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Gauss-Lucas Theorem does not hold on H
Let p ∈ C[z] be a complex polynomial of degree d ≥ 2 and let p′ be its
derivative. The Gauss-Lucas Theorem asserts:

V (p′) ⊂ K(p)

where K(P) denotes the convex hull of the sero set V (P) in C

Gauss-Lucas Theorem does not hold for quaternionic polynomials
(with right coefficients)

P(X ) =
∑d

k=0 X kak ∈ H[X ]

For example, the quadratic polynomial

P2(X ) = X 2 − X (i + j) + k

has zero set V (P2) = {i}, while V (P ′2) = V (2X − i − j) = { i+j
2 }
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Gauss-Lucas Theorem does not hold on H

Given P,Q ∈ H[X ], let P ·Q denote the product obtained by imposing
commutativity of X with the coefficients and set

Pc(X ) =
∑d

k=0 X k āk and N(P) = P · Pc = Pc · P ∈ R[X ]

(N(P) is the normal polynomial of P)

If Sx = {pxp−1 ∈ H | p ∈ H∗} ⇒ V (N(P)) =
⋃

x∈V (P) Sx

Remark
P2(X ) = (X − i) · (X − j) ⇒ Pc

2 (X ) = (X + j) · (X + i). Therefore
V (P2) = {i}, V (Pc

2 ) = {−j} ⇒ V (P ′2) = { i+j
2 } ⊂ K(N(P2))

Since N(P2) = (X 2 + 1)2, V (N(P2)) = S (the sphere of imaginary
units) and K(N(P2)) = {x ∈ H | Re(x) = 0, |x | ≤ 1}
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A conjectured Gauss-Lucas Theorem on H
A natural reformulation in H[X ] of the classic Gauss-Lucas Theorem is
then the following:

V (P ′) ⊂ K(N(P))

where K(N(P)) denotes the convex hull of V (N(P)) in H.
If V (P ′) ⊂ K(N(P)) we say that P is a Gauss-Lucas polynomial

The inclusion holds when
d = 2
P(X ) =

∑d
k=0 X kak is a complex polynomial, i.e. every

ak ∈ CI = R + I R for a fixed I ∈ S (P is a CI-polynomial)

Remark
Classic Gauss-Lucas Theorem holds for slice-preserving polynomials
but not for CI-polynomials, i.e. one-slice-preserving polynomials
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Gauss-Lucas Theorem for quadratic polynomials

Proposition
If P is a polynomial in H[X ] of degree 2, then V (N(P)) = Sx1 ∪ Sx2 for
some x1, x2 ∈ H (possibly with Sx1 = Sx2) and

V (P ′) ⊂
⋃

y1∈Sx1 , y2∈Sx2

{
y1 + y2

2

}
⊂ K(N(P))

Sketch of proof.
Assume P monic. Then P(X ) = (X − x1) · (X − x2) with x1 ∈ V (P) and
x̄2 ∈ V (Pc).
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The conjecture is false in its generality

P3(X ) = (X − i) · (X − j) · (X − k)

is not a Gauss-Lucas polynomial

Sketch of proof.

N(P3) = (X 2 + 1)3 ⇒ K(N(P3)) ⊂ Im(H)

P ′3(X ) = 3X 2 − 2X (i + j + k) + (i − j + k)

N(P ′3) = 9X 4 + 12X 2 − 4X + 3 ⇒ V (N(P ′3)) ∩ Im(H) ⊂ {0}

but V (N(P ′3)) 6⊂ {0} and hence V (P ′3) 6⊂ Im(H)

Pd (X ) = X d−3 · (X − i) · (X − j) · (X − k)

is not a Gauss-Lucas polynomial for every d ≥ 3
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The Gauss-Lucas snail of a polynomial

We use the slice decomposition of H and projections on slices

H =
⋃

I∈SCI

Definition
Let I ∈ S and let PI : CI → H be the restriction of P to CI .
If PI is not constant, set KCI (P) := K(V (P) ∩ CI).
If PI is constant, we set KCI (P) := CI

Let πI : H→ H be the orthogonal projection onto CI .
Given P(X ) =

∑d
k=0 X kak ∈ H[X ], let P I

+(X ) = πI ◦ P =
∑d

k=1 X kak ,I
be the CI-polynomial with coefficients ak ,I := πI(ak ).

Definition (Gauss-Lucas snail of P)

sn(P) :=
⋃
I∈S
KCI (P

I
+)
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A quaternionic Gauss-Lucas Theorem

Theorem (Gauss-Lucas on H)
For every polynomial P ∈ H[X ] of degree ≥ 2,

V (P ′) ⊂ sn(P)

Sketch of proof.
Decompose P and P ′ as

PI = πI ◦ PI + π⊥I ◦ PI = P I
+|CI

+ π⊥I ◦ PI

P I
+(CI) ⊂ CI and (π⊥I ◦ PI)(CI) ⊂ C⊥I ⇒ V (P ′) ∩ CI ⊂ V ((P I

+)′) ∩ CI
The classic Gauss-Lucas Theorem applied to P I on CI gives
V (P ′) ∩ CI ⊂ KCI (P

I
+)
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Properties of the Gauss-Lucas snail sn(P)

It is not restrictive to consider monic polynomials.
If P is monic the theorem has the following equivalent formulation:

For every monic polynomial P ∈ H[X ] of degree ≥ 2, it holds

sn(P ′) ⊂ sn(P)

Proposition
For every monic polynomial P ∈ H[X ] of degree d ≥ 2, the
Gauss-Lucas snail sn(P) is a compact subset of H

Remark
sn(P) can be strictly smaller than K(N(P)). For example, consider the
Ci -polynomial P(X ) = X 3 + 3X + 2i , with zero sets V (P) = {−i ,2i}
and V (P ′) = S. The set K(N(P)) is the closed three-dimensional disc
in Im(H), with center at the origin and radius 2
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P(X ) = X 3 + 3X + 2i , P ′(X ) = 3(X 2 + 1)
a Gauss-Lucas polynomial: V (P ′) ⊂ K(N(P)) (but V (P ′) 6⊂ K(P))
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Figure: 2D-section (i, j-plane) of sn(P) (gray), of V (P′) (red) and K(N(P)) (dashed)
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P(X ) = P3(X ) = (X − i) · (X − j) · (X − k)
not a Gauss-Lucas polynomial: V (P ′) 6⊂ K(N(P))
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Figure: 3D-sections of V (P′) (red) and K(N(P)) (orange)



P(X ) = P3(X ) = (X − i) · (X − j) · (X − k)
not a Gauss-Lucas polynomial but V (P ′) ⊂ sn(P)
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Figure: 3D-sections of sn(P) (gray) and V (P′) (red)



P(X ) = P3(X ) = (X − i) · (X − j) · (X − k)
not a Gauss-Lucas polynomial: but sn(P ′) ⊂ sn(P)
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Figure: 3D-sections of sn(P) (gray), of sn(P′) (blue) and V (P′) (red)



Estimates on the norm of the critical points

Let p(z) =
∑d

k=0 akzk be a complex polynomial. The norm of the roots
of p can be estimated by means of the norm of the coefficients. A
classic estimate is

maxz∈V (p) |z| ≤ |ad |−1
√∑d

k=0 |ak |2

The same proof as in C gives

For every polynomial P(X ) ∈ H[X ] of degree d ≥ 1, it holds

maxx∈V (P) |x | ≤ |ad |−1
√∑d

k=0 |ak |2
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Estimates on the norm of the critical points

Given P ∈ H[X ], define C(P) := +∞ if P is a constant and

C(P) := |ad |−1
√∑d

k=0 |ak |2 otherwise

For critical points of P ∈ H[X ] we then have:

maxx∈V (P′) |x | ≤ C(P ′)

The quaternionic Gauss-Lucas Theorem allows to obtain a new
estimate, which can be strictly better than classic estimate:

Proposition
Given any polynomial P ∈ H[X ] of degree d ≥ 2, it holds:

max
x∈V (P′)

|x | ≤ sup
I∈S
{C(P I

+)}
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The singular set of a polynomial

The set of critical points of P(X ) =
∑d

k=0 X kak ∈ H[X ] is the union of a
finite set of points and a finite set of 2-spheres of the form Sx . When P
is considered as a mapping of R4, its singular set

Sing(P) := {x ∈ H | det(JP(x)) = 0}

is a real analytic, unbounded set of dimension 2 or 3, which contains
the critical points V (P ′). It can be described slice-wise as

Sing(P) =
⋃

I∈S{x ∈ CI | πI(P ′(x)DCF P(x)) = 0}

where DCF is the Cauchy-Fueter operator on H:

DCF = ∂
∂x0

+ i ∂
∂x1

+ j ∂
∂x2

+ k ∂
∂x3

(DCF xk = −2
∑k−1

m=0 xk−m−1xm. Up to a factor − k
2 , it is the real zonal

harmonic Zk−1(x ,1) of degree k − 1 and pole 1 in R4)
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P(X ) = P3(X ) = (X − i) · (X − j) · (X − k)
(the singular set Sing(P) 6⊂ sn(P) is unbounded, two-dimensional)
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Figure: 3D-sections of sn(P) (gray), of sn(P′) (blue), of V (P′) (red) and Sing(P) (magenta)



P(X ) = X 3 + 3X + 2i , P ′(X ) = 3(X 2 + 1)
(the singular set Sing(P) is the union of S = V (P ′) and a

three-dimensional hyperboloid with axis R)
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Figure: 2D-section (i, j-plane) of sn(P) (gray), K(N(P)) (dashed) and Sing(P) (magenta)
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