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Spectral properties of compact normal quater-
nionic operators

Riccardo Ghiloni, Valter Moretti and Alessandro Perotti

Abstract. General, especially spectral, features of compact normal operators
in quaternionic Hilbert spaces are studied and some results are established
which generalize well-known properties of compact normal operators in com-
plex Hilbert spaces. More precisely, it is proved that the norm of such an
operator always coincides with the maximum of the set of absolute values of
the eigenvalues (exploiting the notion of spherical eigenvalue). Moreover the
structure of the spectral decomposition of a generic compact normal operator
T is discussed also proving a spectral characterization theorem for compact
normal operators.
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1. Introduction

Theory of linear operators in quaternionic Hilbert spaces is a well established
topic of functional analysis with many applications in physics, especially quan-
tum mechanics (see the introduction of [6] for a wide discussion). As in complex
functional analysis, compact operators play a relevant role as they share features
both with generic operators in infinite dimensional spaces and with matrices in
finite dimensional spaces. This intermediate role is particularly evident regarding
spectral analysis of normal compact operators. In fact, these operators in infinite
dimensional (complex or quaternionic) Hilbert spaces, on the one hand admit a
pure point spectrum (except, perhaps, for 0), on the other hand their spectral
expansion needs a proper infinite Hilbertian basis. This paper is devoted to focus
on these peculiar properties exploiting the general framework established in [6].

The notion of spectrum of an operator on quaternionic Hilbert spaces has
been introduced only few years ago [2] in the more general context of quaternionic
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Banach modules. It has been a starting point for developing functional calculus for
the classes of slice and slice regular functions on a quaternionic space (see [2, 6]).

Let H be a (right) quaternionic Hilbert space (we refer to Section 2 for basic
definitions and to [6] for more details), let B(H) be the set of right linear op-
erators on H and let B0(H) be the set of right linear compact operators on H.
In [5] some properties of compact operators on quaternionic Hilbert spaces were
studied. In particular, it was shown that the spherical spectrum (cf. Section 2.3
for complete definitions) of a compact operator T contains only the eigenvalues of
T and possibly 0, and the set of eigenvectors relative to a non-zero eigenvalue q is
finite-dimensional. Another result, similar to what occurs for compact operators
in complex Hilbert spaces, is conjectured in [5]:
Conjecture. If T ∈ B0(H) is self-adjoint, then either ‖T ‖ or −‖T ‖ is an eigen-
value of T .
In the following we will prove the conjecture for the more general class of normal
compact operators on a quaternionic Hilbert space. We also prove the spectral de-
composition theorem for normal compact operators and its converse. The complex
Hilbert space versions of these results can be found for example in [8, §3.3].

1.1. Main theorems

As recalled in Section 2.3, the set of eigenvalues of a linear operator T coincides
with the spherical point spectrum, denoted by σpS(T ). We can then rephrase the
conjecture in the following way.

Theorem 1.1. Given any normal operator T ∈ B0(H) with spherical point spectrum
σpS(T ), there exists λ ∈ σpS(T ) such that:

|λ| = max{|µ| | µ ∈ σS(T )} = ‖T ‖ . (1.1)

The next result is the spectral decomposition for normal compact operators.
In the finite-dimensional case, where the compactness requirement is empty, the
result is well-known [7] (see [4] for an ample exposition and further references).

Theorem 1.2. Given a normal operator T ∈ B0(H) with spherical point spectrum
σpS(T ), there exists a Hilbert basis N ⊂ H made of eigenvectors of T such that:

Tx =
∑

z∈N

zλz〈z|x〉 for each x ∈ H, (1.2)

where λz ∈ H is an eigenvalue relative to the eigenvector z and, if λz 6= 0 only
a finite number of distinct other elements z′ ∈ N verify λz = λz′ , moreover the
values λz are at most countably many.

The set Λ of eigenvalues λz with z ∈ N has the property that for every ǫ > 0
there is a finite set Λǫ ⊂ Λ with |λ| < ǫ if λ 6∈ Λǫ (following [8] we say that the
eigenvalues “vanish at infinity”). Thus 0 is the only possible accumulation point
of Λ. If H is infinite-dimensional, then 0 belongs to σS(T ).

Remark 1.3. Let S denote the two-dimensional sphere of imaginary units in H:

S := {q ∈ H | q2 = −1}.
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For ı ∈ S, let Cı be the real subalgebra of H generated by ı. We will see in Section
2 that to every normal operator T can be associated an anti self-adjoint operator
J . Along with a chosen imaginary unit ı ∈ S, J defines (cf. Definition 2.5) two
Cı-Hilbert subspaces of H, denoted by H

Jı
+ and H

Jı
− .

In the preceding theorem, for every imaginary unit ı, it is possible to choose
N such that:

{λz | z ∈ N} \ {0} = (σpS(T ) \ {0}) ∩ Cı . (1.3)

as well as N ⊂ H
Jı
+ . With a conjugation, in general losing the condition N ⊂ H

Jı
+ ,

one can always have λz ∈ C+
ı but N ⊂ H

Jı
+ ∪ H

Jı
− .

The spectral theorem for compact operators has the following converse. To
state it, we need to recall a definition. Given a subset K of C, we define the
circularization ΩK of K (in H ) by setting

ΩK := {α+ β ∈ H |α, β ∈ R, α+ iβ ∈ K,  ∈ S}. (1.4)

Theorem 1.4. Let T ∈ B(H). Assume that there exist a Hilbert basis N of H and
a map N ∋ z 7→ λz ∈ H satisfying the following requirements:

(i) Tx =
∑

z∈N zλz〈z|x〉 for every x ∈ H.
(ii) For every z ∈ N such that λz 6= 0, only a finite number of distinct other

elements z′ ∈ N verify λz = λz′ ;
(iii) The set Λ is countable at most;
(iv) For every ǫ > 0, there is a finite set Λǫ ⊂ Λ with |λ| < ǫ if λ 6∈ Λǫ.

Under these conditions T is normal and compact and

σS(T ) \ {0} = ΩΛ \ {0} .

Remark 1.5. The structure of the whole spherical spectrum (see Definition 2.7) of
a compact operator T ∈ B0(H) has been studied in [5, Corollary 2]:

σS(T ) \ {0} = σpS(T ) \ {0} .

If T is normal, then its spherical residual spectrum (cf. Section 2.3 for definitions)
is empty. Therefore in this case if 0 ∈ σS(T )\σpS(T ) then 0 belongs to the spherical
continuous spectrum σcS(T ).

2. Quaternionic Hilbert spaces

We recall some basic notions about quaternionic Hilbert spaces (see e.g. [1]). Let
H denote the skew field of quaternions. Let H be a right H–module. H is called
a quaternionic pre–Hilbert space if there exists a Hermitian quaternionic scalar
product H× H ∋ (u, v) 7→ 〈u|v〉 ∈ H satisfying the following three properties:

• Right linearity: 〈u|vp+ wq〉 = 〈u|v〉p+ 〈u|w〉q if p, q ∈ H and u, v, w ∈ H.

• Quaternionic Hermiticity: 〈u|v〉 = 〈v|u〉 if u, v ∈ H.
• Positivity: If u ∈ H, then 〈u|u〉 ∈ R+ and u = 0 if 〈u|u〉 = 0.
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We can define the quaternionic norm by setting

‖u‖ :=
√

〈u|u〉 ∈ R
+ if u ∈ H.

Definition 2.1. A quaternionic pre–Hilbert space H is said to be a quaternionic
Hilbert space if it is complete with respect to its natural distance d(u, v) := ‖u−v‖.

Example 2.2. The space Hn with scalar product 〈u, v〉 =
∑n

i=1 ūivi is a finite-
dimensional quaternionic Hilbert space.

Let H be a quaternionic Hilbert space.

Definition 2.3. A right H–linear operator is a map T : D(T ) −→ H such that:

T (ua+ vb) = (Tu)a+ (Tv)b if u, v ∈ D(T ) and a, b ∈ H,

where the domain D(T ) of T is a (not necessarily closed) right H–linear subspace
of H.

It can be shown that an operator T : D(T ) −→ H is continuous if and only
if it is bounded, i.e. there exists K ≥ 0 such that

‖Tu‖ ≤ K‖u‖ for each u ∈ D(T ).

Let ‖T ‖ := supu∈D(T )\{0}
‖Tu‖
‖u‖ = inf{K ∈ R | ‖Tu‖ ≤ K‖u‖ ∀u ∈ D(T )}. The set

B(H) of all bounded operators T : H −→ H is a complete metric space w.r.t. the
metric D(T, S) := ‖T − S‖,

Many assertions that are valid in the complex Hilbert spaces case, continue to
hold for quaternionic operators. We mention the uniform boundedness principle,
the open map theorem, the closed graph theorem, the Riesz representation theorem
and the polar decomposition of operators.

As in the complex case, a linear operator T : H → H is called compact
if it maps bounded sequences to sequences that admit convergent subsequences.
We refer to [5] for some properties of compact operator on quaternionic Hilbert
spaces. In particular, B0(H) is a closed bilateral ideal of B(H) and is closed under
adjunction ([5, Theorem 2]).

2.1. Left scalar multiplications

It is possible to equip a (right) quaternionic Hilbert space H with a left multi-
plication by quaternions. It is a non–canonical operation relying upon a choice of
a preferred Hilbert basis. So, pick out a Hilbert basis N of H and define the left
scalar multiplication of H induced by N as the map H×H ∋ (q, u) 7→ qu ∈ H given
by

qu :=
∑

z∈N zq〈z|u〉 if u ∈ H and q ∈ H.

For every q ∈ H, the map Lq : u 7→ qu belongs to B(H). Moreover, the map
LN : H −→ B(H), defined by setting LN (q) := Lq is a norm–preserving real
algebra homomorphism.
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The set B(H) is always a real Banach C∗–algebra with unity. It suffices to
consider the right scalar multiplication (Tr)(u) = T (u)r for real r and the adjun-
ction T 7→ T ∗ as ∗–involution. By means of a left scalar multiplication, it can be
given the richer structure of quaternionic Banach C∗–algebra.

Theorem 2.4 ([6]§3.2). Let H be a quaternionic Hilbert space equipped with a left
scalar multiplication. Then the set B(H), equipped with the pointwise sum, with
the scalar multiplications defined by

(qT )u := q(Tu) and (Tq)(u) := T (qu),

with the composition as product and with T 7→ T ∗ as ∗-involution, is a quaternionic
two–sided Banach C∗–algebra with unity.

Observe that the map LN gives a ∗-representation of H in B(H).

2.2. Imaginary units and complex subspaces

Consider a quaternionic Hilbert space H equipped with a left scalar multiplication
H ∋ q 7→ Lq. For short, we write Lqu = qu. For every imaginary unit ı ∈ S, the
operator J := Lı is anti self–adjoint and unitary; that is, it holds:

J∗ = −J and J∗J = I.

It holds also the converse statement: if an operator J ∈ B(H) is anti–self ad-
joint and unitary, then J = L′

ı for some left scalar multiplication of H (see [6,
Proposition 3.8]).

In the following, we also need a definition known from the literature [3].

Definition 2.5. Let J ∈ B(H) be an anti self–adjoint and unitary operator and let
ı ∈ S. Let Cı denote the real subalgebra of H generated by ı; that is, Cı := {α+ıβ ∈
H |α, β ∈ R}. Define the Cı-complex subspaces H

Jı
+ and H

Jı
− of H associated with

J and ı by setting
H

Jı
± := {u ∈ H | Ju = ±uı}.

Remark 2.6. H
Jı
± are closed subsets of H, because u 7→ Ju and u 7→ ±uı are

continuous. However, they are not (right H–linear) subspaces of H. Note also that
the space H admits the direct sum decomposition

H = H
Jı
+ ⊕ H

Jı
− ,

with projections H ∋ x 7→ P±(x) :=
1
2 (x ∓ Jxı) ∈ H

Jı
± .

2.3. Resolvent and spectrum

It is not clear how to extend the definitions of spectrum and resolvent in quater-
nionic Hilbert spaces. Let us focus on the simpler case of eigenvalues of a bounded
right H–linear operator T . Without fixing any left scalar multiplication of H, the
equation determining the eigenvalues reads as follows:

Tu = uq.

Here a drawback arises: if q ∈ H\R is fixed, the map u 7→ uq is not right H–linear.
Consequently, the eigenspace of q cannot be a right H–linear subspace. Indeed, if
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λ 6= 0, uλ is an eigenvector of λ−1qλ instead of q itself. As a second guess, one
could decide to deal with quaternionic Hilbert spaces equipped with a left scalar
multiplication and require that

Tu = qu.

Now both sides are right H–linear. However, this approach is not suitable for
physical applications, where self–adjoint operators should have real spectrum. We
come back to the former approach and accept that each eigenvalue q brings a whole
conjugation class of the quaternions, the eigensphere

Sq := {λ−1qλ ∈ H |λ ∈ H \ {0}}.

We adopt the viewpoint introduced in [2] for quaternionic two-sided Banach
modules. Given an operator T : D(T ) −→ H and q ∈ H, let

∆q(T ) := T 2 − T (q + q) + I|q|2.

Definition 2.7. The spherical resolvent set of T is the set ρS(T ) of q ∈ H such
that:

(a) Ker(∆q(T )) = {0}.
(b) Range(∆q(T )) is dense in H.
(c) ∆q(T )

−1 : Range(∆q(T )) −→ D(T 2) is bounded.

The spherical spectrum σS(T ) of T is defined by σS(T ) := H \ ρS(T ). It
decomposes into three disjoint circular (i.e. invariant by conjugation) subsets:

(i) the spherical point spectrum of T (the set of eigenvalues):

σpS (T ) := {q ∈ H |Ker(∆q(T )) 6= {0}}.

(ii) the spherical residual spectrum of T :

σrS (T ) :=
{

q ∈ H

∣

∣

∣
Ker(∆q(T )) = {0}, Range(∆q(T )) 6= H

}

.

(iii) the spherical continuous spectrum of T :

σcS (T ) :=
{

q ∈ H
∣

∣∆q(T )
−1 is densely defined but not bounded

}

.

The spherical spectral radius of T is defined as

rS(T ) := sup
{

|q|
∣

∣ q ∈ σS(T )
}

∈ R
+ ∪ {+∞}.

In our context, the subspace Ker(∆q(T )) has the role of an “eigenspace”. In par-
ticular, Ker(∆q(T )) 6= {0} if and only if Sq is an eigensphere of T .

2.4. Spectral properties

The spherical resolvent and the spherical spectrum can be defined for bounded
right H–linear operators on quaternionic two–sided Banach modules in a form
similar to that introduced above (see [2]). Several spectral properties of bounded
operators on complex Banach or Hilbert spaces remain valid in that general con-
text. Here we recall some of these properties in the quaternionic Hilbert setting
(cf. Theorem 4.3 in [6]).
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Theorem 2.8 ([6]§4.1). Let H be a quaternionic Hilbert space and let T ∈ B(H).
Then

(a) rS(T ) ≤ ‖T ‖.
(b) σS(T ) is a non–empty compact subset of H.
(c) Let P ∈ R[X ]. Then, if T is self–adjoint, the following spectral map property

holds:
σS(P (T )) = P (σS(T )).

(d) Gelfand’s spectral radius formula holds:

rS(T ) = lim
n→+∞

‖T n‖1/n.

In particular, if T is normal (i.e. TT ∗ = T ∗T ), then rS(T ) = ‖T ‖.

Regardless different definitions with respect to the complex Hilbert space
case, the notions of spherical spectrum and resolvent set enjoy some properties
which are quite similar to those for complex Hilbert spaces. Other features, con-
versely, are proper to the quaternionic Hilbert space case. First of all, it turns out
that the spherical point spectrum coincides with the set of eigenvalues of T .

Proposition 2.9. Let H be a quaternionic Hilbert space and let T : D(T ) −→ H be
an operator. Then σpS(T ) coincides with the set of all eigenvalues of T .

The subspace Ker(∆q(T )) has the role of an eigenspace of T . In particular,
Ker(∆q(T )) 6= {0} if and only if Sq is an eigensphere of T .

Theorem 2.10. Let T be an operator with dense domain on a quaternionic Hilbert
space H.

(a) σS(T ) = σS(T
∗).

(b) If T ∈ B(H) is normal, then
(i) σpS (T ) = σpS (T

∗).
(ii) σrS (T ) = σrS (T

∗) = ∅.
(iii) σcS (T ) = σcS (T

∗).
(c) If T is self–adjoint, then σS(T ) ⊂ R and σrS (T ) is empty.
(d) If T is anti self–adjoint, then σS(T ) ⊂ Im(H) and σrS (T ) is empty.
(e) If T ∈ B(H) is unitary, then σS(T ) ⊂ {q ∈ H | |q| = 1}.
(f) If T ∈ B(H) is anti self–adjoint and unitary, then σS(T ) = σpS(T ) = S.

It can be shown that, differently from operators on complex Hilbert spaces,
a normal operator T on a quaternionic space is unitarily equivalent to T ∗.

2.5. Compact operators

Compact operators have some peculiar spectral properties. Some of them were
investigated in [5]. In particular, if T ∈ B0(H) and q ∈ σpS (T )\{0} is an eigenvalue,
then Ker(∆q(T )) has finite dimension [5, Theorem 3]. Moreover, the spherical
spectrum of T ∈ B0(H) consists only of the eigenvalues of T and (possibly) 0 (cf.
[5, Corollary 2]):

σS(T ) \ {0} = σpS(T ) \ {0}.
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2.6. Slice nature of normal operators

We recall the “slice” character of H:

• H =
⋃

∈S
C where C is the real subalgebra 〈〉 ≃ C.

• C ∩ Cκ = R for every , κ ∈ S with  6= ±κ.

This decomposition of H has an “operatorial” counterpart on a quaternionic
Hilbert space. It was established in Theorems 5.9 of [6].

Theorem 2.11 ([6]§5.4). Given any normal operator T ∈ B(H), there exist three
operators A,B, J ∈ B(H) such that:

(i) T = A+ JB.
(ii) A is self–adjoint and B is positive.
(iii) J is anti self–adjoint and unitary.
(iv) A, B and J commute mutually.

Furthermore, it holds:

• A and B are uniquely determined by T : A = (T + T ∗)12 and B = |T − T ∗| 12 .

• J is uniquely determined by T on Ker(T − T ∗)⊥.

(where for S ∈ B(H), |S| denotes the operator defined as the square root of the
positive operator S∗S).

In the following, we denote by σ(B) and ρ(B) the standard spectrum and
resolvent set of a bounded operator B of a complex Hilbert space, respectively.

Proposition 2.12 ([6]§5.4). Let H be a quaternionic Hilbert space, let T ∈ B(H)
be a normal operator, let J ∈ B(H) be an anti self–adjoint and unitary operator
satisfying TJ = JT , T ∗J = JT ∗, let ı ∈ S and let HJı

± be the complex subspaces of
H associated with J and ı (see Definition 2.5). Then we have that

(a) T (HJı
+ ) ⊂ H

Jı
+ and T ∗(HJı

+ ) ⊂ H
Jı
+ .

Moreover, if T |HJı

+
and T ∗|HJı

+
denote the Cı–complex operators in B(HJı

+ ) obtained

restricting respectively T and T ∗ to H
Jı
+ , then it holds:

(b) (T |HJı

+
)∗ = T ∗|HJı

+
.

(c) σ(T |HJı

+
) ∪ σ(T |HJı

+
) = σS(T ) ∩ Cı. Here σ(T |HJı

+
) is considered as a subset

of Cı via the natural identification of C with Cı induced by the real vector
isomorphism C ∋ α+ iβ 7→ α+ ıβ ∈ Cı.

(d) σS(T ) = ΩK, where K := σ(T |HJı

+
).

An analogous statement holds for H
Jı
− .

3. Proofs of the main results

3.1. Proof of Theorem 1.1

If T = 0 there is nothing to prove, since 0 ∈ σpS(T ) and ‖T ‖ = 0 in that case. So,
we henceforth assume that T 6= 0. Since T ∈ B(H) is normal, Theorem 2.11 assures
the existence of an anti self-adjoint unitary right H-linear operator J : H → H,
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commuting with T and T ∗ and fulfilling T = (T+T ∗)12+J |T−T ∗| 12 . Next, if H
Jı
+ is

the complex subspace associated with a imaginary unit ı ∈ S as in Definition 2.5,
it turns out that T is the unique right H-linear operator, defined on H, whose
restriction to H

Jı
+ coincides with the complex-linear operator S := T |HJı

+
: HJı

+ →

H
Jı
+ (it immediately arises from Propositions 3.11 and 5.11 in [6]). We also know

that ‖S‖ = ‖T ‖, in view of Proposition 3.11 in [6].
By hypotheses T is compact and thus S is compact as well as we go to prove.

If {un}n∈N ⊂ H
Jı
+ is a bounded sequence of vectors, it is a bounded sequence of vec-

tors of H too, and thus the sequence {Tun}n∈N admits a subsequence {Tunk
}k∈N

converging to some v ∈ H, because T is compact. However, since H
Jı
+ is closed

(because of its definition and the fact that J is continuous), we also have that
v ∈ H

Jı
+ and that {Sunk

}k∈N converges to v ∈ H
Jı
+ , because Tun = Sun. We have

found that, for every bounded sequence {un}n∈N ⊂ H
Jı
+ , there is a subsequence of

{Sun}n∈N converging to some v ∈ H
Jı
+ . Thus S is compact.

To go on, Lemma 3.3.7 in [8] entails that there exists λ ∈ σp(S) with |λ| =
‖S‖. Notice that λ 6= 0 otherwise S = 0 and thus T = 0 by uniqueness of the
extension of S. Finally, point (d) of Proposition 2.12 implies that λ ∈ σS(T ).
Since T is compact, by Corollary 2 of [5], we have that λ ∈ σpS(T ). Summing
up, we have obtained that there is λ ∈ σpS(T ) with |λ| = ‖S‖ = ‖T ‖, where the
absolute value is, indifferently, that in C or that in H. The remaining identity in
(1.1) is now equivalent to: sup{|µ| | µ ∈ σS(T )} = ‖T ‖, i.e. rS(T ) = ‖T ‖. In this
form, it was proved in point (d) of Theorem 2.8.

3.2. Proof of Theorem 1.2

Fix an imaginary unit ı ∈ S and consider the normal compact operator S : HJı
+ →

H
Jı
+ as in the proof of Theorem 1.1. As a consequence of Theorem 3.3.8 in [8], there

exist a Hilbert basis N ⊂ H
Jı
+ made of eigenvectors of S and a map N ∋ z 7→ λz ∈

Cı such that each λz is an eigenvalue of S in Cı relative to z ∈ N and, if λz 6= 0,
only a finite number of distinct other elements z′ ∈ N verify λz = λz′ . Moreover,
the values λz are at most countably many. We know by Lemma 3.10(b) in [6] that
N is also a Hilbert basis of H, so that, if x ∈ H, then

x =
∑

z∈N

z〈z|x〉 .

Since T is continuous and Tz = Sz = zλz, we have:

Tx =
∑

z∈N

zλz〈z|x〉 .

¿From Theorem 3.3.8 in [8], we also get that the set {λz}z∈N of the eigenvalues
of S, and therefore those of T , vanish at infinity. Thus 0 is the only possible
accumulation point of Λ. If H is not finite-dimensional and 0 is not an eigenvalue
of T , then 0 must be an accumulation point of Λ, since every set of eigenvectors
Ker(∆λz

(T )) has finite dimension if λz 6= 0. Since σS(T ) is closed, in any case
0 ∈ σS(T ).
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Remark 3.1. Since λz ∈ Cı for each z ∈ N , equation (1.3) follows from Corollary 2
in [5].

3.3. Proof of Theorem 1.4

Fix an imaginary unit ı ∈ S. For each eigenvector z ∈ N , with non real eigenvalue
λz ∈ H, we can choose a unit quaternion µz such that µ−1

z λzµz belongs to the
intersection of the eigensphere of λz with the complex plane Cı. This means that
z′ := zµz is still an eigenvector of T , with eigenvalue λz′ := µ−1

z λzµz ∈ Cı. If
λz ∈ R, we set µz = 1. The set N ′ := {zµz | z ∈ N} is still a Hilbert basis of H,
such that Tx =

∑

z∈N ′ zλz〈z|x〉 for every x ∈ H.
The linear operator J defined by setting

Jx :=
∑

z∈N ′

zı〈z|x〉

is an anti self-adjoint and unitary operator on H (cf. Proposition 3.1 in [6]). Since

TJx =
∑

z∈N ′

zλz〈z|Jx〉 =
∑

z∈N ′

zλzı〈z|x〉

and

JTx =
∑

z∈N ′

zı〈z|Tx〉 =
∑

z∈N ′

zıλz〈z|x〉,

we have that J and T commute. Moreover, since T ∗x =
∑

z∈N ′ zλz〈z|x〉, the

same holds for J and T ∗. Let HJı
± be the complex subspaces of H associated with

J and the imaginary unit ı ∈ S as in Definition 2.5. Observe that N ′ ⊂ H
Jı
+ ,

since Jz = zı for each z ∈ N ′. Let  ∈ S be an imaginary unit orthogonal to ı.
Then N ′ := {z | z ∈ N ′} is a Hilbert basis for HJı

− (cf. Lemma 3.10 in [6]). The

Cı-complex subspaces HJı
± of H are invariant for T , since

JTu = TJu = TJ(∓Juı) = ±(Tu)ı for each u ∈ H
Jı
± .

Let S± := T |HJı

±
be the restrictions of T . Then S± are diagonalizable, since

S+x+ =
∑

z∈N ′

zλz〈z|x+〉 and S−x− =
∑

z∈N ′

zλz〈z|x−〉

for every x± ∈ H
Jı
± . We can then apply Theorem 3.3.8 of [8] and obtain that S±

are normal and compact. Using Proposition 3.11 of [6], we get the normality of T .
It remains to prove that T is compact. Recall from Remark 2.6 that H = H

Jı
+ ⊕

H
Jı
− , with projections P± defined by P±(x) =

1
2 (x∓Jxı) ∈ H

Jı
± . If {xn}n∈N ⊂ H is a

bounded sequence of vectors, then also {P+xn}n∈N ⊂ H
Jı
+ and {P−xn}n∈N ⊂ H

Jı
−

are bounded sequences. Since S+ is compact, the sequence {S+P+xn}n∈N ad-
mits a subsequence {S+P+xnk

}k∈N converging to some v+ ∈ H
Jı
+ . Similarly, since

S− is compact, we can extract from the sequence {S−P−xnk
}k∈N a subsequence

{S−P−xnk
l
}l∈N converging to some v− ∈ H

Jı
− . Then the sequence {Txnk

l
}l∈N con-

verges to v := v+ + v−, since Tx = S+P+x+ S−P−x for each x ∈ H.
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We have shown that for every bounded sequence {xn}n∈N ⊂ H there is a
subsequence of {Txn}n∈N converging to some v ∈ H. Thus T is compact.

The last statement concerning the spectrum of T follows from Proposi-
tion 2.12.
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