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Non linearity

Conjecture (Hwang-Mok 2004)
Let X be a prime Fano manifold.
Then the VMRT of X at a general point is not a union of positive
dimensional linear subspaces.
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Fano bundles

A vector bundle E over a smooth complex projective variety X is a
Fano bundle if PX(E) is a Fano manifold.

If E is a Fano bundle on X then also X is a Fano manifold.

Rank 2 Fano bundles over projective spaces and quadrics have been
classified in the 90’s (Ancona, Peternell, Sols, Szurek, Wiśniewski).

Generalization: classify rank 2 Fano bundles over (Fano) manifolds
with b2 = b4 = 1. Solved recently by Muñoz, , Solá Conde.

As a side effect, a counterexample to the non linearity conjecture has
been found.
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Fano bundles
Contractions

Key facts:

1 The assumption on b4 provides the following:

Lemma
The second contraction ϕ : P(E)→ Y is either

(P) a P1-bundle;
(C) a conic bundle with reducible fibers, or
(D) the blow-up of a codimension two smooth subvariety.

2 Intersection theory combined with number theory provides
n = 2, 3 or 5 if ϕ is of fiber type.
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A Classification theorem

Theorem
Let X be a Fano manifold satisfying b2 = b4 = 1, and let E be an
indecomposable rank two Fano bundle on X.

Then, up to a twist with a line bundle, E is the pull-back of the universal
quotient bundle on a Grassmannian G(1,m) by a finite map
ψ : X → G(1,m) where either

• ψ is one of the embeddings given by
(P1)-(P5) . . . ,

(D1) P2 ⊂ GII(1, 3)Q3 ⊂ G(1, 4) (lines in Q3 meeting a fixed line),
(D2) v2(P2) ⊂ G(1, 3) ((bi)secant lines to v3(P1) ⊂ P3),
(D3) V3

5 ⊂ G(1, 4) (trisecant lines to the projection of v2(P2) into P4),
(C6) . . .

• ψ factorizes by a finite covering ψ1 : X → X1 of one of the
submanifolds of types (P1)-(P5) above and, either
(C1) . . . ,

(C2)-(C5) . . . .
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A congruence of lines Pm is subvariety Xm−1 ⊂ G(1,m).

Y := P(Q|X)
π

zz

π′

%%
X Pm

• order of X: number of lines parametrized by X passing through a
general point of Pm, which is zero if π′ is of fiber type or equal to
the degree of π′ otherwise.

• fundamental point: a point y ∈ Pm such that the fiber π′−1(y) has
dimension greater than m− dim(π′(Y)).

• fundamental locus: set of the fundamental points.
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Special congruences

Assumptions

• X smooth congruence of lines of order 1 in Pm with
Pic(X) ∼= Z.

• Zz ⊂ Pm smooth fundamental locus.
• The images of the fibers of π′ are linear spaces in G(1,m).

Notation

• HX generator of Pic(X).
• L tautological divisor of P(Q|X), which is π′∗OPm(1).
• H pull-back to Y of the ample generator of Pic(X).
• E exceptional divisor.
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Proposition

• X and Y are Fano manifolds.
• π′ is the blow-up of Pm along Z;
• X is covered by lines,

• HX = OG(1)|X ,
• −KX = (m− z)HX .

• f fiber of π : Y → X =⇒ α := E · f = (m− 1)/(m− z− 1).
• VMRT of a general x consists of α disjoint linear spaces of

dimension m− z− 2.

Using that E = αL− H and some intersection theory

• LkEHm−k+1 = 0 for k > z
• LzEHm−z+1 = deg Z

we get deg(Z) < αm−z =⇒ Z cannot be a complete intersection.
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Selecting the candidates

Remark
The case α = 2 does not happen.

X will be covered by linear spaces of dimension dim X/2, and have
index dim X/2 + 1; there are no such Fanos with Pic(X) ' Z.

Remark
If Hartshorne’s conjecture on complete intersections is true then the
possible values of (α, z,m) are:

(3, 2k, 3k + 1) with k > 0 , (4, 3, 5), (4, 6, 9) and (5, 4, 6).

Recall: α-secants to a smooth Z of dimension z in Pm.

The dimension of the VMRT (m− z− 2) of X will be positive in cases

(3, 2k, 3k + 1) with k > 1 , (4, 6, 9)
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Severi varieties

A Severi variety X ⊂ PN is a smooth projective variety of dimension
2
3 (N − 2) which can be isomorphically projected to a projective space of
smaller dimension.

Theorem (Zak)
The Severi varieties are

2 The Veronese surface in P5;

4 The Segre embedding of P2 × P2 in P8;

8 The Grassmannian G(1, 5) ⊂ P14;

16 The variety E16 ⊂ P26.
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Severi varieties
And Cremona transformations

Lemma
Let S ⊂ P3k+2 be a 2k-dimensional Severi variety.
The linear system of quadrics containing S provides an involutive
Cremona transformation ψ : P3k+2 → P3k+2, fitting in a diagram:

B
σ

||
σ′

""
P3k+2 ψ // P3k+2

where σ and σ′ denote, respectively, the blowing up of P3k+2 along S
and the blowing up of P3k+2 along S′ ∼= S.
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Example
Let X ⊂ G(1, 3k + 1) be the closure of the family of trisecant lines
to a general isomorphic projection Z ⊂ P3k+1 of a 2k-dimensional
Severi variety S ⊂ P3k+2. Then X is a smooth congruence of order
one with linear fibers.
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Example
Trisecants to projected Severi

For every P ∈ P3k+1 \ Z there exists a unique trisecant line to Z.

P

O

Z

P

O

Z

O

P

P

O

Z

O
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Trisecants through P ∈ Z.

P
Z

O

Q

R

P
Z

O

R

Q

P
Z

O

Q

R



VMRT and
congruences of

lines

G. Occhetta

VMRT
Definition

Properties

Examples

Ir(reducibility)

Fano bundles
Why Fano bundles?

A classification
theorem

Congruences
Generalities

Special congruences

Severi varieties

Trisecants to
projected Severi

Example
Trisecants to projected Severi

Trisecants through P ∈ Z.

P
Z

O

Q

R

P
Z

O

R

Q

P
Z

O

Q

R



VMRT and
congruences of

lines

G. Occhetta

VMRT
Definition

Properties

Examples

Ir(reducibility)

Fano bundles
Why Fano bundles?

A classification
theorem

Congruences
Generalities

Special congruences

Severi varieties

Trisecants to
projected Severi

Example
Trisecants to projected Severi

Trisecants through P ∈ Z.

P
Z

O

Q

R

P
Z

O

R

Q

P
Z

O

Q

R



VMRT and
congruences of

lines

G. Occhetta

VMRT
Definition

Properties

Examples

Ir(reducibility)

Fano bundles
Why Fano bundles?

A classification
theorem

Congruences
Generalities

Special congruences

Severi varieties

Trisecants to
projected Severi

Example
Trisecants to projected Severi

Trisecants through P ∈ Z.

P
Z

O

Q

R

P
Z

O

R

Q

P
Z

O

Q

R



VMRT and
congruences of

lines

G. Occhetta

VMRT
Definition

Properties

Examples

Ir(reducibility)

Fano bundles
Why Fano bundles?

A classification
theorem

Congruences
Generalities

Special congruences

Severi varieties

Trisecants to
projected Severi

Example
Trisecants to projected Severi

X ⊂ G(1, 3k + 1) is a congruence of order one, and Y = PX(Q|X) is the
blow-up of P3k+1 along Z.

Lines in X are the images of the fibers of π′ : Y → P3k+1.

Lines through a general x ∈ X are the lines contained in three linear
spaces passing through x and meeting only in x.
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Y

The VMRT at x is the union of three disjoint linear spaces!
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THANK YOU!
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