Every biregular function is a biholomorphic map

A. Perotti

Department of Mathematics University of Trento, Italy

WCAA 2007 Workshop on Clifford Analysis and Applications Ghent 2007

Outline

- Fueter regular functions
 - Regular functions
 - Biregular functions
- 2 Holomorphic maps
 - J_p -holomorphic maps
 - A criterion for holomorphicity
- Biregular functions are biholomorphic

• $\mathbb{H} \simeq \mathbb{C}^2$:

$$\mathbb{C}^{2} \ni z = (z_{1}, z_{2}) = (x_{0} + ix_{1}, x_{2} + ix_{3})$$

$$\longleftrightarrow q = z_{1} + z_{2}j = x_{0} + ix_{1} + jx_{2} + kx_{3} \in \mathbb{H}$$

• Ω bounded domain in \mathbb{H} . A quaternionic function $f = f_1 + f_2 j \in C^1(\Omega)$ is (left) regular (or hyperholomorphic) on Ω if it is in the kernel of the Cauchy-Riemann-Fueter operator

$$\mathcal{D} = 2\left(\frac{\partial}{\partial \bar{z}_1} + j\frac{\partial}{\partial \bar{z}_2}\right) = \frac{\partial}{\partial x_0} + i\frac{\partial}{\partial x_1} + j\frac{\partial}{\partial x_2} - k\frac{\partial}{\partial x_3} \quad \text{on } \Omega$$

(cf. Nono 1985, Shapiro and Vasilevski 1995, ...)

- The identity function is regular
- ② The space $\mathcal{R}(\Omega)$ of regular functions on Ω is a *right* \mathbb{H} -module with integral representation formulas
- **Solution** Every holomorphic map (f_1, f_2) on Ω defines a regular function $f = f_1 + f_2 j$

Fueter-regular functions

 $f = f_1 + f_2 j$ is regular on Ω if and only if the Jacobian matrix

$$J(f) = \left(\frac{\partial(f_1, f_2, \overline{f}_1, \overline{f}_2)}{\partial(z_1, z_2, \overline{z}_1, \overline{z}_2)}\right)$$

is a regular matrix at every $z \in \Omega$, of the form

$$J(f) = \begin{pmatrix} a_1 & -\bar{b}_2 & -\bar{c}_2 & -c_1 \\ a_2 & \bar{b}_1 & \bar{c}_1 & -c_2 \\ -c_2 & -\bar{c}_1 & \bar{a}_1 & -b_2 \\ c_1 & -\bar{c}_2 & \bar{a}_2 & b_1 \end{pmatrix}$$

where
$$a = \left(\frac{\partial f_1}{\partial z_1}, \frac{\partial f_2}{\partial z_1}\right)$$
, $b = \left(\frac{\partial \overline{f}_2}{\partial \overline{z}_2}, -\frac{\partial \overline{f}_1}{\partial \overline{z}_2}\right)$, $c = \left(\frac{\partial \overline{f}_2}{\partial z_1}, -\frac{\partial \overline{f}_1}{\partial z_1}\right) = -\left(\frac{\partial f_1}{\partial \overline{z}_2}, \frac{\partial f_2}{\partial \overline{z}_2}\right)$.

Biregular functions

A quaternionic function $f \in C^1(\Omega)$ is called biregular if

f is invertible and f, f^{-1} are regular

If this property holds locally, f is called locally biregular (cf. Królikowski and Porter 1994 and Królikowski 1996)

1 The class $\mathcal{BR}(\Omega)$ of biregular functions is closed respect to right multiplication by $a \in \mathbb{H}^*$, but it is not closed respect to composition or sum: even if f + g is invertible, $f, g \in \mathcal{BR}(\Omega)$, the sum can be not biregular

Example

 $f=2\bar{z}_1+2\bar{z}_2j$, $g=z_1+(z_1+z_2)j$ are biregular, the sum f+g is invertible and regular but not biregular

2 Every biholomorphic map (f_1, f_2) on Ω defines a biregular function $f = f_1 + f_2 i$

Biregular functions

Examples

- The identity function is biregular on \mathbb{H}
- More generally, the affine functions f(q) = qa + b, $a \in \mathbb{H}^*$, $b \in \mathbb{H}$, are biregular on H
- The function $f = z_1 + z_2 + \bar{z}_1 + (z_1 + z_2 + \bar{z}_2)i$ is regular, but

$$f^{-1} = \frac{1}{3} \left(z_1 + z_2 + \bar{z}_1 - 2\bar{z}_2 + (z_1 + z_2 - 2\bar{z}_1 + \bar{z}_2) j \right)$$

is not regular.

Remark: In example 4, $\det J(f) = -3 < 0$.

Biregular functions

A regular function f is locally biregular if and only if det $J(f) \neq 0$ at $z \in \Omega$ and $J(f^{-1})$ is a regular matrix at f(z). Equivalently,

 $\det J(f) \neq 0$ and f satisfies the nonlinear differential system

$$\begin{cases} e_1 := (a_2c_1 - a_1c_2)\bar{a}_1 + (-b_2c_1 + b_1c_2)\bar{b}_1 + (-a_2b_1 + a_1b_2)\bar{c}_1 = 0 \\ e_2 := (a_2c_1 - a_1c_2)\bar{a}_2 + (-b_2c_1 + b_1c_2)\bar{b}_2 + (-a_2b_1 + a_1b_2)\bar{c}_2 = 0 \end{cases}$$

where
$$a = \left(\frac{\partial f_1}{\partial z_1}, \frac{\partial f_2}{\partial z_1}\right)$$
, $b = \left(\frac{\partial \overline{f}_2}{\partial \overline{z}_2}, -\frac{\partial \overline{f}_1}{\partial \overline{z}_2}\right)$, $c = \left(\frac{\partial \overline{f}_2}{\partial z_1}, -\frac{\partial \overline{f}_1}{\partial z_1}\right)$.

Hypercomplex structure on H

- Hypercomplex structure on $\mathbb{H} \simeq \mathbb{C}^2$: J_1, J_2 complex structures on $T\mathbb{H} \simeq \mathbb{H}$ defined by left multiplication by i and i
- J_1^*, J_2^* dual structures on $T^*\mathbb{H}$. We make the choice $J_3^* = J_1^* J_2^* \Rightarrow J_3 = -J_1 J_2$
- We can rewrite the equations of regularity as

$$df + iJ_1^*(df) + jJ_2^*(df) + kJ_3^*(df) = 0$$
 (Joyce 1998)

or, in complex components f_1, f_2 ,

$$\overline{\partial} f_1 = J_2^*(\partial \overline{f}_2)$$

Holomorphic functions w.r.t. a complex structure J_p

Let $J_p = p_1J_1 + p_2J_2 + p_3J_3$ be the orthogonal complex structure on \mathbb{H} defined by a unit imaginary quaternion $p = p_1 i + p_2 j + p_3 k$ in the sphere \mathbb{S}^2 . Every J_0 -holomorphic function $f = f^0 + if^1 : \Omega \to \mathbb{C}$ i.e.

$$df^0 = J_p^*(df^1) \quad \Leftrightarrow \quad df + iJ_p^*(df) = 0$$

defines a regular function $\tilde{f} = f^0 + pf^1$ on Ω . We can identify \tilde{f} with a holomorphic function

$$\tilde{f}:(\Omega,J_{\rho})\to(\mathbb{H},L_{\rho})$$

where L_p is the complex structure defined by left multiplication by p. (Note that $L_p = J_{p'}$, where $p' = p_1 i + p_2 j - p_3 k$)

Holomorphic maps w.r.t. a complex structure J_p

Space of holomorphic maps from (Ω, J_p) to (\mathbb{H}, L_p)

$$\mathit{Hol}_p(\Omega,\mathbb{H})=\{f:\Omega o\mathbb{H}\mid \overline{\partial}_p f=0 \text{ on }\Omega\}=\mathit{Ker}\overline{\partial}_p$$

 $(J_p$ -holomorphic maps on $\Omega)$ where $\overline{\partial}_p$ is the Cauchy-Riemann operator w.r.t. J_p :

$$\overline{\partial}_{p}=rac{1}{2}\left(d+pJ_{p}^{st}\circ d
ight).$$

For any positive orthonormal basis $\{1, p, q, pq\}$ of \mathbb{H} $(p, q \in \mathbb{S}^2)$, the equations of regularity can be rewritten in complex form as

$$\overline{\partial}_p f_1 = J_q^*(\partial_p \overline{f}_2)$$

where
$$f = (f^0 + pf^1) + (f^2 + pf^3)q = f_1 + f_2q$$

 \Rightarrow every $f \in Hol_p(\Omega, \mathbb{H})$ is a regular function on Ω.

Holomorphic functions w.r.t. non-constant almost complex structures

If $p = p(z) \in \mathbb{S}^2$ varies smoothly with $z \in \Omega$, we get a similar result. Every $J_{p(z)}$ -holomorphic map $f:(\Omega,J_{p(z)})\to (\mathbb{H},L_{p(f(z))})$ is regular:

$$\overline{\partial}_{p(z)} f = \frac{1}{2} \left[df(z) + p(f(z)) J_{p(f(z))}^* \circ df(z) \right] = 0 \quad \Rightarrow \quad f \in \mathcal{R}(\Omega)$$

$$\overline{\partial}_{p(z)} f = 0 \quad \Rightarrow \quad \text{the linear map } df(z) \in Hol_{p(z)}(\Omega, \mathbb{H})$$
for every fixed $z \in \Omega$

$$\Rightarrow \quad df(z) \in \mathcal{R}(\Omega) \quad \text{for every } z \in \Omega$$

$$\Rightarrow \quad f \in \mathcal{R}(\Omega)$$

Holomorphic functions w.r.t. non-constant almost complex structures

Example

 $f(z) = \bar{z}_1 + z_2^2 + \bar{z}_2 j$ is regular on \mathbb{H} . On $\Omega = \mathbb{H} \setminus \{z_2 = 0\}$ f is holomorphic w.r.t. the almost complex structure $J_{p(z)}$, where

$$p(z) = \frac{1}{\sqrt{|z_2|^2 + |z_2|^4}} \left(|z_2|^2 i - (\operatorname{Im} z_2) j - (\operatorname{Re} z_2) k \right)$$

Also $f^{-1}(z) = \bar{z}_1 - z_2^2 + \bar{z}_2 i$ is regular on $\mathbb{H} \Rightarrow f$ is biregular on \mathbb{H}

Remark

f is biholomorphic: $f(\Omega) = \Omega$ and $f^{-1} \in Hol_{p'(f(z))}(\Omega, \mathbb{H}) \subset \mathcal{R}(\Omega)$, where

$$p'(f(z)) = \frac{1}{\sqrt{|z_2|^2 + |z_2|^4}} \left(|z_2|^2 i + (\operatorname{Im} z_2) j + (\operatorname{Re} z_2) k \right)$$

A criterion for holomorphicity

The energy density of a map $f: \Omega \to \mathbb{H}$, of class $C^1(\Omega)$, is

$$\mathcal{E}(f) = \frac{1}{2} \|df\|^2 = \frac{1}{2} \operatorname{tr}(J(f) \overline{J(f)}^T)$$

The energy of $f \in C^1(\overline{\Omega})$ on Ω is the integral

$$\mathcal{E}_{\Omega}(f) = \frac{1}{2} \int_{\Omega} E(f) dV$$

Theorem

If $f \in C^1(\overline{\Omega})$ is regular on Ω , then it minimizes energy in its homotopy class (relative to $\partial\Omega$).

(cf. Lichnerowicz 1970, Chen and Li 2000)

A criterion for holomorphicity

Let $A = (a_{\alpha\beta})$ be the 3 imes 3 matrix with entries the real functions

$$a_{\alpha\beta} = -\langle J_{\alpha}, f^*L_{i_{\beta}} \rangle$$
, where $(i_1, i_2, i_3) = (i, j, k)$.

For $f \in C^1(\overline{\Omega})$, we set

$$A_{\Omega} = \int_{\Omega} A \, dV$$
 and $M_{\Omega} = \frac{1}{2} \left((\operatorname{tr} A_{\Omega}) I_3 - A_{\Omega} \right)$

(Lichnerowicz invariants)

Theorem (P. 2005)

- **1** If is regular on Ω if and only if $\mathcal{E}_{\Omega}(f) = \operatorname{tr} M_{\Omega}$.
- ② If $f \in \mathcal{R}(\Omega)$, then M_{Ω} is symmetric and positive semidefinite.
- If f ∈ R(Ω), then f belongs to some space Hol_p(Ω, ℍ) (for a constant structure J_p) if and only if det M_Ω = 0:
 X_p = (p₁, p₂, p₃) is a unit vector in the kernel of M_Ω if and only if f ∈ Hol_p(Ω, ℍ).

A criterion for holomorphicity

The criterion holds also pointwise: let Ω be connected and $f \in C^1(\Omega)$. Consider the matrix of real functions on Ω

$$M=\frac{1}{2}\left((\operatorname{tr}A)I_3-A\right)$$

Theorem

- **1** If is regular on Ω if and only if $\mathcal{E}(f) = \operatorname{tr} M$ at every point $z \in \Omega$.
- ② If $f \in \mathcal{R}(\Omega)$, then M is symmetric and positive semidefinite.
- ③ If $f \in \mathcal{R}(\Omega)$, then det M = 0 on Ω if and only if there exists an open, dense subset $\Omega' \subseteq \Omega$ such that f belongs to $Hol_{p(z)}(\Omega', \mathbb{H})$ for some p(z).

Remark

If f is (real) affine, M is a constant matrix.

If f is not affine, $\det M = 0$ on Ω does not imply that $\det M_{\Omega} = 0$, but the converse is true.

A criterion for holomorphicity: examples

Linear examples

• $f = \overline{z}_1 + z_2 + \overline{z}_2 j$ is J_p -holomorphic, with $p = \frac{1}{\sqrt{z}}(i - 2k)$, since

$$\mathcal{E}_B(f) = \mathcal{E}(f) = 3$$
 and $M_B = M = \begin{bmatrix} 2 & 0 & 1 \\ 0 & \frac{1}{2} & 0 \\ 1 & 0 & \frac{1}{2} \end{bmatrix}$ $(Vol(B) = 1)$

f is biregular on \mathbb{H} , since it is biholomorphic:

$$f^{-1}=ar{z}_1-z_2+ar{z}_2j$$
 is $J_{p'}$ -holomorphic, with $p'=rac{1}{\sqrt{5}}(i+2k)$

• $f = z_1 + z_2 + \bar{z}_1 + (z_1 + z_2 + \bar{z}_2)j$ is regular, but not holomorphic:

$$\mathcal{E}(f) = 6$$
 and $M = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$

Here $e_1 = 0$, $e_2 = 4 \Rightarrow f$ is not biregular.

Linear examples

• $f = \bar{z}_1 + \bar{z}_2 i$ has matrix

$$M = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

of rank 1. This means that $f \in Hol_i(\mathbb{H}, \mathbb{H}) \cap Hol_k(\mathbb{H}, \mathbb{H})$. $f = f^{-1}$ is biholomorphic $\Rightarrow f \in \mathcal{BR}(\mathbb{H})$.

• $f = id \in Hol_i(\mathbb{H}, \mathbb{H}) \cap Hol_i(\mathbb{H}, \mathbb{H}) = \bigcap_{p \in \langle i, i \rangle} Hol_p(\mathbb{H}, \mathbb{H}).$

A criterion for holomorphicity: examples

Examples (Nonlinear case)

• $f(z) = \bar{z}_1 + z_2^2 + \bar{z}_2 j$ is regular (also biregular) on \mathbb{H} :

$$\mathcal{E}(f) = 2 + 4|z_2|^2, \quad M = 2 \begin{bmatrix} 1 & \text{Im } z_2 & \text{Re } z_2 \\ \text{Im } z_2 & |z_2|^2 & 0 \\ \text{Re } z_2 & 0 & |z_2|^2 \end{bmatrix} \Rightarrow \det M = 0$$

On $\Omega' = \mathbb{H} \setminus \{z_2 = 0\}$, where rank M = 2, f is $J_{p(z)}$ -holomorphic, with $p(z) = \frac{1}{\sqrt{|z_2|^2 + |z_2|^4}} \left(|z_2|^2 i - (\operatorname{Im} z_2)j - (\operatorname{Re} z_2)k \right)$.

On the unit ball
$$B$$
, $\mathcal{E}_B(f) = \frac{10}{3}$ and $M_B = \int_B M dV = \begin{bmatrix} 2 & 0 & 0 \\ 0 & \frac{2}{3} & 0 \\ 0 & 0 & \frac{2}{3} \end{bmatrix}$.

Since det $M_B \neq 0$, f is not J_q -holomorphic for any constant complex structure J_q .

Examples (Nonlinear case)

• $f = |z_1|^2 - |z_2|^2 + \bar{z}_1\bar{z}_2j$ has energy density $3|z|^2$. The matrices M_B and M are

$$M_B = egin{bmatrix} rac{4}{3} & 0 & 0 \ 0 & rac{1}{3} & 0 \ 0 & 0 & rac{1}{3} \end{bmatrix}, \quad M = egin{bmatrix} 2|z|^2 & 0 & 0 \ 0 & rac{1}{2}|z|^2 & 0 \ 0 & 0 & rac{1}{2}|z|^2 \end{bmatrix}$$

 \implies f is regular but not holomorphic w.r.t. any complex structure J_p . Note that det $M=\frac{1}{2}|z|^6$ vanishes only at the origin.

Biregular functions are biholomorphic

Theorem

Let $f \in \mathcal{R}(\Omega)$, $M \ge 0$ be the real, symmetric matrix associated with f.

The following formula holds:

$$\det M = \frac{1}{2} \left(|e_1|^2 + |e_2|^2 \right)$$
 where

$$\begin{cases} e_1 = (a_2c_1 - a_1c_2)\bar{a}_1 + (-b_2c_1 + b_1c_2)\bar{b}_1 + (-a_2b_1 + a_1b_2)\bar{c}_1 \\ e_2 = (a_2c_1 - a_1c_2)\bar{a}_2 + (-b_2c_1 + b_1c_2)\bar{b}_2 + (-a_2b_1 + a_1b_2)\bar{c}_2 \end{cases}$$

• If $f \in \mathcal{BR}(\Omega) \Rightarrow \exists \Omega' \subseteq \Omega$ open, dense subset and an (almost) complex structure p(z) on Ω' such that $f \in Hol_{p(z)}(\Omega', \mathbb{H})$. Then $f : (\Omega', J_{p(z)}) \to (f(\Omega'), L_{p(f(z))})$ is a biholomorphic map, with inverse $f^{-1} \in Hol_{p'(f((z)))}(f(\Omega'), \mathbb{H})$.

Biregular functions are biholomorphic

Remark

If f is locally biregular on Ω , then $e_1 = e_2 = 0 \Rightarrow \det M = 0$ on Ω . Then f is a local biholomorphism on an open, dense subset $\Omega' \subseteq \Omega$.

Corollary

If f is locally biregular on Ω , then det J(f) > 0 on Ω . In particular, any such map f preserves orientation.

Sketch of proof

For any
$$f \in C^1(\Omega)$$
, if $d = -\left(\frac{\partial f_1}{\partial \bar{z}_2}, \frac{\partial f_2}{\partial \bar{z}_2}\right)$, we get

$$\mathcal{E}(f) = |a|^2 + |b|^2 + |c|^2 + |d|^2,$$

$$M = \begin{bmatrix} |c|^2 + |d|^2 & \operatorname{Im}(\langle a, d \rangle - \langle b, c \rangle) & \operatorname{Re}(\langle a, d \rangle + \langle b, c \rangle) \\ \operatorname{Im}(\langle a, c \rangle - \langle b, d \rangle) & \frac{1}{2}|a - b|^2 + \frac{1}{2}|c - d|^2 & \operatorname{Im}(\langle a, b \rangle + \langle c, d \rangle) \\ \operatorname{Re}(\langle a, c \rangle + \langle b, d \rangle) & \operatorname{Im}(\langle a, b \rangle - \langle c, d \rangle) & \frac{1}{2}|a + b|^2 + \frac{1}{2}|c - d|^2 \end{bmatrix}$$

Then $\mathcal{E}(f) = \operatorname{tr} M \Leftrightarrow c = d$, i.e. f is regular. In this case the matrix M becomes

$$M = \begin{bmatrix} 2|c|^2 & \operatorname{Im}\langle a-b,c\rangle & \operatorname{Re}\langle a+b,c\rangle \\ \operatorname{Im}\langle a-b,c\rangle & \frac{1}{2}|a-b|^2 & \operatorname{Im}\langle a,b\rangle \\ \operatorname{Re}\langle a+b,c\rangle & \operatorname{Im}\langle a,b\rangle & \frac{1}{2}|a+b|^2 \end{bmatrix}$$

Sketch of proof

If $f \in \mathcal{R}(\Omega)$, then $\mathcal{E}(f) = \operatorname{tr} M = \operatorname{tr} A$. Let

$$\mathcal{I}_p(f) = \frac{1}{2} \|df + L_{p \circ f} \circ df \circ J_p\|^2.$$

Then we obtain, as in Chen and Li 2000

$$\mathcal{E}(f) + \langle J_p, f^* L_{p \circ f} \rangle = \frac{1}{4} \mathcal{I}_p(f).$$

If $X = (p_1, p_2, p_3)$, then

$$egin{aligned} extit{XAX}^T &= \sum_{lpha,eta} p_lpha p_eta a_{lphaeta} = -\langle \sum_lpha p_lpha J_lpha, f^* \sum_eta p_eta L_{i_eta}
angle \ &= -\langle J_p, f^* L_{p \circ f}
angle = \mathcal{E}(f) - rac{1}{4} \mathcal{I}_p(f). \end{aligned}$$

Then $\operatorname{tr} A = \mathcal{E}(f) = XAX^T + \frac{1}{4}\mathcal{I}_p(f) \geq XAX^T$, with equality if and only if $\mathcal{I}_p(f) = 0$ i.e. if and only if f is a J_p -holomorphic map.

References

- Chen, J. and Li, J., Quaternionic maps between hyperkähler manifolds, J. Differential Geom. 55 (2000) 355–384
- Joyce, D., Hypercomplex algebraic geometry, Quart. J. Math. Oxford 49 (1998) 129–162
- W. Królikowski and R.M. Porter, Regular and biregular functions in the sense of Fueter-some problems, Ann. Polon. Math. 59 (1994) 53-64
- W. Królikowski, On Fueter-Hurwitz regular mappings, Diss. Math. 353 (1996)
 1–91
- A. Lichnerowicz, Applicationes harmoniques et variétés Kählériennes, Symp. Math. III, Bologna, (1970) 341—402
- K. Nōno, α-hyperholomorphic function theory, Bull. Fukuoka Univ. Ed. III 35 (1985) 11–17
- P., Holomorphic functions and regular quaternionic functions on the hyperkähler space ℍ, Proceedings V ISAAC Congress, Catania 2005
- M.V. Shapiro and N.L. Vasilevski, Quaternionic ψ-hyperholomorphic functions, singular integral operators and boundary value problems. I. ψ-hyperholomorphic function theory, Complex Variables Theory Appl. 27 no.1 (1995) 17–46