G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruence

Trisecants to

Varieties of Minimal Rational Tangents and Congruences of Lines

A classical counterexample to a modern conjecture

G. Occhetta

joint work with R. Muñoz and L.E. Solá Conde

MADRID, December 2012

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

G. Occhetta

VMRT

- Definition Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities
- Special congruences
- Severi varieties
- Trisecants to projected Severi

Outline

< □ > < @ > < E > < E > E のQ@

1 Variety of Minimal Rational Tangents

G. Occhetta

VMRT

- Definition Properties Examples
- . Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities
- Special congruences
- Severi varieties Trisecants to
- projected Severi

Outline

< □ > < @ > < E > < E > E のQ@

1 Variety of Minimal Rational Tangents Definition

G. Occhetta

VMRT

- Definition Properties Examples
- . Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities
- Special congruences
- Severi varieties Trisecants to
- projected Severi

1 Variety of Minimal Rational Tangents Definition Properties

G. Occhetta

VMRT

Definition Properties Examples

, Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruences Severi varieties

Trisecants to projected Severi

1 Variety of Minimal Rational Tangents Definition Properties

Examples

G. Occhetta

VMRT

Definition Properties Examples

, Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruences

Severi varieties Trisecants to

projected Severi

1 Variety of Minimal Rational Tangents Definition

Properties Examples Ir(reducibility)

G. Occhetta

VMRT

Definition Properties Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities Special congruences

Severi varieties

Trisecants to projected Severi

1 Variety of Minimal Rational Tangents Definition Properties Examples Ir(reducibility)

_ _ _ _ _ _

2 Interlude: Fano bundles

Outline

・ロト < 団 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

G. Occhetta

VMRT

Definition Properties

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities Special congruences

Sovori variation

Trisecants to projected Severi

1 Variety of Minimal Rational Tangents Definition Properties Examples

Ir(reducibility)

2 Interlude: Fano bundles Why Fano bundles?

Outline

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

G. Occhetta

VMRT

Definition Properties

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Severi varieties

Trisecants to projected Severi

1 Variety of Minimal Rational Tangents Definition Properties Examples Ir(reducibility)

2 Interlude: Fano bundles

Why Fano bundles? A classification theorem

G. Occhetta

VMRT

Definition Properties Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruence

Trisecants to projected Severi

1 Variety of Minimal Rational Tangents Definition Properties Examples

Ir(reducibility)

2 Interlude: Fano bundles

Why Fano bundles? A classification theorem

3 Congruences of lines

G. Occhetta

VMRT

Definition Properties Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

special congruence

Trisecants to projected Severi

1 Variety of Minimal Rational Tangents Definition Properties Examples

Ir(reducibility)

2 Interlude: Fano bundles

Why Fano bundles? A classification theorem

3 Congruences of lines Generalities

Outline

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

G. Occhetta

VMRT

Definition Properties

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

o · · · ·

Trisecants to projected Severi

1 Variety of Minimal Rational Tangents Definition Properties Examples

Ir(reducibility)

2 Interlude: Fano bundles

Why Fano bundles? A classification theorem

3 Congruences of lines Generalities Special congruences

Outline

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆日 ト

G. Occhetta

VMRT

Definition Properties

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

o · · · ·

Trisecants to projected Severi

1 Variety of Minimal Rational Tangents Definition Properties Examples

Ir(reducibility)

2 Interlude: Fano bundles

Why Fano bundles? A classification theorem

3 Congruences of lines Generalities

Special congruences Severi varieties

G. Occhetta

VMRT

Definition Properties

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities Special congruences

Special congruence

Trisecants to projected Severi

1 Variety of Minimal Rational Tangents Definition Properties Examples

Ir(reducibility)

2 Interlude: Fano bundles

Why Fano bundles? A classification theorem

3 Congruences of lines

Generalities Special congruences Severi varieties Trisecants to projected Severi

G. Occhetta

VMRT

Definition

- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities
- Special congruences
- Severi varieties
- Trisecants to projected Severi

VMRT Families of rational curves

< □ > < @ > < E > < E > E のQ@

X smooth complex projective variety of dimension n

G. Occhetta

VMRT

Definition

- Properties
- Examples
- Ir (reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities
- Special congruences
- Severi varieties Trisecants to
- projected Severi

VMRT Families of rational curves

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

X smooth complex projective variety of dimension *n* Hom (\mathbb{P}^1, X) scheme parametrizing maps $f : \mathbb{P}^1 \to X$

G. Occhetta

VMRT

Definition

- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities
- Special congruences
- Trisecants to
- projected Severi

VMRT Families of rational curves

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

X smooth complex projective variety of dimension *n* Hom(\mathbb{P}^1, X) scheme parametrizing maps $f : \mathbb{P}^1 \to X$ Hom_{*bir*}(\mathbb{P}^1, X) \subset Hom(\mathbb{P}^1, X) open subset

G. Occhetta

VMRT

Definition

- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities
- Special congruences
- Trisecants to

VMRT Families of rational curves

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

X smooth complex projective variety of dimension *n* Hom (\mathbb{P}^1, X) scheme parametrizing maps $f : \mathbb{P}^1 \to X$ Hom_{bir} $(\mathbb{P}^1, X) \subset$ Hom (\mathbb{P}^1, X) open subset

RatCurves^{*n*}(*X*) quotient of $\operatorname{Hom}^{n}_{bir}(\mathbb{P}^{1}, X)$ by $\operatorname{Aut}(\mathbb{P}^{1})$

G. Occhetta

VMRT

Definition

- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities
- Special congruences
- Trisecants to projected Severi

VMRT Families of rational curves

- *X* smooth complex projective variety of dimension *n* Hom(\mathbb{P}^1, X) scheme parametrizing maps $f : \mathbb{P}^1 \to X$ Hom_{bir}(\mathbb{P}^1, X) \subset Hom(\mathbb{P}^1, X) open subset
- RatCurves^{*n*}(*X*) quotient of $\operatorname{Hom}^{n}_{bir}(\mathbb{P}^{1}, X)$ by $\operatorname{Aut}(\mathbb{P}^{1})$
- **Family of rational curves**: $V \subset \text{RatCurves}^n(X)$ irreducible component

G. Occhetta

VMRT

Definition

- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles
- A classification theorem
- Congruences Generalities
- Special congruence
- Trisecants to

VMRT Families of rational curves

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

X smooth complex projective variety of dimension *n* $\operatorname{Hom}(\mathbb{P}^1, X)$ scheme parametrizing maps $f : \mathbb{P}^1 \to X$ $\operatorname{Hom}_{bir}(\mathbb{P}^1, X) \subset \operatorname{Hom}(\mathbb{P}^1, X)$ open subset RatCurves^{*n*}(*X*) quotient of $\operatorname{Hom}_{bir}^n(\mathbb{P}^1, X)$ by $\operatorname{Aut}(\mathbb{P}^1)$ **Family of rational curves:** $V \subset \operatorname{RatCurves}^n(X)$ irreducible component

$$\begin{array}{c} U \xrightarrow{i} X \\ \pi \\ V \\ V \end{array}$$

V is **dominating** if $\overline{i(U)} = X$;

G. Occhetta

VMRT

Definition

- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles
- A classification theorem
- Congruences Generalities Special congruer
- Trisecants to projected Severi

VMRT Families of rational curves

X smooth complex projective variety of dimension *n* $\operatorname{Hom}(\mathbb{P}^1, X)$ scheme parametrizing maps $f : \mathbb{P}^1 \to X$ $\operatorname{Hom}_{bir}(\mathbb{P}^1, X) \subset \operatorname{Hom}(\mathbb{P}^1, X)$ open subset RatCurves^{*n*}(*X*) quotient of $\operatorname{Hom}_{bir}^n(\mathbb{P}^1, X)$ by $\operatorname{Aut}(\mathbb{P}^1)$ Family of rational curves: $V \subset \operatorname{RatCurves}^n(X)$ irreducible component

$$\begin{array}{c|c} U & \stackrel{i}{\longrightarrow} X \\ \pi \\ \downarrow \\ V \\ \end{array}$$

V is **dominating** if $\overline{i(U)} = X$; *V* is **minimal** if $\widetilde{V}_x := \pi(i^{-1}(x))$ is proper for a general *x* in Locus(*V*). For a general $x \in X$ the normalization V_x of \widetilde{V}_x is smooth.

G. Occhetta

VMRT

Definition

- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities
- Special congruences
- Severi varieties Trisecants to
- projected Severi

VMRT Definition

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

Given a minimal dominating family *V* of rational curves on *X* and a general point $x \in X$ the rational **tangent map** is

G. Occhetta

VMRT

Definition

- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities
- special congruence
- Trisecants to

VMRT Definition

Given a minimal dominating family V of rational curves on X and a general point $x \in X$ the rational **tangent map** is

$$\tau_x: V_x - \to \mathbb{P}(T_X|_x^{\vee})$$

$$\ell \to \mathbb{P}(T_\ell|_x^{\vee})$$

associating to a curve through x its tangent direction at x.

G. Occhetta

VMRT

Definition

- Properties
- Examples
- Ir (reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities
- Special congruence
- Trisecants to

VMRT Definition

Given a minimal dominating family *V* of rational curves on *X* and a general point $x \in X$ the rational **tangent map** is

$$\tau_x: V_x - \rightarrow \mathbb{P}(T_X|_x^{\vee})$$

$$\ell \to \mathbb{P}(T_\ell|_x^{\vee})$$

associating to a curve through x its tangent direction at x.

We define the Variety of Minimal Rational Tangents to be

$$\mathcal{C}_x = \overline{\tau_x(V_x)}$$

<ロト < 団 > < 三 > < 三 > < 三 > < 三 < つ < C</p>

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

VMRT and congruences of lines

G. Occhetta

VMRT

Definition

Properties

Examples

Ir (reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities Special congruences

Severi varieties

Trisecants to projected Severi

The subvariety

$$\mathcal{C} := ext{closure of} \bigcup_{ ext{general} x \in X} \mathcal{C}_x \subset \mathbb{P}(T_X^{\vee})$$

is called the total variety of minimal rational tangents of V.

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

VMRT and congruences of lines

G. Occhetta

VMRT

Definition

Properties

Examples

Ir (reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities Special congruences

Soveri verietiec

Trisecants to projected Severi

The subvariety

$$\mathcal{C} := ext{closure of} \bigcup_{ ext{general} x \in X} \mathcal{C}_x \subset \mathbb{P}(T_X^{\vee})$$

is called the **total variety of minimal rational tangents** of *V*.

Theorem

• (*Kebekus*) $\tau_x : V_x \to C_x$ is a finite morphism.

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

VMRT and congruences of lines

G. Occhetta

VMRT

Definition

Properties

Examples

Ir (reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Consul congruence.

Trisecants to projected Severi

The subvariety

$$\mathcal{C} := ext{closure of} \bigcup_{ ext{general} x \in X} \mathcal{C}_x \subset \mathbb{P}(T_X^{\vee})$$

is called the **total variety of minimal rational tangents** of V.

Theorem

- (*Kebekus*) $\tau_x : V_x \to C_x$ is a finite morphism.
- (Hwang-Mok) $\tau_x : V_x \to C_x$ is birational.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

VMRT and congruences of lines

G. Occhetta

VMRT

Definition

Properties

Examples

Ir (reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

o · · · ·

Trisecants to projected Severi

The subvariety

$$\mathcal{C} := ext{closure of} \bigcup_{ ext{general} x \in X} \mathcal{C}_x \subset \mathbb{P}(T_X^{\vee})$$

is called the **total variety of minimal rational tangents** of V.

Theorem

- (*Kebekus*) $\tau_x : V_x \to C_x$ is a finite morphism.
- (Hwang-Mok) $\tau_x : V_x \to C_x$ is birational.
- Thus $\tau_x : V_x \to C_x$ is the normalization.

G. Occhetta

VMRT

Definition

Properties

Examples

Ir (reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

The VMRT is defined for any uniruled variety.

VMRT Prime Fanos

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

G. Occhetta

VMRT

Definition

Properties

Examples

Ir (reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities Special congruences

Severi varieties

Trisecants to projected Severi

The VMRT is defined for any uniruled variety.

X is a Fano manifold if $-K_X$ is ample.

VMRT Prime Fanos

< □ > < @ > < E > < E > E のQ@

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities Special congruences

opecial congruence

Trisecants to projected Severi The VMRT is defined for any uniruled variety.

X is a Fano manifold if $-K_X$ is ample.

Theorem (Mori 1979)

Fano manifolds are uniruled.

VMRT Prime Fanos

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

G. Occhetta

VMRT

Definition

Properties

Examples

Ir (reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

o i i i

Trisecants to projected Severi

The VMRT is defined for any uniruled variety.

X is a Fano manifold if $-K_X$ is ample.

Theorem (Mori 1979)

Fano manifolds are uniruled.

A prime Fano manifold is a Fano manifold such that $\text{Pic}(X) \simeq \mathbb{Z}\langle H_X \rangle$. The index r_X of X is the largest integer such that

 $-K_X \sim r_X H_X$

VMRT Prime Fanos

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

G. Occhetta

VMRT

Definition

Properties

Examples Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities Special congruences

Severi varieties

Trisecants to projected Severi

VMRT Properties

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

A rational curve $f : \mathbb{P}^1 \to C$ parametrized by V is called **standard** if

$$f^*T_X \simeq \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus d} \oplus \mathcal{O}_{\mathbb{P}^1}^{\oplus n-d-1}.$$

where
$$d = -K_X \cdot C$$
.

G. Occhetta

VMRT

Definition

Properties

Examples Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

special congruence

Trisecants to projected Severi

VMRT Properties

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

A rational curve $f : \mathbb{P}^1 \to C$ parametrized by V is called **standard** if

$$f^*T_X \simeq \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus d} \oplus \mathcal{O}_{\mathbb{P}^1}^{\oplus n-d-1}.$$

where $d = -K_X \cdot C$.

The tangent morphism is immersive at $p \in V_x$ if and only if $i(\pi^{-1}(p))$ is a standard rational curve.

G. Occhetta

VMRT

Definition

Properties

Examples Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruenc

Trisecants to projected Severi

VMRT Properties

A rational curve $f : \mathbb{P}^1 \to C$ parametrized by V is called **standard** if

$$f^*T_X \simeq \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus d} \oplus \mathcal{O}_{\mathbb{P}^1}^{\oplus n-d-1}.$$

where $d = -K_X \cdot C$.

The tangent morphism is immersive at $p \in V_x$ if and only if $i(\pi^{-1}(p))$ is a standard rational curve.

Proposition (Hwang)

G. Occhetta

VMRT

Definition

Properties

Examples Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruences

Trisecants to projected Severi

VMRT Properties

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A rational curve $f : \mathbb{P}^1 \to C$ parametrized by V is called **standard** if

$$f^*T_X \simeq \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus d} \oplus \mathcal{O}_{\mathbb{P}^1}^{\oplus n-d-1}.$$

where $d = -K_X \cdot C$.

The tangent morphism is immersive at $p \in V_x$ if and only if $i(\pi^{-1}(p))$ is a standard rational curve.

Proposition (Hwang)

Assume that X ⊂ P^N, and that V is a family of lines. Then, for a general x ∈ X, τ_x is an embedding and C_x is smooth.
G. Occhetta

VMRT

Definition

Properties

Examples Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

special congruenc

Trisecants to projected Severi

VMRT Properties

A rational curve $f : \mathbb{P}^1 \to C$ parametrized by V is called **standard** if

$$f^*T_X \simeq \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus d} \oplus \mathcal{O}_{\mathbb{P}^1}^{\oplus n-d-1}.$$

where $d = -K_X \cdot C$.

The tangent morphism is immersive at $p \in V_x$ if and only if $i(\pi^{-1}(p))$ is a standard rational curve.

Proposition (Hwang)

- Assume that X ⊂ P^N, and that V is a family of lines. Then, for a general x ∈ X, τ_x is an embedding and C_x is smooth.
- 2 If X is a prime Fano of dimension n such that $r_X \ge (n+1)/2$ then the VMRT at a general point is non degenerate.

G. Occhetta

VMRT

Definition

Properties

Examples Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruence

Trisecants to projected Severi

VMRT Properties

A rational curve $f : \mathbb{P}^1 \to C$ parametrized by V is called **standard** if

$$f^*T_X \simeq \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(1)^{\oplus d} \oplus \mathcal{O}_{\mathbb{P}^1}^{\oplus n-d-1}.$$

where $d = -K_X \cdot C$.

The tangent morphism is immersive at $p \in V_x$ if and only if $i(\pi^{-1}(p))$ is a standard rational curve.

Proposition (Hwang)

- **1** Assume that $X \subset \mathbb{P}^N$, and that V is a family of lines. Then, for a general $x \in X$, τ_x is an embedding and C_x is smooth.
- 2 If X is a prime Fano of dimension n such that $r_X \ge (n+1)/2$ then the VMRT at a general point is non degenerate.
- 3 The VMRT cannot be an irreducible linear subspace.

	VMRT Examples
V	VMDT
Λ	VIVINI
	<u>X</u>

VMRT and congruences of lines		VMRT
G. Occhetta		V IVIINI
VMDT		Examples
Definition		-
Deminition		
Examples	X	VMRT
Ir(reducibility)		
Fano bundles	<u>∎</u> pn	
Why Fano bundles?		
A classification theorem		
Congruences		
Generalities		
Special congruences		
Severi varieties		
Trisecants to projected Severi		

VMRT and congruences of lines G. Occhetta		VMRT
VMRT		Examples
Definition		
Properties	V	UMDT
Examples	Λ	VINIKI
Ir(reducibility)	\mathbb{D}^n	\mathbb{D}^{n-1}
Fano bundles	Ш	11
Why Fano bundles?	\bigcirc^n	\mathbb{O}^{n-2}
A classification theorem	×	×
Congruences		
Generalities		
Special congruences		
Severi varieties		
Trisecants to projected Severi		

VMRT and congruences of lines		VMPT
G. Occhetta		
VMRT		Examples
Definition		
Properties	V	VMDT
Examples	Å	VMKI
Ir(reducibility)	\mathbb{D}^n	\mathbb{D}^{n-1}
Fano bundles	Ш	Ш
Why Fano bundles?	\mathbb{O}^n	\mathbb{O}^{n-2}
A classification		· · · · · · · · · · · · · · · · · · ·
meorem	cubic in \mathbb{P}^n	quadric \cap cubic in \mathbb{P}^{n-1}
Congruences		-
Generalities		
Special congruences		
Severi varieties		
Trisecants to projected Severi		
projected Severi		

Definition		
Properties	V	VMDT
Examples	Λ	VMRI
Ir(reducibility)	TDn	\mathbb{D}^{n-1}
Fano bundles	Ш	Ш
Why Fano bundles?	\mathbb{Q}^n	\mathbb{Q}^{n-2}
A classification theorem	cubic in \mathbb{P}^n	quadric \cap cubic in \mathbb{P}^{n-1}
Congruences	$1 \qquad C \qquad U = D^{n} L \leq C$	
Generalities	hypersurface $X_d \subset P^n, d \leq n$	c.1 of hypersurfaces of deg $2, \ldots, d$
Special congruences		
Severi varieties		
Trisecants to projected Severi		

VMRT and congruences of lines

G. Occhetta

VMRT

Definition		
Properties Examples	X	VMRT
Examples Irtreducibility) Fano bundles Why Fano bundles? A classification theorem Congruences Generalities Special congruences Severi varieties Trissecants to projected Severi	$ \frac{\mathbb{P}^{n}}{\mathbb{Q}^{n}} $ cubic in \mathbb{P}^{n} hypersurface $X_{d} \subset P^{n}, d \leq n$ $\mathbb{G}(k, n)$	\mathbb{P}^{n-1} \mathbb{Q}^{n-2} quadric \cap cubic in \mathbb{P}^{n-1} c.i of hypersurfaces of deg 2,, d $\mathbb{P}^k \times \mathbb{P}^{n-k-1}$

VMRT and congruences of lines

G. Occhetta

VMRT

< □ > < @ > < E > < E > E のQ@

es	X	VMRT
25	24	(1)11(1
ibility)	\mathbb{P}^n	\mathbb{P}^{n-1}
indles	-	-
no bundles?	\mathbb{Q}^n	\mathbb{Q}^{n-2}
ication	, in the second s	~ 1
	cubic in \mathbb{P}^n	quadric \cap cubic in \mathbb{P}^{n-1}
ences	$1 \qquad C \qquad V = D^{\mu} I < C$	
ities	hypersurface $X_d \subset P^n$, $d \leq n$	c.1 of hypersurfaces of deg $2, \ldots, d$
congruences	$\mathbb{G}(k, n)$	$\mathbb{D}^k \searrow \mathbb{D}^{n-k-1}$
arieties	$\square(\kappa,n)$	1 ~ 1
ts to d Severi	$\mathbb{G}^{II}(k, 2m-1)$	$\mathbb{P}^k imes \mathbb{Q}^{2m-2k-3}$
	$\mathbb{G}^{II}(m-1,2m-1)$	$\mathbb{G}(1,m-1)$
	$\mathbb{G}^{III}(k, 2m-1)$	$\mathbb{P}_{\mathbb{P}^m}(\mathcal{O}(2)\oplus \mathcal{O}(1)^{2m-2k-2})$
	$\mathbb{G}^{III}(m-1,2m-1)$	$v_2(\mathbb{P}^{m-1})$

VMRT and congruences of lines

G. Occhetta

VMRT Definition Properties Examples Irtreducit Fano bur Why Fano A classific theorem Congrue Generaliti Special co Severi var Trisecants projected

Jemmilion .		
Properties Examples	X	VMRT
r(reducibility)	\mathbb{P}^n	\mathbb{P}^{n-1}
Vhy Fano bundles?	\mathbb{Q}^n	\mathbb{Q}^{n-2}
heorem	cubic in \mathbb{P}^n	quadric \cap cubic in \mathbb{P}^{n-1}
ongruences Jeneralities	hypersurface $X_d \subset P^n$, $d \leq n$	c.i of hypersurfaces of deg $2, \ldots, d$
ipecial congruences ieveri varieties	$\mathbb{G}(k,n)$	$\mathbb{P}^k imes \mathbb{P}^{n-k-1}$
Trisecants to projected Severi	$\mathbb{G}^{II}(k, 2m-1)$	$\mathbb{P}^k imes \mathbb{Q}^{2m-2k-3}$
	$\mathbb{G}^{II}(m-1,2m-1)$	$\mathbb{G}(1,m-1)$
	$\mathbb{G}^{III}(k,2m-1)$	$\mathbb{P}_{\mathbb{P}^m}(\mathcal{O}(2)\oplus\mathcal{O}(1)^{2m-2k-2})$
	$\mathbb{G}^{III}(m-1,2m-1)$	$v_2(\mathbb{P}^{m-1})$

VMRT and congruences of lines

G. Occhetta

VMRT

 $\mathbb{G}^{II}(m-1, 2m-1)$ orthogonal Grassmannian $\mathbb{G}^{III}(k, 2m-1)$ symplectic Grassmannian

▲□▶▲□▶▲□▶▲□▶ ■ のへで

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities Special congruences

special congruence

Trisecants to

VMRT Irreducibility

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

Question (Hwang 2000)

Is C_x irreducible if it has positive dimension? Is it at least true for prime Fano manifolds?

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruences

Trisecants to projected Severi

Question (Hwang 2000)

Is C_x irreducible if it has positive dimension? Is it at least true for prime Fano manifolds?

• C' smooth curve with a free \mathbb{Z}_2 -action.

VMRT Irreducibility

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

o · · · ·

Trisecants to projected Severi

Question (Hwang 2000)

Is C_x irreducible if it has positive dimension? Is it at least true for prime Fano manifolds?

- C' smooth curve with a free \mathbb{Z}_2 -action.
- $\pi \colon C' \to C$ induced étale covering.

VMRT Irreducibility

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

special congruenc

Trisecants to projected Severi

Question (Hwang 2000)

Is C_x irreducible if it has positive dimension? Is it at least true for prime Fano manifolds?

- C' smooth curve with a free \mathbb{Z}_2 -action.
- $\pi \colon C' \to C$ induced étale covering.
- $Y = \mathbb{P}^s \times \mathbb{P}^s$, with a \mathbb{Z}_2 -action exchanging the factors

VMRT Irreducibility

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

o · · · ·

Trisecants to projected Severi

Question (Hwang 2000)

Is C_x irreducible if it has positive dimension? Is it at least true for prime Fano manifolds?

- C' smooth curve with a free \mathbb{Z}_2 -action.
- $\pi \colon C' \to C$ induced étale covering.
- $Y = \mathbb{P}^s \times \mathbb{P}^s$, with a \mathbb{Z}_2 -action exchanging the factors
- $X' = Y \times C'$ and X quotient by the product action of \mathbb{Z}_2 .

VMRT Irreducibility

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruence

Trisecants to projected Sever

Question (Hwang 2000)

Is C_x irreducible if it has positive dimension? Is it at least true for prime Fano manifolds?

• C' smooth curve with a free \mathbb{Z}_2 -action.

- $\pi \colon C' \to C$ induced étale covering.
- $Y = \mathbb{P}^s \times \mathbb{P}^s$, with a \mathbb{Z}_2 -action exchanging the factors
- $X' = Y \times C'$ and X quotient by the product action of \mathbb{Z}_2 .

VMRT Irreducibility

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Consul congruence

Trisecants to projected Sever

Question (Hwang 2000)

Is C_x irreducible if it has positive dimension? Is it at least true for prime Fano manifolds?

• C' smooth curve with a free \mathbb{Z}_2 -action.

- $\pi \colon C' \to C$ induced étale covering.
- $Y = \mathbb{P}^s \times \mathbb{P}^s$, with a \mathbb{Z}_2 -action exchanging the factors
- $X' = Y \times C'$ and X quotient by the product action of \mathbb{Z}_2 .

The VRMT at every point of *X* is $\mathbb{P}^{s-1} \sqcup \mathbb{P}^{s-1}$.

VMRT Irreducibility

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruences

Trisecants to

Theorem (Hwang-Mok 2004)

Let X and X' be prime Fano manifolds. Assume that at a general point $x \in X$ the VMRT C_x is non-linear and of positive dimension.

VMRT Some results

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles

A classification theorem

Congruences Generalities Special congrue

VMRT Some results

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Hwang-Mok 2004)

Let X and X' be prime Fano manifolds. Assume that at a general point $x \in X$ the VMRT C_x is non-linear and of positive dimension. Let $f: U \to U'$ be a biholomorphic map from $U \subset X$ onto $U' \subset X'$ such that the differential df sends each irreducible component of $C(X)_U$ to an irreducible component of $C(X')_{U'}$ biholomorphically.

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences Generalities

Severi varieties

Trisecants to projected Severi

VMRT Some results

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Hwang-Mok 2004)

Let X and X' be prime Fano manifolds. Assume that at a general point $x \in X$ the VMRT C_x is non-linear and of positive dimension. Let $f : U \to U'$ be a biholomorphic map from $U \subset X$ onto $U' \subset X'$ such that the differential df sends each irreducible component of $C(X)_U$ to an irreducible component of $C(X')_{U'}$ biholomorphically. Then f extends to a biholomorphic map $F : X \to X'$.

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences Generalities Special congruen Severi varieties

Trisecants to projected Severi

Theorem (Hwang-Mok 2004)

Let X and X' be prime Fano manifolds. Assume that at a general point $x \in X$ the VMRT C_x is non-linear and of positive dimension. Let $f: U \to U'$ be a biholomorphic map from $U \subset X$ onto $U' \subset X'$ such that the differential df sends each irreducible component of $C(X)_U$ to an irreducible component of $C(X')_{U'}$ biholomorphically. Then f extends to a biholomorphic map $F: X \to X'$.

X has the target rigidity property if, given an holomorphic surjective map $f: Y \to X$, all deformations of *f* come from automorphisms of the target.

VMRT Some results

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles

A classification theorem

Congruences Generalities Special congruence Severi varieties Trisecants to

Theorem (Hwang-Mok 2004)

Let X and X' be prime Fano manifolds. Assume that at a general point $x \in X$ the VMRT C_x is non-linear and of positive dimension. Let $f: U \to U'$ be a biholomorphic map from $U \subset X$ onto $U' \subset X'$ such that the differential df sends each irreducible component of $C(X)_U$ to an irreducible component of $C(X')_{U'}$ biholomorphically. Then f extends to a biholomorphic map $F: X \to X'$.

X has the target rigidity property if, given an holomorphic surjective map $f: Y \to X$, all deformations of *f* come from automorphisms of the target.

Theorem (Hwang-Mok 2004)

Let X be a prime Fano manifold, $X \neq \mathbb{P}^n$. Assume that at a general point $x \in X$ the VMRT $\mathcal{C}_x(X)$ is non-linear and of positive dimension.

VMRT Some results

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles

A classification theorem

Congruences Generalities Special congruence Severi varieties Trisecants to

Theorem (Hwang-Mok 2004)

Let X and X' be prime Fano manifolds. Assume that at a general point $x \in X$ the VMRT C_x is non-linear and of positive dimension. Let $f: U \to U'$ be a biholomorphic map from $U \subset X$ onto $U' \subset X'$ such that the differential df sends each irreducible component of $C(X)_U$ to an irreducible component of $C(X')_{U'}$ biholomorphically. Then f extends to a biholomorphic map $F: X \to X'$.

X has the target rigidity property if, given an holomorphic surjective map $f: Y \to X$, all deformations of *f* come from automorphisms of the target.

Theorem (Hwang-Mok 2004)

Let X be a prime Fano manifold, $X \neq \mathbb{P}^n$. Assume that at a general point $x \in X$ the VMRT $C_x(X)$ is non-linear and of positive dimension. Then X has the target rigidity property.

VMRT

Some results

G. Occhetta

VMRT

- Definition
- Properties
- Examples

Ir(reducibility)

- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities
- Special congruence
- Severi varieties Trisecants to

VMRT Non linearity

Conjecture (Hwang-Mok 2004)

Let X be a prime Fano manifold. Then the VMRT of X at a general point is not a union of positive dimensional linear subspaces.

G. Occhetta

Fano bundles

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruences

Severi varieties

projected Severi

Fano bundles

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A vector bundle \mathcal{E} over a smooth complex projective variety *X* is a **Fano bundle** if $\mathbb{P}_X(\mathcal{E})$ is a Fano manifold.

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruences

Trisecants to

Fano bundles

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

A vector bundle \mathcal{E} over a smooth complex projective variety *X* is a **Fano bundle** if $\mathbb{P}_X(\mathcal{E})$ is a Fano manifold.

If \mathcal{E} is a Fano bundle on *X* then also *X* is a Fano manifold.

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities Special congruence

Severi varieties Trisecants to

Fano bundles

A vector bundle \mathcal{E} over a smooth complex projective variety *X* is a **Fano bundle** if $\mathbb{P}_X(\mathcal{E})$ is a Fano manifold.

If \mathcal{E} is a Fano bundle on X then also X is a Fano manifold.

Rank 2 Fano bundles over projective spaces and quadrics have been classified in the 90's (Ancona, Peternell, Sols, Szurek, Wiśniewski).

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities Special congruences

Severi varieties

Trisecants to projected Severi

Fano bundles

A vector bundle \mathcal{E} over a smooth complex projective variety *X* is a **Fano bundle** if $\mathbb{P}_X(\mathcal{E})$ is a Fano manifold.

If \mathcal{E} is a Fano bundle on X then also X is a Fano manifold.

Rank 2 Fano bundles over projective spaces and quadrics have been classified in the 90's (Ancona, Peternell, Sols, Szurek, Wiśniewski).

Generalization: classify rank 2 Fano bundles over (Fano) manifolds with $b_2 = b_4 = 1$. Solved recently by Muñoz, _ , Solá Conde.

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Severi varieties

Trisecants to projected Severi

Fano bundles

A vector bundle \mathcal{E} over a smooth complex projective variety *X* is a **Fano bundle** if $\mathbb{P}_X(\mathcal{E})$ is a Fano manifold.

If \mathcal{E} is a Fano bundle on X then also X is a Fano manifold.

Rank 2 Fano bundles over projective spaces and quadrics have been classified in the 90's (Ancona, Peternell, Sols, Szurek, Wiśniewski).

Generalization: classify rank 2 Fano bundles over (Fano) manifolds with $b_2 = b_4 = 1$. Solved recently by Muñoz, _, Solá Conde.

As a side effect, a counterexample to the non linearity conjecture has been found.

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?

A classification theorem

- Congruences
- Generalities
- Special congruences
- Severi varieties
- Trisecants to projected Severi

Fano bundles

Contractions

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?

A classification theorem

- Congruences
- Generalities
- Special congruences
- Severi varieties
- Trisecants to projected Severi

Fano bundles Contractions

Key facts:

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruences

Severi varieties Trisecants to

projected Severi

Fano bundles Contractions

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Key facts:

1 The assumption on b_4 provides the following:

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruences

Trisecants to projected Severi

Key facts:

1 The assumption on b_4 provides the following:

Lemma

The second contraction $\varphi : \mathbb{P}(\mathcal{E}) \to Y$ *is either*

Fano bundles Contractions

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruences

Trisecants to

Fano bundles Contractions

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

Key facts:

1 The assumption on b_4 provides the following:

Lemma

The second contraction $\varphi : \mathbb{P}(\mathcal{E}) \to Y$ is either (**P**) $a \mathbb{P}^1$ -bundle:

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruence

Trisecants to

Fano bundles Contractions

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

Key facts:

1 The assumption on b_4 provides the following:

Lemma

The second contraction $\varphi : \mathbb{P}(\mathcal{E}) \to Y$ *is either*

(**P**) $a \mathbb{P}^1$ -bundle;

(C) a conic bundle with reducible fibers, or
G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruence

Trisecants to

Fano bundles Contractions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Key facts:

1 The assumption on b_4 provides the following:

Lemma

The second contraction $\varphi : \mathbb{P}(\mathcal{E}) \to Y$ *is either*

- (**P**) $a \mathbb{P}^1$ -bundle;
- (C) a conic bundle with reducible fibers, or
- (D) the blow-up of a codimension two smooth subvariety.

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?

A classification theorem

- Congruences
- Generalities
- Special congruence
- Trisecants to

Fano bundles Contractions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Key facts:

1 The assumption on b_4 provides the following:

Lemma

- The second contraction $\varphi : \mathbb{P}(\mathcal{E}) \to Y$ is either
 - (**P**) $a \mathbb{P}^1$ -bundle;
 - (C) a conic bundle with reducible fibers, or
 - (D) the blow-up of a codimension two smooth subvariety.
 - 2 Intersection theory combined with number theory provides n = 2, 3 or 5 if φ is of fiber type.

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

rano bunutes

A classification theorem

Congruences

Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

Fano bundles A Classification theorem

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

Theorem

Let X be a Fano manifold satisfying $b_2 = b_4 = 1$, and let \mathcal{E} be an indecomposable rank two Fano bundle on X.

G. Occhetta

VMRT

Definition

Propertie

Emmelan

Ir(reducibility)

. . ..

When Frank houselles

A classification theorem

Congruences

Generalities

Special congruence

Trisecants to projected Severi

Fano bundles A Classification theorem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem

Let X be a Fano manifold satisfying $b_2 = b_4 = 1$, and let \mathcal{E} be an indecomposable rank two Fano bundle on X. Then, up to a twist with a line bundle, \mathcal{E} is the pull-back of the universal quotient bundle on a Grassmannian $\mathbb{G}(1,m)$ by a finite map $\psi: X \to \mathbb{G}(1,m)$ where either

G. Occhetta

VMRT

Definition

Properties

Emmedan

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Severi varieties

Trisecants to projected Sever

Fano bundles A Classification theorem

< ロ > < 同 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

Let X be a Fano manifold satisfying $b_2 = b_4 = 1$, and let \mathcal{E} be an indecomposable rank two Fano bundle on X. Then, up to a twist with a line bundle, \mathcal{E} is the pull-back of the universal quotient bundle on a Grassmannian $\mathbb{G}(1,m)$ by a finite map $\psi : X \to \mathbb{G}(1,m)$ where either

• ψ is one of the embeddings given by

(P1)-(P5) ...,

- (D1) $\mathbb{P}^2 \subset \mathbb{G}^{II}(1,3)_{\mathbb{Q}^3} \subset \mathbb{G}(1,4)$ (lines in \mathbb{Q}^3 meeting a fixed line),
- **(D2)** $v_2(\mathbb{P}^2) \subset \mathbb{G}(1,3)$ ((bi)secant lines to $v_3(\mathbb{P}^1) \subset \mathbb{P}^3$),
- **(D3)** $V_5^3 \subset \mathbb{G}(1,4)$ (trisecant lines to the projection of $v_2(\mathbb{P}^2)$ into \mathbb{P}^4), **(C6)** ...

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles

A classification theorem

Congruences

Generalities

Sovori variation

Trisecants to projected Sever

Fano bundles A Classification theorem

Theorem

Let X be a Fano manifold satisfying $b_2 = b_4 = 1$, and let \mathcal{E} be an indecomposable rank two Fano bundle on X. Then, up to a twist with a line bundle, \mathcal{E} is the pull-back of the universal quotient bundle on a Grassmannian $\mathbb{G}(1,m)$ by a finite map

 $\psi: X \to \mathbb{G}(1,m)$ where either

• ψ is one of the embeddings given by

(P1)-(P5) ...,

- (D1) $\mathbb{P}^2 \subset \mathbb{G}^{II}(1,3)_{\mathbb{Q}^3} \subset \mathbb{G}(1,4)$ (lines in \mathbb{Q}^3 meeting a fixed line), (D2) $v_2(\mathbb{P}^2) \subset \mathbb{G}(1,3)$ ((bi)secant lines to $v_3(\mathbb{P}^1) \subset \mathbb{P}^3$),
- (D2) $V_2(\mathbb{P}^*) \subset \mathbb{G}(1, 3)$ ((b))secant lines to $V_3(\mathbb{P}^*) \subset \mathbb{P}^*$), (D3) $V_3^5 \subset \mathbb{G}(1, 4)$ (trisecant lines to the projection of $v_2(\mathbb{P}^2)$ into \mathbb{P}^4), (C6) ...
- ψ factorizes by a finite covering $\psi_1 : X \to X_1$ of one of the submanifolds of types (P1)-(P5) above and, either

(C1) ..., (C2)-(C5)

G. Occhetta

VMRT

Definition

Properties

Examples

Ir (reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

Congruences of lines Generalities

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

A congruence of lines \mathbb{P}^m is subvariety $X^{m-1} \subset \mathbb{G}(1,m)$.

G. Occhetta

VMRT

Definition

Properties

Examples

Ir (reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

Congruences of lines Generalities

A congruence of lines \mathbb{P}^m is subvariety $X^{m-1} \subset \mathbb{G}(1,m)$.

◆ロト ◆舂 ト ◆臣 ト ◆臣 ト ○臣 - のへで

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences

Generalities

- Special congruences
- Trisecants to

Congruences of lines Generalities

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A congruence of lines \mathbb{P}^m is subvariety $X^{m-1} \subset \mathbb{G}(1,m)$.

order of X: number of lines parametrized by X passing through a general point of P^m, which is zero if π' is of fiber type or equal to the degree of π' otherwise.

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences

Generalities

- Special congruences
- Trisecants to

Congruences of lines Generalities

A congruence of lines \mathbb{P}^m is subvariety $X^{m-1} \subset \mathbb{G}(1,m)$.

- order of X: number of lines parametrized by X passing through a general point of P^m, which is zero if π' is of fiber type or equal to the degree of π' otherwise.
- fundamental point: a point y ∈ P^m such that the fiber π^{'-1}(y) has dimension greater than m − dim(π['](Y)).

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences

Generalities

- Special congruences
- Trisecants to

Congruences of lines Generalities

A congruence of lines \mathbb{P}^m is subvariety $X^{m-1} \subset \mathbb{G}(1,m)$.

- order of X: number of lines parametrized by X passing through a general point of P^m, which is zero if π' is of fiber type or equal to the degree of π' otherwise.
- fundamental point: a point y ∈ P^m such that the fiber π^{'-1}(y) has dimension greater than m − dim(π['](Y)).
- fundamental locus: set of the fundamental points.

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

Congruences of lines Special congruences

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

Assumptions

Congruences of lines Special congruences

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

Congruences of lines Special congruences

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Assumptions

• *X* smooth congruence of lines of **order** 1 in \mathbb{P}^m with $\operatorname{Pic}(X) \cong \mathbb{Z}$.

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

Congruences of lines Special congruences

< □ > < @ > < E > < E > E のQ@

Assumptions

- *X* smooth congruence of lines of order 1 in \mathbb{P}^m with $\operatorname{Pic}(X) \cong \mathbb{Z}$.
- $Z^z \subset \mathbb{P}^m$ smooth fundamental locus.

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

Congruences of lines

Special congruences

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Assumptions

- *X* smooth congruence of lines of **order** 1 in \mathbb{P}^m with $\operatorname{Pic}(X) \cong \mathbb{Z}$.
- $Z^z \subset \mathbb{P}^m$ smooth fundamental locus.
- The images of the fibers of π' are linear spaces in $\mathbb{G}(1, m)$.

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities
- Special congruences
- Severi varieties
- Trisecants to projected Severi

Congruences of lines

Special congruences

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Assumptions

- *X* smooth congruence of lines of **order** 1 in \mathbb{P}^m with $\operatorname{Pic}(X) \cong \mathbb{Z}$.
- $Z^z \subset \mathbb{P}^m$ smooth fundamental locus.
- The images of the fibers of π' are linear spaces in $\mathbb{G}(1, m)$.

Notation

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities
- Special congruences
- Severi varieties
- projected Severi

Congruences of lines

Special congruences

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Assumptions

- *X* smooth congruence of lines of **order** 1 in \mathbb{P}^m with $\operatorname{Pic}(X) \cong \mathbb{Z}$.
- $Z^z \subset \mathbb{P}^m$ smooth fundamental locus.
- The images of the fibers of π' are linear spaces in $\mathbb{G}(1, m)$.

Notation

• H_X generator of Pic(X).

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities
- Special congruences
- Severi varieties Trisecants to

Congruences of lines

Special congruences

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Assumptions

- *X* smooth congruence of lines of **order** 1 in \mathbb{P}^m with $\operatorname{Pic}(X) \cong \mathbb{Z}$.
- $Z^z \subset \mathbb{P}^m$ smooth fundamental locus.
- The images of the fibers of π' are linear spaces in $\mathbb{G}(1, m)$.

Notation

- H_X generator of Pic(X).
- *L* tautological divisor of $\mathbb{P}(\mathcal{Q}_{|X})$, which is $\pi'^* \mathcal{O}_{\mathbb{P}^m}(1)$.

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities
- Special congruences
- Severi varieties Trisecants to

Congruences of lines

Special congruences

Assumptions

- *X* smooth congruence of lines of **order** 1 in \mathbb{P}^m with $\operatorname{Pic}(X) \cong \mathbb{Z}$.
- $Z^z \subset \mathbb{P}^m$ smooth fundamental locus.
- The images of the fibers of π' are linear spaces in $\mathbb{G}(1, m)$.

Notation

- H_X generator of Pic(X).
- *L* tautological divisor of $\mathbb{P}(\mathcal{Q}_{|X})$, which is $\pi'^* \mathcal{O}_{\mathbb{P}^m}(1)$.
- *H* pull-back to *Y* of the ample generator of Pic(X).

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つ へ ()・

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities
- Special congruences
- Severi varieties Trisecants to projected Severi

Congruences of lines

Special congruences

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Assumptions

- *X* smooth congruence of lines of **order** 1 in \mathbb{P}^m with $\operatorname{Pic}(X) \cong \mathbb{Z}$.
- $Z^z \subset \mathbb{P}^m$ smooth fundamental locus.
- The images of the fibers of π' are linear spaces in $\mathbb{G}(1, m)$.

Notation

- H_X generator of Pic(X).
- *L* tautological divisor of $\mathbb{P}(\mathcal{Q}_{|X})$, which is $\pi'^* \mathcal{O}_{\mathbb{P}^m}(1)$.
- *H* pull-back to *Y* of the ample generator of Pic(X).
- E exceptional divisor.

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

Proposition

Congruences of lines Smooth fundamental loci

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- . Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

Congruences of lines Smooth fundamental loci

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

Proposition

• X and Y are Fano manifolds.

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

Congruences of lines Smooth fundamental loci

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

- X and Y are Fano manifolds.
- π' is the blow-up of \mathbb{P}^m along Z;

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

Congruences of lines Smooth fundamental loci

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

- X and Y are Fano manifolds.
- π' is the blow-up of \mathbb{P}^m along Z;
- X is covered by lines,

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

Congruences of lines Smooth fundamental loci

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

- X and Y are Fano manifolds.
- π' is the blow-up of \mathbb{P}^m along Z;
- X is covered by lines,
 - $H_X = \mathcal{O}_{\mathbb{G}}(1)|_X$,

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities

Special congruences

- Severi varieties
- Trisecants to projected Severi

Congruences of lines Smooth fundamental loci

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

- X and Y are Fano manifolds.
- π' is the blow-up of \mathbb{P}^m along Z;
- X is covered by lines,
 - $H_X = \mathcal{O}_{\mathbb{G}}(1)|_X$,
 - $-K_X = (m-z)H_X$.

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities

Special congruences

Severi varieties Trisecants to

Proposition

- X and Y are Fano manifolds.
- π' is the blow-up of \mathbb{P}^m along Z;
- X is covered by lines,
 - $H_X = \mathcal{O}_{\mathbb{G}}(1)|_X$,
 - $-K_X = (m-z)H_X$.
- f fiber of $\pi: Y \to X \Longrightarrow \alpha := E \cdot f = (m-1)/(m-z-1)$.

Congruences of lines Smooth fundamental loci

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities

Special congruences

Severi varieties Trisecants to

Congruences of lines Smooth fundamental loci

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- X and Y are Fano manifolds.
- π' is the blow-up of \mathbb{P}^m along Z;
- X is covered by lines,
 - $H_X = \mathcal{O}_{\mathbb{G}}(1)|_X$,
 - $-K_X = (m-z)H_X$.
- f fiber of $\pi: Y \to X \Longrightarrow \alpha := E \cdot f = (m-1)/(m-z-1).$
- VMRT of a general x consists of α disjoint linear spaces of dimension m − z − 2.

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities

Special congruences

Severi varieties Trisecants to

Congruences of lines Smooth fundamental loci

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proposition

- X and Y are Fano manifolds.
- π' is the blow-up of \mathbb{P}^m along Z;
- X is covered by lines,
 - $H_X = \mathcal{O}_{\mathbb{G}}(1)|_X$,
 - $-K_X = (m-z)H_X$.
- f fiber of $\pi: Y \to X \Longrightarrow \alpha := E \cdot f = (m-1)/(m-z-1).$
- VMRT of a general x consists of α disjoint linear spaces of dimension m − z − 2.

Using that $E = \alpha L - H$ and some intersection theory

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities

Special congruences

Severi varieties Trisecants to

Congruences of lines Smooth fundamental loci

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proposition

- X and Y are Fano manifolds.
- π' is the blow-up of \mathbb{P}^m along Z;
- X is covered by lines,
 - $H_X = \mathcal{O}_{\mathbb{G}}(1)|_X$,
 - $-K_X = (m-z)H_X$.
- f fiber of $\pi: Y \to X \Longrightarrow \alpha := E \cdot f = (m-1)/(m-z-1).$
- VMRT of a general x consists of α disjoint linear spaces of dimension m − z − 2.

Using that $E = \alpha L - H$ and some intersection theory

• $L^k E H^{m-k+1} = 0$ for k > z

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities

Special congruences

Severi varieties Trisecants to

Congruences of lines Smooth fundamental loci

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proposition

- X and Y are Fano manifolds.
- π' is the blow-up of \mathbb{P}^m along Z;
- X is covered by lines,
 - $H_X = \mathcal{O}_{\mathbb{G}}(1)|_X$,
 - $-K_X = (m-z)H_X$.
- f fiber of $\pi: Y \to X \Longrightarrow \alpha := E \cdot f = (m-1)/(m-z-1).$
- VMRT of a general x consists of α disjoint linear spaces of dimension m − z − 2.

Using that $E = \alpha L - H$ and some intersection theory

- $L^k E H^{m-k+1} = 0$ for k > z
- $L^z E H^{m-z+1} = \deg Z$

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities

Special congruences

Severi varieties Trisecants to

Congruences of lines Smooth fundamental loci

Proposition

- X and Y are Fano manifolds.
- π' is the blow-up of \mathbb{P}^m along Z;
- X is covered by lines,
 - $H_X = \mathcal{O}_{\mathbb{G}}(1)|_X$,
 - $-K_X = (m-z)H_X$.
- f fiber of $\pi: Y \to X \Longrightarrow \alpha := E \cdot f = (m-1)/(m-z-1).$
- VMRT of a general x consists of α disjoint linear spaces of dimension m − z − 2.

Using that $E = \alpha L - H$ and some intersection theory

- $L^k E H^{m-k+1} = 0$ for k > z
- $L^z E H^{m-z+1} = \deg Z$

we get $\deg(Z) < \alpha^{m-z} \Longrightarrow Z$ cannot be a complete intersection.

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

Congruences of lines Selecting the candidates

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

Remark

The case $\alpha = 2$ *does not happen.*

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles A classification

theorem

Congruences Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

Congruences of lines Selecting the candidates

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

Remark

The case $\alpha = 2$ does not happen.

X will be covered by linear spaces of dimension dim *X*/2, and have index dim *X*/2 + 1; there are no such Fanos with $Pic(X) \simeq \mathbb{Z}$.

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundle A classification

theorem

Congruences

Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

Congruences of lines Selecting the candidates

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Remark

The case $\alpha = 2$ does not happen.

X will be covered by linear spaces of dimension dim *X*/2, and have index dim *X*/2 + 1; there are no such Fanos with $Pic(X) \simeq \mathbb{Z}$.

Remark

If Hartshorne's conjecture on complete intersections is true then the possible values of (α, z, m) are:
G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles A classification

theorem

Congruences

Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

Congruences of lines Selecting the candidates

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Remark

The case $\alpha = 2$ does not happen.

X will be covered by linear spaces of dimension dim *X*/2, and have index dim *X*/2 + 1; there are no such Fanos with $Pic(X) \simeq \mathbb{Z}$.

Remark

If Hartshorne's conjecture on complete intersections is true then the possible values of (α, z, m) are:

(3, 2k, 3k + 1) with k > 0, (4, 3, 5), (4, 6, 9) and (5, 4, 6).

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundle A classification

theorem

Congruences

Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

Congruences of lines Selecting the candidates

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Remark

The case $\alpha = 2$ does not happen.

X will be covered by linear spaces of dimension dim *X*/2, and have index dim *X*/2 + 1; there are no such Fanos with $Pic(X) \simeq \mathbb{Z}$.

Remark

If Hartshorne's conjecture on complete intersections is true then the possible values of (α, z, m) are:

(3, 2k, 3k + 1) with k > 0, (4, 3, 5), (4, 6, 9) and (5, 4, 6).

Recall: α *-secants to a smooth* Z *of dimension* z *in* \mathbb{P}^m *.*

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano hundles

Why Fano bundle A classification

theorem

Congruences

Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

Congruences of lines Selecting the candidates

Remark

The case $\alpha = 2$ does not happen.

X will be covered by linear spaces of dimension dim *X*/2, and have index dim *X*/2 + 1; there are no such Fanos with $Pic(X) \simeq \mathbb{Z}$.

Remark

If Hartshorne's conjecture on complete intersections is true then the possible values of (α, z, m) are:

(3, 2k, 3k + 1) with k > 0, (4, 3, 5), (4, 6, 9) and (5, 4, 6).

Recall: α *-secants to a smooth Z of dimension z in* \mathbb{P}^m . The dimension of the VMRT (m - z - 2) of *X* will be positive in cases

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆日 ト

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundle A classification

theorem

Congruences

Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

Congruences of lines Selecting the candidates

Remark

The case $\alpha = 2$ does not happen.

X will be covered by linear spaces of dimension dim *X*/2, and have index dim *X*/2 + 1; there are no such Fanos with $Pic(X) \simeq \mathbb{Z}$.

Remark

If Hartshorne's conjecture on complete intersections is true then the possible values of (α, z, m) are:

(3, 2k, 3k + 1) with k > 0, (4, 3, 5), (4, 6, 9) and (5, 4, 6).

Recall: α *-secants to a smooth Z of dimension z in* \mathbb{P}^m . The dimension of the VMRT (m - z - 2) of *X* will be positive in cases

$$(3, 2k, 3k + 1)$$
 with $k > 1$, $(4, 6, 9)$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − つへぐ

G. Occhetta

VMRT

Definition

Properties

Examples

Ir (reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Severi varieties

Trisecants to projected Severi

Severi varieties

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

A **Severi** variety $X \subset \mathbb{P}^N$ is a smooth projective variety of dimension $\frac{2}{3}(N-2)$ which can be isomorphically projected to a projective space of smaller dimension.

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Severi varieties

Trisecants to projected Severi

Severi varieties

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

A **Severi** variety $X \subset \mathbb{P}^N$ is a smooth projective variety of dimension $\frac{2}{3}(N-2)$ which can be isomorphically projected to a projective space of smaller dimension.

Theorem (Zak)

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Severi varieties

Trisecants to projected Severi

Severi varieties

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

A **Severi** variety $X \subset \mathbb{P}^N$ is a smooth projective variety of dimension $\frac{2}{3}(N-2)$ which can be isomorphically projected to a projective space of smaller dimension.

Theorem (Zak)

The Severi varieties are

2 The Veronese surface in \mathbb{P}^5 ;

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Severi varieties

Trisecants to projected Severi

Severi varieties

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A **Severi** variety $X \subset \mathbb{P}^N$ is a smooth projective variety of dimension $\frac{2}{3}(N-2)$ which can be isomorphically projected to a projective space of smaller dimension.

Theorem (Zak)

- **2** The Veronese surface in \mathbb{P}^5 ;
- **4** The Segre embedding of $\mathbb{P}^2 \times \mathbb{P}^2$ in \mathbb{P}^8 ;

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Severi varieties

Trisecants to projected Severi

Severi varieties

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A **Severi** variety $X \subset \mathbb{P}^N$ is a smooth projective variety of dimension $\frac{2}{3}(N-2)$ which can be isomorphically projected to a projective space of smaller dimension.

Theorem (Zak)

- **2** The Veronese surface in \mathbb{P}^5 ;
- **4** The Segre embedding of $\mathbb{P}^2 \times \mathbb{P}^2$ in \mathbb{P}^8 ;
- **8** The Grassmannian $\mathbb{G}(1,5) \subset \mathbb{P}^{14}$;

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Severi varieties

Trisecants to projected Severi

Severi varieties

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A **Severi** variety $X \subset \mathbb{P}^N$ is a smooth projective variety of dimension $\frac{2}{3}(N-2)$ which can be isomorphically projected to a projective space of smaller dimension.

Theorem (Zak)

- **2** The Veronese surface in \mathbb{P}^5 ;
- **4** The Segre embedding of $\mathbb{P}^2 \times \mathbb{P}^2$ in \mathbb{P}^8 ;
- **8** The Grassmannian $\mathbb{G}(1,5) \subset \mathbb{P}^{14}$;
- **16** The variety $E^{16} \subset \mathbb{P}^{26}$.

G. Occhetta

VMRT Definition Properties Examples

Severi varieties

And Cremona transformations

Ir(reducibility) Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir (reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities
- Special congruences

Severi varieties

Trisecants to projected Severi

Severi varieties

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

And Cremona transformations

Lemma

Let $S \subset \mathbb{P}^{3k+2}$ *be a 2k-dimensional Severi variety.*

G. Occhetta

VMRT

Definition

Properties

Examples

Ir (reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Severi varieties

Trisecants to projected Severi

Severi varieties

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

And Cremona transformations

Lemma

Let $S \subset \mathbb{P}^{3k+2}$ be a 2k-dimensional Severi variety. The linear system of quadrics containing S provides an involutive Cremona transformation $\psi : \mathbb{P}^{3k+2} \to \mathbb{P}^{3k+2}$, fitting in a diagram:

G. Occhetta

VMRT

Definition

Properties

Examples

Ir (reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Severi varieties

Trisecants to projected Severi

Severi varieties

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

And Cremona transformations

Lemma

Let $S \subset \mathbb{P}^{3k+2}$ be a 2k-dimensional Severi variety. The linear system of quadrics containing S provides an involutive Cremona transformation $\psi : \mathbb{P}^{3k+2} \to \mathbb{P}^{3k+2}$, fitting in a diagram:

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Severi varieties

Trisecants to projected Severi

Severi varieties

And Cremona transformations

Lemma

Let $S \subset \mathbb{P}^{3k+2}$ be a 2k-dimensional Severi variety. The linear system of quadrics containing S provides an involutive Cremona transformation $\psi : \mathbb{P}^{3k+2} \to \mathbb{P}^{3k+2}$, fitting in a diagram:

where σ and σ' denote, respectively, the blowing up of \mathbb{P}^{3k+2} along *S* and the blowing up of \mathbb{P}^{3k+2} along *S'* \cong *S*.

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities
- Special congruences
- Severi varieties
- Trisecants to projected Severi

Example Trisecants to projected Severi

Example

Let $X \subset \mathbb{G}(1, 3k + 1)$ be the closure of the family of trisecant lines to a general isomorphic projection $Z \subset \mathbb{P}^{3k+1}$ of a 2k-dimensional Severi variety $S \subset \mathbb{P}^{3k+2}$. Then X is a smooth congruence of order one with linear fibers.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − ����

G. Occhetta

VMRT

Definition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

Example Trisecants to projected Severi

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

For every $P \in \mathbb{P}^{3k+1} \setminus Z$ there exists a unique trisecant line to *Z*.

G. Occhetta

VMRT

Definition

Properties

Examples

Ir (reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

Example Trisecants to projected Severi

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

For every $P \in \mathbb{P}^{3k+1} \setminus Z$ there exists a unique trisecant line to *Z*.

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities
- Special congruences
- Severi varieties
- Trisecants to projected Severi

Example Trisecants to projected Severi

For every $P \in \mathbb{P}^{3k+1} \setminus Z$ there exists a unique trisecant line to *Z*.

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities
- Special congruences
- Severi varieties
- Trisecants to projected Severi

Example Trisecants to projected Severi

For every $P \in \mathbb{P}^{3k+1} \setminus Z$ there exists a unique trisecant line to *Z*.

Trisecants through $P \in Z$.

VMRT and congruences of lines

G. Occhetta

VMRT

Demition

Properties

Examples

Ir (reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Trisecants through $P \in Z$.

VMRT and congruences of lines G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities
- Special congruences
- Severi varieties
- Trisecants to projected Severi

Example Trisecants to projected Severi

Trisecants through $P \in Z$.

Trisecants through $P \in Z$.

R

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $X \subset \mathbb{G}(1, 3k + 1)$ is a congruence of order one, and $Y = \mathbb{P}_X(\mathcal{Q}|_X)$ is the blow-up of \mathbb{P}^{3k+1} along *Z*.

Lines in *X* are the images of the fibers of $\pi' : Y \to \mathbb{P}^{3k+1}$.

Lines through a general $x \in X$ are the lines contained in three linear spaces passing through *x* and meeting only in *x*.

VMRT and congruences of lines

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir (reducibility)
- Fano bundles
- Why Fano bundles?

A classification theorem

Congruences

Generalities

Trisecants to projected Severi

VMRT and congruences of lines

G. Occhetta

VMRT

Demnition

Properties

Examples

Ir(reducibility)

Fano bundles

Why Fano bundles?

A classification theorem

Congruences

Generalities

Special congruences

Severi varieties

Trisecants to projected Severi

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?

Y

- A classification theorem
- Congruences
- Generalities Special congruences
- Special congruence Severi varieties
- Trisecants to projected Severi

< □ > < @ > < E > < E > E のQ@

VMRT and congruences of lines

G. Occhetta

VMRT Properties Examples Ir(reducibility) Fano bundles

theorem

Congruences Generalities

Severi varieties Trisecants to projected Severi

VMRT and congruences of lines Example G. Occhetta **Trisecants to projected Severi** VMRT Properties Examples Ir(reducibility) Fano bundles theorem Y Ζ Congruences Generalities Special congruences Trisecants to projected Severi Х

The VMRT at *x* is the union of three disjoint linear spaces!

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities
- Special congruences
- Severi varieties
- Trisecants to projected Severi

G. Occhetta

VMRT

- Definition
- Properties
- Examples
- Ir(reducibility)
- Fano bundles
- Why Fano bundles?
- A classification theorem
- Congruences
- Generalities
- Special congruences
- Severi varieties
- Trisecants to projected Severi

THANK YOU!

< □ > < @ > < E > < E > E のQ@