The quaternionic Gauss-Lucas Theorem and some related results about quaternionic polynomials

Alessandro Perotti

Department of Mathematics University of Trento, Italy

(from joint work with Riccardo Ghiloni)

FTHD 2018 - Tampere, August 20-24, 2018

Outline

(1) Gauss-Lucas Theorem does not hold on quaternions
(2) A quaternionic Gauss-Lucas Theorem
(3) Estimates on the norm of the critical points
(4) The singular set of a polynomial

Gauss-Lucas Theorem does not hold on \mathbb{H}

Let $p \in \mathbb{C}[z]$ be a complex polynomial of degree $d \geq 2$ and let p^{\prime} be its derivative. The Gauss-Lucas Theorem asserts:

$$
V\left(p^{\prime}\right) \subset \mathcal{K}(p)
$$

where $\mathcal{K}(P)$ denotes the convex hull of the sero set $V(P)$ in \mathbb{C}
Gauss-Lucas Theorem does not hold for quaternionic polynomials (with right coefficients)

$$
P(X)=\sum_{k=0}^{d} X^{k} a_{k} \in \mathbb{H}[X]
$$

For example, the quadratic polynomial

$$
P_{2}(X)=X^{2}-X(i+j)+k
$$

has zero set $V\left(P_{2}\right)=\{i\}$, while $V\left(P_{2}^{\prime}\right)=V(2 X-i-j)=\left\{\frac{i+j}{2}\right\}$

Gauss-Lucas Theorem does not hold on \mathbb{H}

Given $P, Q \in \mathbb{H}[X]$, let $P \cdot Q$ denote the product obtained by imposing commutativity of X with the coefficients and set

$$
P^{c}(X)=\sum_{k=0}^{d} X^{k} \bar{a}_{k} \quad \text { and } \quad N(P)=P \cdot P^{c}=P^{c} \cdot P \in \mathbb{R}[X]
$$

$(N(P)$ is the normal polynomial of $P)$

$$
\text { If } \mathbb{S}_{x}=\left\{p x p^{-1} \in \mathbb{H} \mid p \in \mathbb{H}^{*}\right\} \quad \Rightarrow \quad V(N(P))=\bigcup_{x \in V(P)} \mathbb{S}_{x}
$$

Remark

$P_{2}(X)=(X-i) \cdot(X-j) \Rightarrow P_{2}^{c}(X)=(X+j) \cdot(X+i)$. Therefore
$V\left(P_{2}\right)=\{i\}, V\left(P_{2}^{c}\right)=\{-j\} \Rightarrow V\left(P_{2}^{\prime}\right)=\left\{\frac{i+j}{2}\right\} \subset \mathcal{K}\left(N\left(P_{2}\right)\right)$
Since $N\left(P_{2}\right)=\left(X^{2}+1\right)^{2}, V\left(N\left(P_{2}\right)\right)=\mathbb{S}$ (the sphere of imaginary units) and $\mathcal{K}\left(N\left(P_{2}\right)\right)=\{x \in \mathbb{H}|\operatorname{Re}(x)=0,|x| \leq 1\}$

A conjectured Gauss-Lucas Theorem on \mathbb{H}

A natural reformulation in $\mathbb{H}[X]$ of the classic Gauss-Lucas Theorem is then the following:

$$
V\left(P^{\prime}\right) \subset \mathcal{K}(N(P))
$$

where $\mathcal{K}(N(P))$ denotes the convex hull of $V(N(P))$ in \mathbb{H}.
If $V\left(P^{\prime}\right) \subset \mathcal{K}(N(P))$ we say that P is a Gauss-Lucas polynomial
The inclusion holds when

- $d=2$
- $P(X)=\sum_{k=0}^{d} X^{k} a_{k}$ is a complex polynomial, i.e. every $a_{k} \in \mathbb{C}_{I}=\mathbb{R}+I \mathbb{R}$ for a fixed $I \in \mathbb{S}\left(P\right.$ is a \mathbb{C}_{l}-polynomial $)$

Remark

Classic Gauss-Lucas Theorem holds for slice-preserving polynomials but not for \mathbb{C}_{1}-polynomials, i.e. one-slice-preserving polynomials

Gauss-Lucas Theorem for quadratic polynomials

Proposition

If P is a polynomial in $\mathbb{H}[X]$ of degree 2 , then $V(N(P))=\mathbb{S}_{x_{1}} \cup \mathbb{S}_{x_{2}}$ for some $x_{1}, x_{2} \in \mathbb{H}$ (possibly with $\mathbb{S}_{x_{1}}=\mathbb{S}_{x_{2}}$) and

$$
V\left(P^{\prime}\right) \subset \bigcup_{y_{1} \in \mathbb{S}_{\mathrm{x}_{1}}, y_{2} \in \mathbb{S}_{\mathrm{x}_{2}}}\left\{\frac{y_{1}+y_{2}}{2}\right\} \subset \mathcal{K}(N(P))
$$

Sketch of proof.

Assume P monic. Then $P(X)=\left(X-x_{1}\right) \cdot\left(X-x_{2}\right)$ with $x_{1} \in V(P)$ and $\bar{x}_{2} \in V\left(P^{c}\right)$.

The conjecture is false in its generality

$$
P_{3}(X)=(X-i) \cdot(X-j) \cdot(X-k)
$$

is not a Gauss-Lucas polynomial

Sketch of proof.

$$
\begin{aligned}
& N\left(P_{3}\right)=\left(X^{2}+1\right)^{3} \Rightarrow \mathcal{K}\left(N\left(P_{3}\right)\right) \subset \operatorname{Im}(\mathbb{H}) \\
& P_{3}^{\prime}(X)=3 X^{2}-2 X(i+j+k)+(i-j+k) \\
& N\left(P_{3}^{\prime}\right)=9 X^{4}+12 X^{2}-4 X+3 \Rightarrow V\left(N\left(P_{3}^{\prime}\right)\right) \cap \operatorname{Im}(\mathbb{H}) \subset\{0\}
\end{aligned}
$$

but $V\left(N\left(P_{3}^{\prime}\right)\right) \not \subset\{0\}$ and hence $V\left(P_{3}^{\prime}\right) \not \subset \operatorname{Im}(\mathbb{H})$

$$
P_{d}(X)=X^{d-3} \cdot(X-i) \cdot(X-j) \cdot(X-k)
$$

is not a Gauss-Lucas polynomial for every $d \geq 3$

The Gauss-Lucas snail of a polynomial

We use the slice decomposition of \mathbb{H} and projections on slices

$$
\mathbb{H}=\bigcup_{I \in S} \mathbb{C}_{I}
$$

Definition

Let $I \in \mathbb{S}$ and let $P_{l}: \mathbb{C}_{l} \rightarrow \mathbb{H}$ be the restriction of P to \mathbb{C}_{l}.
If P_{l} is not constant, set $\mathcal{K}_{\mathbb{C}_{l}}(P):=\mathcal{K}\left(V(P) \cap \mathbb{C}_{l}\right)$.
If P_{l} is constant, we set $\mathcal{K}_{\mathbb{C}_{l}}(P):=\mathbb{C}_{l}$
Let $\pi_{l}: \mathbb{H} \rightarrow \mathbb{H}$ be the orthogonal projection onto \mathbb{C}_{l}.
Given $P(X)=\sum_{k=0}^{d} X^{k} a_{k} \in \mathbb{H}[X]$, let $P_{+}^{\prime}(X)=\pi_{\jmath} \circ P=\sum_{k=1}^{d} X^{k} a_{k, l}$ be the \mathbb{C}_{l}-polynomial with coefficients $a_{k, l}:=\pi_{l}\left(a_{k}\right)$.

Definition (Gauss-Lucas snail of P)

$$
\mathfrak{s n}(P):=\bigcup_{l \in \mathbb{S}} \mathcal{K}_{\mathbb{C}_{l}}\left(P_{+}^{l}\right)
$$

A quaternionic Gauss-Lucas Theorem

Theorem (Gauss-Lucas on $\mathbb{H})$
For every polynomial $P \in \mathbb{H}[X]$ of degree ≥ 2,

$$
V\left(P^{\prime}\right) \subset \mathfrak{s n}(P)
$$

Sketch of proof.

Decompose P and P^{\prime} as

$$
P_{l}=\pi_{l} \circ P_{l}+\pi_{l}^{\perp} \circ P_{l}=P_{+\mid \mathbb{C}_{l}}^{\prime}+\pi_{l}^{\perp} \circ P_{l}
$$

$P_{+}^{\prime}\left(\mathbb{C}_{l}\right) \subset \mathbb{C}_{l}$ and $\left(\pi_{l}^{\perp} \circ P_{l}\right)\left(\mathbb{C}_{l}\right) \subset \mathbb{C}_{l}^{\perp} \Rightarrow V\left(P^{\prime}\right) \cap \mathbb{C}_{l} \subset V\left(\left(P_{+}^{\prime}\right)^{\prime}\right) \cap \mathbb{C}_{l}$
The classic Gauss-Lucas Theorem applied to P^{\prime} on \mathbb{C}_{l} gives
$V\left(P^{\prime}\right) \cap \mathbb{C}_{l} \subset \mathcal{K}_{\mathbb{C}_{l}}\left(P_{+}^{\prime}\right)$

Properties of the Gauss-Lucas snail $\mathfrak{s n}(P)$

It is not restrictive to consider monic polynomials.
If P is monic the theorem has the following equivalent formulation:
For every monic polynomial $P \in \mathbb{H}[X]$ of degree ≥ 2, it holds

$$
\mathfrak{s n}\left(P^{\prime}\right) \subset \mathfrak{s n}(P)
$$

Proposition

For every monic polynomial $P \in \mathbb{H}[X]$ of degree $d \geq 2$, the Gauss-Lucas snail $\mathfrak{s n}(P)$ is a compact subset of \mathbb{H}

Remark

$\mathfrak{s n}(P)$ can be strictly smaller than $\mathcal{K}(N(P))$. For example, consider the \mathbb{C}_{i}-polynomial $P(X)=X^{3}+3 X+2 i$, with zero sets $V(P)=\{-i, 2 i\}$ and $V\left(P^{\prime}\right)=\mathbb{S}$. The set $\mathcal{K}(N(P))$ is the closed three-dimensional disc in $\operatorname{Im}(\mathbb{H})$, with center at the origin and radius 2

$$
\begin{gathered}
P(X)=X^{3}+3 X+2 i, \quad P^{\prime}(X)=3\left(X^{2}+1\right) \\
\text { a Gauss-Lucas polynomial: } V\left(P^{\prime}\right) \subset \mathcal{K}(N(P))\left(\text { but } V\left(P^{\prime}\right) \not \subset \mathcal{K}(P)\right)
\end{gathered}
$$

Figure: 2D-section (i,j-plane) of $\mathfrak{s n}(P)$ (gray), of $V\left(P^{\prime}\right)$ (red) and $\mathcal{K}(N(P))$ (dashed)

$$
\begin{gathered}
P(X)=P_{3}(X)=(X-i) \cdot(X-j) \cdot(X-k) \\
\text { not a Gauss-Lucas polynomial: } V\left(P^{\prime}\right) \not \subset \mathcal{K}(N(P))
\end{gathered}
$$

Figure: 3D-sections of $V\left(P^{\prime}\right)$ (red) and $\mathcal{K}(N(P))$ (orange)

$$
\begin{gathered}
P(X)=P_{3}(X)=(X-i) \cdot(X-j) \cdot(X-k) \\
\text { not a Gauss-Lucas polynomial but } V\left(P^{\prime}\right) \subset \mathfrak{s n}(P)
\end{gathered}
$$

Figure: 3D-sections of $\mathfrak{s n}(P)$ (gray) and $V\left(P^{\prime}\right)$ (red)

$$
\begin{gathered}
P(X)=P_{3}(X)=(X-i) \cdot(X-j) \cdot(X-k) \\
\text { not a Gauss-Lucas polynomial: but } \mathfrak{s n}\left(P^{\prime}\right) \subset \mathfrak{s n}(P)
\end{gathered}
$$

Figure: 3D-sections of $\mathfrak{s n}(P)$ (gray), of $\mathfrak{s n}\left(P^{\prime}\right)\left(\right.$ blue) and $V\left(P^{\prime}\right)$ (red)

Estimates on the norm of the critical points

Let $p(z)=\sum_{k=0}^{d} a_{k} z^{k}$ be a complex polynomial. The norm of the roots of p can be estimated by means of the norm of the coefficients. A classic estimate is

$$
\max _{z \in V(p)}|z| \leq\left|a_{d}\right|^{-1} \sqrt{\sum_{k=0}^{d}\left|a_{k}\right|^{2}}
$$

The same proof as in \mathbb{C} gives
For every polynomial $P(X) \in \mathbb{H}[X]$ of degree $d \geq 1$, it holds

$$
\max _{x \in V(P)}|x| \leq\left|a_{d}\right|^{-1} \sqrt{\sum_{k=0}^{d}\left|a_{k}\right|^{2}}
$$

Estimates on the norm of the critical points

Given $P \in \mathbb{H}[X]$, define $C(P):=+\infty$ if P is a constant and

$$
C(P):=\left|a_{d}\right|^{-1} \sqrt{\sum_{k=0}^{d}\left|a_{k}\right|^{2}} \quad \text { otherwise }
$$

For critical points of $P \in \mathbb{H}[X]$ we then have:

$$
\max _{x \in V\left(P^{\prime}\right)}|x| \leq C\left(P^{\prime}\right)
$$

The quaternionic Gauss-Lucas Theorem allows to obtain a new estimate, which can be strictly better than classic estimate:

Proposition

Given any polynomial $P \in \mathbb{H}[X]$ of degree $d \geq 2$, it holds:

$$
\max _{x \in V\left(P^{\prime}\right)}|x| \leq \sup _{I \in \mathbb{S}}\left\{C\left(P_{+}^{\prime}\right)\right\}
$$

The singular set of a polynomial

The set of critical points of $P(X)=\sum_{k=0}^{d} X^{k} a_{k} \in \mathbb{H}[X]$ is the union of a finite set of points and a finite set of 2 -spheres of the form \mathbb{S}_{x}. When P is considered as a mapping of \mathbb{R}^{4}, its singular set

$$
\operatorname{Sing}(P):=\left\{x \in \mathbb{H} \mid \operatorname{det}\left(J_{P}(x)\right)=0\right\}
$$

is a real analytic, unbounded set of dimension 2 or 3, which contains the critical points $V\left(P^{\prime}\right)$. It can be described slice-wise as

$$
\operatorname{Sing}(P)=\bigcup_{l \in \mathbb{S}}\left\{x \in \mathbb{C}_{l} \mid \pi_{l}\left(P^{\prime}(x) \overline{\mathcal{D}_{C F} P(x)}\right)=0\right\}
$$

where $\mathcal{D}_{\text {CF }}$ is the Cauchy-Fueter operator on \mathbb{H} :

$$
\mathcal{D}_{C F}=\frac{\partial}{\partial x_{0}}+i \frac{\partial}{\partial x_{1}}+j \frac{\partial}{\partial x_{2}}+k \frac{\partial}{\partial x_{3}}
$$

$\left(\mathcal{D}_{C F} X^{k}=-2 \sum_{m=0}^{k-1} x^{k-m-1} \bar{x}^{m}\right.$. Up to a factor $-\frac{k}{2}$, it is the real zonal harmonic $\mathcal{Z}_{k-1}(x, 1)$ of degree $k-1$ and pole 1 in \mathbb{R}^{4})

$$
P(X)=P_{3}(X)=(X-i) \cdot(X-j) \cdot(X-k)
$$

(the singular set $\operatorname{Sing}(P) \not \subset \mathfrak{s n}(P)$ is unbounded, two-dimensional)

Figure: 3D-sections of $\mathfrak{s n}(P)$ (gray), of $\mathfrak{s n}\left(P^{\prime}\right)$ (blue), of $V\left(P^{\prime}\right)($ red $)$ and $\operatorname{Sing}(P)$ (magenta)

$$
P(X)=X^{3}+3 X+2 i, \quad P^{\prime}(X)=3\left(X^{2}+1\right)
$$

(the singular set $\operatorname{Sing}(P)$ is the union of $\mathbb{S}=V\left(P^{\prime}\right)$ and a three-dimensional hyperboloid with axis \mathbb{R})

Figure: 2D-section (i,j-plane) of $\mathfrak{s n}(P)$ (gray), $\mathcal{K}(N(P))$ (dashed) and Sing (P) (magenta)

References

G. Gentili, C. Stoppato, and D. C. Struppa. Regular Functions of a Quaternionic Variable. Springer Monographs in Mathematics. Springer, 2013.
: Ghiloni, R., Perotti, A. The quaternionic Gauss-Lucas Theorem, Annali di Matematica Pura ed Applicata (2018) (arXiv:1712.00744).
Reroti, A. Slice regularity and harmonicity on Clifford algebras (arXiv:1801.03045) (2018).
© Ghiloni, R., Perotti, A. On a class of orientation-preserving maps of \mathbf{R}^{4}. In preparation.

