The quaternionic Gauss-Lucas Theorem and some related results about quaternionic polynomials

Alessandro Perotti

Department of Mathematics University of Trento, Italy

(from joint work with Riccardo Ghiloni)

FTHD 2018 - Tampere, August 20-24, 2018

Outline

- 2 A quaternionic Gauss-Lucas Theorem
 - 3 Estimates on the norm of the critical points
- 4 The singular set of a polynomial

Gauss-Lucas Theorem does not hold on ${\mathbb H}$

Let $p \in \mathbb{C}[z]$ be a complex polynomial of degree $d \ge 2$ and let p' be its derivative. The Gauss-Lucas Theorem asserts:

 $V(p') \subset \mathcal{K}(p)$

where $\mathcal{K}(P)$ denotes the convex hull of the sero set V(P) in \mathbb{C}

Gauss-Lucas Theorem does not hold for quaternionic polynomials (with right coefficients)

$$P(X) = \sum_{k=0}^{d} X^k a_k \in \mathbb{H}[X]$$

For example, the quadratic polynomial

$$P_2(X) = X^2 - X(i+j) + k$$

has zero set $V(P_2) = \{i\}$, while $V(P'_2) = V(2X - i - j) = \{\frac{i+j}{2}\}$

Gauss-Lucas Theorem does not hold on $\mathbb H$

Given $P, Q \in \mathbb{H}[X]$, let $P \cdot Q$ denote the product obtained by imposing commutativity of X with the coefficients and set

$$P^{c}(X) = \sum_{k=0}^{d} X^{k} \bar{a}_{k}$$
 and $N(P) = P \cdot P^{c} = P^{c} \cdot P \in \mathbb{R}[X]$

(N(P) is the normal polynomial of P)

If
$$\mathbb{S}_x = \{pxp^{-1} \in \mathbb{H} \mid p \in \mathbb{H}^*\} \Rightarrow V(N(P)) = \bigcup_{x \in V(P)} \mathbb{S}_x$$

Remark

$$P_{2}(X) = (X - i) \cdot (X - j) \Rightarrow P_{2}^{c}(X) = (X + j) \cdot (X + i). \text{ Therefore} \\ V(P_{2}) = \{i\}, V(P_{2}^{c}) = \{-j\} \Rightarrow V(P_{2}^{c}) = \{\frac{i+j}{2}\} \subset \mathcal{K}(N(P_{2}))$$

Since $N(P_2) = (X^2 + 1)^2$, $V(N(P_2)) = \mathbb{S}$ (the sphere of imaginary units) and $\mathcal{K}(N(P_2)) = \{x \in \mathbb{H} \mid \text{Re}(x) = 0, |x| \leq 1\}$

Alessandro Perotti (University of Trento) The quaternionic Gauss-Lucas Theorem

UNIVERSITY

A conjectured Gauss-Lucas Theorem on $\mathbb H$

A natural reformulation in $\mathbb{H}[X]$ of the classic Gauss-Lucas Theorem is then the following:

 $V(P') \subset \mathcal{K}(N(P))$

where $\mathcal{K}(N(P))$ denotes the convex hull of V(N(P)) in \mathbb{H} . If $V(P') \subset \mathcal{K}(N(P))$ we say that *P* is a Gauss-Lucas polynomial

The inclusion holds when

d = 2
P(X) = ∑_{k=0}^d X^ka_k is a complex polynomial, i.e. every a_k ∈ C_I = ℝ + I ℝ for a fixed I ∈ S (P is a C_I-polynomial)

Remark

Classic Gauss-Lucas Theorem holds for slice-preserving polynomials but not for \mathbb{C}_{I} -polynomials, i.e. one-slice-preserving polynomials

Gauss-Lucas Theorem for quadratic polynomials

Proposition

If P is a polynomial in $\mathbb{H}[X]$ of degree 2, then $V(N(P)) = \mathbb{S}_{x_1} \cup \mathbb{S}_{x_2}$ for some $x_1, x_2 \in \mathbb{H}$ (possibly with $\mathbb{S}_{x_1} = \mathbb{S}_{x_2}$) and

$$V(P') \subset \bigcup_{y_1 \in \mathbb{S}_{x_1}, y_2 \in \mathbb{S}_{x_2}} \left\{ \frac{y_1 + y_2}{2} \right\} \subset \mathcal{K}(N(P))$$

Sketch of proof.

Assume *P* monic. Then $P(X) = (X - x_1) \cdot (X - x_2)$ with $x_1 \in V(P)$ and $\bar{x}_2 \in V(P^c)$.

The conjecture is false in its generality

$$P_3(X) = (X-i) \cdot (X-j) \cdot (X-k)$$

is not a Gauss-Lucas polynomial

Sketch of proof.

$$\begin{split} &N(P_3) = (X^2 + 1)^3 \ \Rightarrow \ \mathcal{K}(N(P_3)) \subset \mathsf{Im}(\mathbb{H}) \\ &P'_3(X) = 3X^2 - 2X(i+j+k) + (i-j+k) \\ &N(P'_3) = 9X^4 + 12X^2 - 4X + 3 \ \Rightarrow \ V(N(P'_3)) \cap \mathsf{Im}(\mathbb{H}) \subset \{0\} \end{split}$$

but $V(N(P'_3)) \not\subset \{0\}$ and hence $V(P'_3) \not\subset Im(\mathbb{H})$

$$P_d(X) = X^{d-3} \cdot (X-i) \cdot (X-j) \cdot (X-k)$$

is not a Gauss-Lucas polynomial for every $d \ge 3$

The Gauss-Lucas snail of a polynomial

We use the slice decomposition of ${\mathbb H}$ and projections on slices

$$\mathbb{H} = \bigcup_{I \in \mathbb{S}} \mathbb{C}_I$$

Definition

Let $I \in \mathbb{S}$ and let $P_I : \mathbb{C}_I \to \mathbb{H}$ be the restriction of P to \mathbb{C}_I . If P_I is not constant, set $\mathcal{K}_{\mathbb{C}_I}(P) := \mathcal{K}(V(P) \cap \mathbb{C}_I)$. If P_I is constant, we set $\mathcal{K}_{\mathbb{C}_I}(P) := \mathbb{C}_I$

Let $\pi_I : \mathbb{H} \to \mathbb{H}$ be the orthogonal projection onto \mathbb{C}_I . Given $P(X) = \sum_{k=0}^d X^k a_k \in \mathbb{H}[X]$, let $P_+^I(X) = \pi_I \circ P = \sum_{k=1}^d X^k a_{k,I}$ be the \mathbb{C}_I -polynomial with coefficients $a_{k,I} := \pi_I(a_k)$.

Definition (Gauss-Lucas snail of *P*)

$$\mathfrak{sn}(P) := \bigcup_{l \in \mathbb{S}} \mathcal{K}_{\mathbb{C}_l}(P_+^l)$$

A quaternionic Gauss-Lucas Theorem

Theorem (Gauss-Lucas on \mathbb{H}) For every polynomial $P \in \mathbb{H}[X]$ of degree > 2,

 $V(P') \subset \mathfrak{sn}(P)$

Sketch of proof.

Decompose P and P' as

$$\boldsymbol{P}_{\boldsymbol{I}} = \pi_{\boldsymbol{I}} \circ \boldsymbol{P}_{\boldsymbol{I}} + \pi_{\boldsymbol{I}}^{\perp} \circ \boldsymbol{P}_{\boldsymbol{I}} = \boldsymbol{P}_{+|\mathbb{C}_{\boldsymbol{I}}}^{\boldsymbol{I}} + \pi_{\boldsymbol{I}}^{\perp} \circ \boldsymbol{P}_{\boldsymbol{I}}$$

 $P'_+(\mathbb{C}_I) \subset \mathbb{C}_I \text{ and } (\pi_I^{\perp} \circ P_I)(\mathbb{C}_I) \subset \mathbb{C}_I^{\perp} \Rightarrow V(P') \cap \mathbb{C}_I \subset V((P'_+)') \cap \mathbb{C}_I$ The classic Gauss-Lucas Theorem applied to P' on \mathbb{C}_I gives $V(P') \cap \mathbb{C}_I \subset \mathcal{K}_{\mathbb{C}_I}(P'_+)$

> UNIVERSITY OF TRENTO - Isaly

Properties of the Gauss-Lucas snail $\mathfrak{sn}(P)$

It is not restrictive to consider *monic* polynomials.

If *P* is *monic* the theorem has the following equivalent formulation:

For every monic polynomial $P \in \mathbb{H}[X]$ of degree ≥ 2 , it holds

 $\mathfrak{sn}(P')\subset\mathfrak{sn}(P)$

Proposition

For every monic polynomial $P \in \mathbb{H}[X]$ of degree $d \ge 2$, the Gauss-Lucas snail $\mathfrak{sn}(P)$ is a compact subset of \mathbb{H}

Remark

 $\mathfrak{sn}(P)$ can be strictly smaller than $\mathcal{K}(N(P))$. For example, consider the \mathbb{C}_i -polynomial $P(X) = X^3 + 3X + 2i$, with zero sets $V(P) = \{-i, 2i\}$ and $V(P') = \mathbb{S}$. The set $\mathcal{K}(N(P))$ is the closed three-dimensional disc in $\operatorname{Im}(\mathbb{H})$, with center at the origin and radius 2

$P(X) = X^3 + 3X + 2i$, $P'(X) = 3(X^2 + 1)$ a Gauss-Lucas polynomial: $V(P') \subset \mathcal{K}(N(P))$ (but $V(P') \not\subset \mathcal{K}(P)$)

Figure: 2D-section (*i*, *j*-plane) of $\mathfrak{sn}(P)$ (gray), of V(P') (red) and $\mathcal{K}(N(P))$ (dashed)

UNIVERSITY OF TRENTO - Italy

$$P(X) = P_3(X) = (X - i) \cdot (X - j) \cdot (X - k)$$

not a Gauss-Lucas polynomial: $V(P') \not\subset \mathcal{K}(N(P))$

Figure: 3D-sections of V(P') (red) and $\mathcal{K}(N(P))$ (orange)

$$P(X) = P_3(X) = (X - i) \cdot (X - j) \cdot (X - k)$$

not a Gauss-Lucas polynomial but $V(P') \subset \mathfrak{sn}(P)$

Figure: 3D-sections of $\mathfrak{sn}(P)$ (gray) and V(P') (red)

$$P(X) = P_3(X) = (X - i) \cdot (X - j) \cdot (X - k)$$

not a Gauss-Lucas polynomial: but $\mathfrak{sn}(P') \subset \mathfrak{sn}(P)$

Figure: 3D-sections of $\mathfrak{sn}(P)$ (gray), of $\mathfrak{sn}(P')$ (blue) and V(P') (red)

Estimates on the norm of the critical points

Let $p(z) = \sum_{k=0}^{d} a_k z^k$ be a complex polynomial. The norm of the roots of *p* can be estimated by means of the norm of the coefficients. A classic estimate is

$$\max_{z \in V(p)} |z| \le |a_d|^{-1} \sqrt{\sum_{k=0}^d |a_k|^2}$$

The same proof as in \mathbb{C} gives

For every polynomial $P(X) \in \mathbb{H}[X]$ of degree $d \ge 1$, it holds

$$\max_{x \in V(P)} |x| \le |a_d|^{-1} \sqrt{\sum_{k=0}^d |a_k|^2}$$

UNIVERSITY OF TRENTO - Isaly

Estimates on the norm of the critical points

Given $P \in \mathbb{H}[X]$, define $C(P) := +\infty$ if P is a constant and

$$C(P) := |a_d|^{-1} \sqrt{\sum_{k=0}^d |a_k|^2}$$
 otherwise

For critical points of $P \in \mathbb{H}[X]$ we then have:

$$\max_{x\in V(P')} |x| \leq C(P')$$

The quaternionic Gauss-Lucas Theorem allows to obtain a new estimate, which can be strictly better than classic estimate:

Proposition

Given any polynomial $P \in \mathbb{H}[X]$ of degree $d \ge 2$, it holds:

$$\max_{x \in V(P')} |x| \leq \sup_{l \in \mathbb{S}} \{C(P'_+)\}$$

The singular set of a polynomial

The set of critical points of $P(X) = \sum_{k=0}^{d} X^{k} a_{k} \in \mathbb{H}[X]$ is the union of a finite set of points and a finite set of 2-spheres of the form \mathbb{S}_{x} . When *P* is considered as a mapping of \mathbb{R}^{4} , its singular set

$$Sing(P) := \{x \in \mathbb{H} \mid \det(J_P(x)) = 0\}$$

is a *real analytic, unbounded set of dimension 2 or 3*, which contains the critical points V(P'). It can be described slice-wise as

$$Sing(P) = \bigcup_{l \in \mathbb{S}} \{ x \in \mathbb{C}_l \mid \pi_l(P'(x) \overline{\mathcal{D}_{CF}P(x)}) = 0 \}$$

where \mathcal{D}_{CF} is the Cauchy-Fueter operator on \mathbb{H} :

$$\mathcal{D}_{CF} = \frac{\partial}{\partial x_0} + i \frac{\partial}{\partial x_1} + j \frac{\partial}{\partial x_2} + k \frac{\partial}{\partial x_3}$$

 $(\mathcal{D}_{CF}x^k = -2\sum_{m=0}^{k-1} x^{k-m-1}\overline{x}^m)$. Up to a factor $-\frac{k}{2}$, it is the real zonal harmonic $\mathcal{Z}_{k-1}(x, 1)$ of degree k-1 and pole 1 in \mathbb{R}^4)

$$P(X) = P_3(X) = (X - i) \cdot (X - j) \cdot (X - k)$$

(the singular set *Sing*(*P*) $\not\subset$ sn(*P*) is unbounded, two-dimensional)

Figure: 3D-sections of $\mathfrak{sn}(P)$ (gray), of $\mathfrak{sn}(P')$ (blue), of V(P') (red) and Sing(P) (magenta)

 $P(X) = X^3 + 3X + 2i, \quad P'(X) = 3(X^2 + 1)$ (the singular set Sing(P) is the union of $\mathbb{S} = V(P')$ and a three-dimensional hyperboloid with axis \mathbb{R})

Figure: 2D-section (*i*, *j*-plane) of $\mathfrak{sn}(P)$ (gray), $\mathcal{K}(N(P))$ (dashed) and Sing(P) (magenta)

- G. Gentili, C. Stoppato, and D. C. Struppa. *Regular Functions of a Quaternionic Variable*. Springer Monographs in Mathematics. Springer, 2013.
- Ghiloni, R., Perotti, A. *The quaternionic Gauss-Lucas Theorem*, Annali di Matematica Pura ed Applicata (2018) (arXiv:1712.00744).
- Perotti, A. *Slice regularity and harmonicity on Clifford algebras* (arXiv:1801.03045) (2018).
- Ghiloni, R., Perotti, A. *On a class of orientation-preserving maps of* **R**⁴. In preparation.

