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Abstract. In this paper we define directional quaternionic Hilbert operators on the
three–dimensional space H0 = 〈i, j, k〉 ∼= R3. We consider functions in the kernel of
the Cauchy-Riemann operator
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a variant of the Cauchy–Fueter operator. This choice is motivated by the strict relation
existing between this type of regularity and holomorphicity w.r.t. the whole class of
complex structures onH. For every imaginary unit p ∈ S2, let Jp be the corresponding
complex structure onH. Given a domain Ω ⊆ H, every holomorphic map from (Ω, Jp)
to (H, Lp), where Lp is defined by left multiplication by p, is a regular function. We
combine the quaternionic Cayley transformation, that maps the unit ball to the right
half–space H+ = {q ∈ H | Re(q) > 0} with the Hilbert operators introduced in [16]
on the unit sphere S of H in order to define directional Hilbert operators for (boundary
values of) regular functions on H0

∼= R3.
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1. Introduction
The classical Hilbert transform expresses one of the real components of the boundary val-
ues of a holomorphic function in terms of the other. We are interested in a quaternionic
analogue of this relation, which links the boundary values of one of the complex com-
ponents of a regular function f = f1 + f2j (f1, f2 complex functions) to those of the
other.

In [10] and [18] some generalizations of the Hilbert transform to hyperholomorphic
functions were proposed. In these papers the functions considered are defined on plane
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or spatial domains, while we are interested in domains of two complex variables. In the
latter case, pseudoconvexity becomes relevant, since a domain in C2 is pseudoconvex if
and only if every complex harmonic function on it is a complex component of a regular
function (cf. [11] and [12]).

In the complex variable case, there is a close connection between harmonic conju-
gates and the Hilbert transform, given by harmonic extension and boundary restriction.
Several generalizations of this relation to higher dimensional spaces have been given (cf.
e.g. [2, 3, 4, 6]), mainly in the framework of Clifford analysis, which can be considered
as a generalization of quaternionic (and complex) analysis.

In [16] was introduced another variant of the quaternionic Hilbert operator, in which
the (constant) complex structures onH play a decisive role. Since these structures depend
on a “direction” p in the unit sphere S2 (cf. §2.2), this operator was called directional
Hilbert operator Hp. The aim of this paper is to combine the quaternionic Cayley trans-
formation and the properties of Hp on the unit sphere S ofH in order to define directional
Hilbert operators H3

p on the three–dimensional space H0 = 〈i, j, k〉 ∼= R3.
Let Ω be a smooth domain in C2. Let H be the space of real quaternions q =

x0 + ix1 + jx2 + kx3, where i, j, k denote the basic quaternions. We identify H with
C2 by means of the mapping that associates the quaternion q = z1 + z2j with the pair
(z1, z2) = (x0 + ix1, x2 + ix3). We consider the class R(Ω) of left–regular (also called
hyperholomorphic) functions f : Ω → H in the kernel of the Cauchy–Riemann operator

D = 2
(

∂

∂z̄1
+ j

∂

∂z̄2

)
=

∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
− k

∂

∂x3
.

This differential operator is a variant of the original Cauchy–Fueter operator (cf. for ex-
ample [22] and [7, 8])

∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3
.

Hyperholomorphic functions have been studied by many authors (see for instance [1, 10,
14, 20, 21]). Regular functions in the spaceR(Ω) have some characteristics that are more
intimately related to the theory of holomorphic functions of two complex variables.

This space contains the identity mapping and any holomorphic map (f1, f2) on Ω
defines a regular function f = f1 + f2j. This is no longer true if we adopt the original
definition of Fueter regularity. The space R(Ω) exhibits other interesting links with the
theory of two complex variables. In particular, it contains the spaces of holomorphic maps
with respect to any constant complex structure, not only the standard one.

Let J1, J2 be the complex structures on the tangent bundle TH ' H defined by
left multiplication by i and j. Let J∗1 , J∗2 be the dual structures on the cotangent bundle
T ∗H ' H and set J∗3 = J∗1 J∗2 . For every complex structure Jp = p1J1 + p2J2 + p3J3

(p a imaginary unit in the unit sphere S2), let Lp be the complex structure defined by left
multiplication by p and

∂p =
1
2

(
d + pJ∗p ◦ d

)
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the Cauchy–Riemann operator w.r.t. the structures Jp and Lp. Let Holp(Ω,H) = Ker ∂p

be the space of holomorphic maps from (Ω, Jp) to (H, Lp). Then every element of
Holp(Ω,H) is regular.

These subspaces do not fill the whole space of regular functions: it was proved in
[13] that there exist regular functions that are not holomorphic for any p.

In Section 3 we recall some results about the action of the conformal group of H
on regular functions. We refer to [17] for complete proofs and other applications. Some
of the results we describe can be deduced from [22] (Theorem 6) using the reflection
γ(z1, z2) = (z1, z̄2). We recall the definition of the quaternionic Cayley transformation
ψ(q) = (q + 1)(1 − q)−1, which maps diffeomorphically the unit ball B to the right
half–space H+ = {q ∈ H | Re(q) > 0}. We refer to [5] for geometric properties of ψ.

The construction of the directional Hilbert operators makes use of the rotational
properties of regular functions (see §3.2), which were firstly studied in [22] in the con-
text of Fueter-regularity. This allows to reduce some definitions to the standard complex
structure.

In Section 4 we prove our main result. After having recalled the construction of the
directional, p-dependent, Hilbert operator Hp on the unit sphere S = ∂B, we define the
three–dimensional operator H3

p by means of the Cayley transformation.
We introduce a Sobolev–type space W 1

∂p
(H0,H) of H–valued functions f , of class

L2(H0), defined in terms of the Cayley transformation.
In Theorem 9 we prove that for every p ∈ S2, there exists a H–linear bounded

Hilbert operator H3
p on the space W 1

∂p
(H0,H). For every f ∈ W 1

∂p
(H0,H), the function

R3
p(f) := f + H3

p (f) is the trace of a regular function on H+. Functions f in the kernel
of H3

p are in a one–to–one correspondence with CRp–functions on S.

2. Notations and definitions
2.1. Fueter regular functions
We identify the space C2 with the set H of quaternions by means of the mapping that
associates the pair (z1, z2) = (x0 + ix1, x2 + ix3) with the quaternion q = z1 + z2j =
x0 + ix1 + jx2 + kx3 ∈ H. A quaternionic function f = f1 + f2j ∈ C1(Ω) is (left)
regular (or hyperholomorphic) on Ω if

Df = 2
(

∂

∂z̄1
+ j

∂

∂z̄2

)
=

∂f

∂x0
+ i

∂f

∂x1
+ j

∂f

∂x2
− k

∂f

∂x3
= 0 on Ω.

We will denote byR(Ω) the space of regular functions on Ω. The spaceR(Ω) contains the
identity mapping and every holomorphic mapping (f1, f2) on Ω defines a regular function
f = f1 + f2j. We recall some properties of regular functions, for which we refer to the
papers of Sudbery[22], Shapiro and Vasilevski[20] and Kravchenko and Shapiro[10]:

1. The complex components are both holomorphic or both non–holomorphic.
2. Every regular function is harmonic.
3. If Ω is pseudoconvex, every complex harmonic function is the complex component

of a regular function on Ω.
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4. The space R(Ω) of regular functions on Ω is a right H–module with integral repre-
sentation formulas.

5. f is regular ⇔ ∂f1

∂z̄1
=

∂f2

∂z2
,

∂f1

∂z̄2
= −∂f2

∂z1
.

6. A regular function can have rank 0, 2, 3 or 4 but not rank 1.
Joyce introduced in [9] the module of q–holomorphic functions on a hypercomplex

manifold. This definition is equivalent to regularity on H. A hypercomplex structure on
the manifold H is given by the complex structures J1, J2 on TH ' H defined by left
multiplication by i and j. Let J∗1 , J∗2 be the dual structures on T ∗H ' H and set J∗3 =
J∗1 J∗2 , which is equivalent to J3 = −J1J2. A function f is regular if and only if f is
q–holomorphic, i.e.

df + iJ∗1 (df) + jJ∗2 (df) + kJ∗3 (df) = 0.

In complex components f = f1 + f2j, we can rewrite the equations of regularity as

∂f1 = J∗2 (∂f2).

The original definition of regularity given by Fueter (cf. [22] or [7]) differs from
the one adopted here by a real coordinate reflection. Let γ be the transformation of C2

defined by γ(z1, z2) = (z1, z̄2). Then a C1 function f is regular on the domain Ω if and
only if f ◦ γ is Fueter–regular on γ(Ω) = γ−1(Ω), i.e. it satisfies the differential equation(

∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3

)
(f ◦ γ) = 0 on γ−1(Ω).

2.2. Holomorphic functions w.r.t. a complex structure Jp

Let Jp = p1J1 +p2J2 +p3J3 be the orthogonal complex structure onH defined by a unit
imaginary quaternion p = p1i + p2j + p3k in the sphere S2 = {p ∈ H | p2 = −1}. In
particular, J1 is the standard complex structure of C2 ' H.

Let Cp = 〈1, p〉 be the complex plane spanned by 1 and p and let Lp be the complex
structure defined on T ∗Cp ' Cp by left multiplication by p. We have Lp = Jγ(p), where
γ(p) = p1i + p2j − p3k.

Let Holp(Ω,H) be the space of holomorphic maps from (Ω, Jp) to (H, Lp)

Holp(Ω,H) = {f : Ω → H | ∂pf = 0 on Ω} = Ker ∂p

where ∂p is the Cauchy–Riemann operator

∂p =
1
2

(
d + pJ∗p ◦ d

)
.

These functions will be called Jp–holomorphic maps on Ω. For any positive orthonormal
basis {1, p, q, pq} of H (p, q ∈ S2), let f = f1 + f2q be the decomposition of f with
respect to the orthogonal sum

H = Cp ⊕ (Cp)q.
Let f1 = f0 + pf1, f2 = f2 + pf3, with f0, f1, f2, f3 the real components of f w.r.t.
the basis {1, p, q, pq}. Then the equations of regularity can be rewritten in complex form
as

∂pf1 = J∗q (∂pf2),
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where f2 = f2 − pf3 and ∂p = 1
2

(
d− pJ∗p ◦ d

)
. Therefore every f ∈ Holp(Ω,H) is a

regular function on Ω.

Remark 1. 1. The identity map belongs to the space Holi(Ω,H)∩Holj(Ω,H) but not
to Holk(Ω,H).

2. For every p ∈ S2, Hol−p(Ω,H) = Holp(Ω,H).
3. Every Cp–valued regular function is a Jp–holomorphic function.
4. If f ∈ Holp(Ω,H) ∩ Holq(Ω,H), with p 6= ±q, then f ∈ Holr(Ω,H) for every

r = αp+βq
‖αp+βq‖ (α, β ∈ R) in the circle of S2 generated by p and q.

In [13] was proved that on every domain Ω there exist regular functions that are
not Jp-holomorphic for any p. The criterion for holomorphicity is based on an energy–
minimizing property of holomorphic maps. The energy quadric of a regular function f
(cf. [15]) is a positive semi–definite quadric, defined by means of the Lichnerowicz ho-
motopy invariants, which contains information about the holomorphicity properties of the
function.

Examples 1. 1. f = z̄1 + z2 + z̄2j is Jp-holomorphic, with p = 1√
5
(i− 2k).

2. f = z1 + z2 + z̄1 + (z1 + z2 + z̄2)j is regular, but not holomorphic.
3. (Nonlinear case) f = |z1|2−|z2|2 + z̄1z̄2j is regular but not holomorphic w.r.t. any

complex structure Jp.

2.3. Cauchy–Riemann operators
Let Ω = {z ∈ C2 : ρ(z) < 0} be a domain with C∞–smooth boundary inC2. We assume
ρ of class C∞ on C2 and dρ 6= 0 on ∂Ω. For every complex valued function g ∈ C1(Ω),
we can define on a neighborhood of ∂Ω the normal components of ∂g and ∂g

∂ng =
∑

k

∂g

∂zk

∂ρ

∂z̄k

1
|∂ρ| and ∂ng =

∑

k

∂g

∂z̄k

∂ρ

∂zk

1
|∂ρ| ,

where |∂ρ|2 =
∑2

k=1

∣∣∣∣
∂ρ

∂zk

∣∣∣∣
2

. By means of the Hodge ∗–operator and the Lebesgue

surface measure dσ, we can also write

∂ng dσ = ∗ ∂g|∂Ω
.

In a neighbourhood of ∂Ω we have the decomposition of ∂g in the tangential and the
normal parts

∂g = ∂tg + ∂ng
∂ρ

|∂ρ| .

Let L be the tangential Cauchy–Riemann operator

L =
1
|∂ρ|

(
∂ρ

∂z̄2

∂

∂z̄1
− ∂ρ

∂z̄1

∂

∂z̄2

)
.

The tangential part of ∂g is related to Lg by the following formula

∂tg ∧ dζ|∂Ω = 2Lg dσ.
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A complex function g ∈ C1(∂Ω) is a CR–function if and only if Lg = 0 on ∂Ω. Notice
that ∂g has coefficients of class L2(∂Ω) if and only if both ∂ng and Lg are of class
L2(∂Ω).

If g = g1 + g2j is a regular function of class C1 on Ω, then the equations ∂ng1 =
−L(g2), ∂ng2 = L(g1) hold on ∂Ω. Conversely, a harmonic function f of class C1(Ω)
is regular if it satisfies these equations on ∂Ω (cf. [14]). If Ω has connected boundary, it is
sufficient that one of the equations is satisfied.

In place of the standard complex structure J1, we can take onC2 a different complex
structure Jp and consider the corresponding Cauchy–Riemann operators. We will denote
by ∂p,n and ∂p,n the normal components of ∂p and ∂p respectively, by ∂p,t the tangential
component of ∂p and by Lp the tangential Cauchy–Riemann operator with respect to the
structure Jp. Then we have the relations

∂pg = ∂p,t g + ∂p,ng
∂pρ

|∂pρ|
,

∂p,t g ∧ dζ|∂Ω = 2Lpg dσ,

∂p,ng dσ = ∗ ∂pg|∂Ω
.

The space
CRp(∂Ω) = KerLp = {g : ∂Ω → Cp | Lpg = 0}

has elements the CR–functions on ∂Ω with respect to the operator ∂p.

Remark 2. The operators ∂p, ∂p,n, ∂p,n and Lp are Cp–linear and they map Cp–valued
functions of class C1 to continuous Cp–valued functions.

3. Regular functions and conformal mappings
In this section we recall some results about the action of the conformal group of H on
regular functions. We refer to [17] for complete proofs and more applications. Some of the
results we describe can be deduced from [22] (Theorem 6) using the reflection γ(z1, z2) =
(z1, z̄2) introduced in §2.1.

We recall some definitions and properties of conformal and orientation preserving
mappings of the one–point compactification H∗ of H, for which we refer to [5], [7]§6.2,
[19] and [22] and to the references cited in those papers. The Dieudonné determinant of

a quaternionic matrix A =
[
a b
c d

]
is the real non–negative number

detH(A) =
√
|a|2|d|2 + |b|2|c|2 − 2Re(cābd̄).

It satisfies Binet property detH(AB) = detH(A)detH(B) and a matrix A is (left and
right) invertible if and only if detHA 6= 0. Then we can consider the general linear group

GL(2,H) =
{

A =
[
a b
c d

]
quaternionic matrix of order 2 | detHA 6= 0

}
.
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From a theorem of Liouville, the general conformal transformation ofH∗ is a quater-
nionic Möbius transformation, i.e. a fractional linear map of the form

LA(q) = (aq + b)(cq + d)−1, A ∈ GL(2,H).

The matrix A is determined by LA up to a real scalar multiple. For every pair of matrices
A, B ∈ GL(2,H), LA ◦ LB = LAB . We have also the alternative representation of
conformal mappings

L′A(q) = (qc + d)−1(qa + b), detHĀ 6= 0.

Proposition 1. Given f ∈ C1(Ω) and a conformal transformation LA(q) = (aq+b)(cq+
d)−1, let fA be the function

fA(q) =
(cγ(q) + d)−1

|cγ(q) + d|2 f(L′γ(A)(q)),

where γ(A) =
[
γ(a) γ(b)
γ(c) γ(d)

]
. Then f is regular on Ω if and only if fA is regular on

Ω′ = (L′γ(A))
−1(Ω). Moreover, (fA)B = fAB for every A,B ∈ GL(2,H).

Proof. The first statement can be deduced from the result of Sudbery (cf. [22] Theorem
6), since f ∈ R(Ω) iff F = f ◦ γ is Fueter–regular on γ(Ω). This last condition is
equivalent to the Fueter–regularity of the transformed function

FA(p) =
(cp + d)−1

|cp + d|2 F (LA(p))

on (LA)−1(γ(Ω)). Note that this function differs from the one given by Sudbery by a real
constant factor. We then obtain that f is regular iff FA ◦ γ is regular. We have

FA ◦ γ(q) =
(cγ(q) + d)−1

|cγ(q) + d|2 f ◦ γ ◦ LA ◦ γ(q) = fA(q),

since γ ◦ LA ◦ γ(q) = L′γ(A)(q). The last statement of the theorem is a straightforward
computation using the equality

L′γ(A) ◦ L′γ(B) = (γ ◦ LA ◦ γ) ◦ (γ ◦ LB ◦ γ) = γ ◦ LAB ◦ γ = L′γ(AB).

¤

Remark 3. We can restrict the choice of the matrix A to the subgroup SL(2,H) = {A ∈
GL(2,H) | detH(A) = 1}. In this case, the same conformal transformation gives rise to
two functions, fA and f−A = −fA.

Example 1. Given two unit quaternions a, d ∈ H, the diagonal matrix A =
[
a 0
0 d

]

induces the four–dimensional rotation q 7→ aqd−1. Given a regular function f on Ω, the
function

fA(q) = d−1f(γ(d)−1qγ(a))
is regular on Ω′ = γ(d)Ωγ(a)−1.
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3.1. The Cayley transformation
The quaternionic Cayley transformation ψ(q) = (q+1)(1−q)−1 maps diffeomorphically
the unit ball B to the right half–space H+ = {q ∈ H | Re(q) > 0} (see [5] for geometric
properties of ψ). It transforms regular functions f on H+ into

fψ(q) = 23/2 (1− γ(q))−1

|1− γ(q)|2 f(ψ(q)),

regular on B. Here ψ corresponds to the matrix C = 1√
2

[
1 1
−1 1

]
∈ SL(2,H). The

inverse mapping φ(q) = (q − 1)(1 + q)−1 transforms g ∈ R(B) into

gφ(q) = 23/2 (1 + γ(q))−1

|1 + γ(q)|2 g(φ(q)) ∈ R(H+).

The factor 23/2 in the formulas has been chosen to get (fψ)φ = f . The maps f 7→ fψ

and g 7→ gφ are right H–linear.
The extension of φ to the boundary H0 = ∂H+ maps diffeomorphically H0 onto

S \ {1}. We will denote again by φ and ψ these extensions.

3.2. Rotated regular functions
A unit quaternion d defines the three–dimensional rotation q 7→ rotd(q) := dqd−1, which
gives rise to the function (cf. Example 1)

fA(q) = d−1f(γ(d)−1qγ(d)),

where A is the scalar matrix A =
[
d 0
0 d

]
. Taking d = γ(a)−1 and multiplying by γ(a)−1

on the right, we obtain the function fa = rotγ(a) ◦ f ◦ rota.

Proposition 2 ([16, 17]). Let f ∈ C1(Ω) and let a ∈ H, a 6= 0. Let rota(q) = aqa−1 be
the three–dimensional rotation of H defined by a. Let fa = rotγ(a) ◦ f ◦ rota. Then

1. f is regular on Ω if and only if fa is regular on Ωa = rot−1
a (Ω) = a−1Ωa.

2. fa is Jp–holomorphic if and only if f is Jp′–holomorphic, with p′ = rot−1
γ(a)(p).

Remark 4. The rotated function fa has the following properties:
1. (fa)b = fab and (f + g)a = fa + ga.
2. (fa)a−1

= f .
3. f−a = fa.
4. If b ∈ H, then (fb)a = fa rotγ(a)(b).

Proposition 3. The action of the Cayley transformation commutes with that of rotations:

(fψ)a = (fa)ψ and (gφ)a = (ga)φ ∀f ∈ R(H+), g ∈ R(B).

Proof. fa = fAγ(a)−1, with A a scalar matrix. Since A commutes with the real matrices
C and C−1, it follows that

(fa)ψ = (fAγ(a)−1)ψ = (fA)ψγ(a)−1 = fACγ(a)−1 = (fC)Aγ(a)−1 = (fψ)a

and similarly for φ. ¤
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Rotations also allow to express the relation between the Cauchy–Riemann operators
∂ and ∂p (cf. §2.3).

Proposition 4 ([16]). Let a ∈ H, a 6= 0. If p = γ(ra(i)) and g : Ω → Cp is of class
C1(Ω), then ∂ga = (∂pg)a. Moreover ∂nga = (∂p,ng)a and Lga = (Lpg)a on ∂Ωa. In
particular, g ∈ CRp(∂Ω) if and only if ga ∈ CR(∂Ωa).

Remark 5. For a general conformal transformation LA, the (Dirichlet) energy and, a for-
tiori, the energy quadric of a regular function is not conserved. The same happens for
Jp–holomorphicity. In particular, the holomorphicity of g on B does not imply the holo-
morphicity of gφ on H+, and conversely.

4. Directional Hilbert operators
For a bounded domain Ω with C∞–smooth boundary, we consider the following Sobolev–
type Hilbert subspace of L2(∂Ω,Cp):

W 1
∂p

(∂Ω,Cp) = {f ∈ L2(∂Ω,Cp) | ∂pf ∈ L2(∂Ω,Cp)}
= {f ∈ L2(∂Ω,Cp) | ∂p,nf and Lpf ∈ L2(∂Ω,Cp)}

with product
(f, g)W 1

∂p

= (f, g) + (∂p,nf, ∂p,ng) + (Lpf,Lpg),

where (f, g) is the L2(∂Ω)–product. Here and in the following we always identify f ∈
L2(∂Ω) with its harmonic extension on Ω. These spaces are vector spaces over R and
over Cp. For every α > 0, the space W 1

∂p
(∂Ω,Cp) contains, in particular, every Cp–

valued function f of class C1+α(∂Ω). Indeed, under this regularity condition f has an
harmonic extension of class (at least) C1 on Ω.

Let L2(∂Ω,C⊥p ) be the space of functions fq, f ∈ L2(∂Ω,Cp), where q ∈ S2 is
any unit orthogonal to p and let

W 1
∂p

(∂Ω,C⊥p ) = {f ∈ L2(∂Ω,C⊥p ) | ∂pf ∈ L2(∂Ω,C⊥p )}.
Then W 1

∂p
(∂Ω,C⊥p ) = {fq | f ∈ W 1

∂p
(∂Ω)} for any q ∈ S2 orthogonal to p. On these

spaces we consider the products w.r.t. which the right multiplication by q is an isometry:

(f, g)L2(∂Ω,C⊥p ) = (fq, gq)L2(∂Ω,Cp),

(f, g)W 1
∂p

(∂Ω,C⊥p ) = (fq, gq)W 1
∂p

(∂Ω,Cp).

Proposition 5. The above products are independent of q⊥p.

Proof. Let q′ = aq + bpq ∈ C⊥p be another element of S2 orthogonal to p, with a, b ∈ R,
a2 + b2 = 1. If fq = f0 + f1p, then fq′ = (af0 + bf1) + (af1 − bf0)p. Similarly,
gq′ = (ag0 + bg1) + (ag1 − bg0)p, from which we get

(fq′, gq′)L2(∂Ω,Cp) = (af0 + bf1, ag0 + bg1)L2 + (af1 − bf0, ag1 − bg0)L2

= (a2 + b2)(f0, g0)L2 + (a2 + b2)(f1, g1)L2 = (fq, gq)L2(∂Ω,Cp).
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The independence of the second product follows from that of the first. ¤

We will consider also the space of H–valued functions

W 1
∂p

(∂Ω,H) = {f ∈ L2(∂Ω,H) | ∂pf ∈ L2(∂Ω,H)}
with norm

‖f‖W 1
∂p

(∂Ω,H) =
(
‖f1‖2W 1

∂p
(∂Ω,Cp) + ‖f2‖2W 1

∂p
(∂Ω,Cp)

)1/2

,

where f = f1 + f2q ∈ W 1
∂p

(∂Ω,Cp) ⊕ W 1
∂p

(∂Ω,C⊥p ), fi ∈ W 1
∂p

(∂Ω,Cp) and q is
any imaginary unit orthogonal to p. It follows from Proposition 5 that this norm does not
depends on q.

We recall the definition of directional Hilbert operators introduced in [16]. For every
Cp–valued function f1 in W 1

∂p
(∂Ω,Cp) and every fixed q ∈ S2 orthogonal to p, there ex-

ists a function Hp,q(f1) : ∂Ω → Cp in the same space as f1, such that f = f1+Hp,q(f1)q
is the boundary value of a regular function on Ω. f1 and Hp,q(f1) are called quater-
nionic harmonic conjugates. The function Hp,q(f1) is uniquely characterized by L2(∂Ω)–
orthogonality to the space of CR–functions with respect to the structure Jp. Moreover,
Hp,q is a bounded operator on the space W 1

∂p
(∂Ω,Cp).

For every fixed direction p, it is also possible to choose a quaternionic regular har-
monic conjugate of f1 in a way independent of the chosen orthogonal direction q. Taking
restrictions to the boundary ∂Ω, this construction permits to define the directional, p–
dependent, Hilbert operator Hp.

4.1. The case of the unit sphere
In this section we recall the more precise results which can be obtained on the unit sphere
S.

Theorem 6 ([16]§7). Given a Cp–valued function f1 ∈ W 1
∂p

(S,Cp), there exists Hp(f1)

∈ W 1
∂p

(S,C⊥p ) such that f = f1 + Hp(f1) is the trace of a regular function on B.

Moreover, Hp(f1) satisfies the estimate

‖Hp(f1)‖W 1
∂p

(S,C⊥p ) ≤
(
2‖∂p,nf1‖2L2(S) + ‖Lpf1‖2L2(S)

)1/2

.

The operator Hp : W 1
∂p

(S,Cp) → W 1
∂p

(S,C⊥p ) is a right Cp–linear bounded operator,

with kernel CRp(S).

The operator Hp can be extended by right H–linearity to the space W 1
∂p

(S,H).

If f ∈ W 1
∂p

(S,H) and q is any imaginary unit orthogonal to p, let f = f1 + f2q ∈
W 1

∂p
(S,Cp)⊕W 1

∂p
(S,C⊥p ), fi ∈ W 1

∂p
(S,Cp). We set

Hp(f) = Hp(f1) + Hp(f2)q.
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This definition is independent of q, because if f = f1+f ′2q
′, then (f2q−f ′2q

′)q is a CRp–
function and therefore 0 = Hp(−f2 − f ′2q

′q) = −Hp(f2) −Hp(f ′2)q
′q ⇒ Hp(f2)q =

Hp(f ′2)q
′. The operator Hp will be called a directional Hilbert operator on S.

Corollary 7. The Hilbert operator Hp : W 1
∂p

(S,H) → W 1
∂p

(S,H) is rightCp–linear and
H–linear, its kernel is the space of H–valued CRp–functions and satisfies the estimate

‖Hp(f)‖W 1
∂p

(S,H) ≤
√

2 ‖f‖W 1
∂p

(S,H).

For every f ∈ W 1
∂p

(S,H), the function Rp(f) := f + Hp(f) is the trace of a regular
function on B.

4.2. The case of the three–dimensional space H0

Now we come to our main result. We introduce the following function spaces on the
three–dimensional space H0 = 〈i, j, k〉:

W 1
∂p

(H0,H) = W 1
∂p

(S,H)φ := {f = gφ | g ∈ W 1
∂p

(S,H)}
with product

(f, f ′)W 1
∂p

(H0,H) = (fψ, f ′ψ)W 1
∂p

(S,H).

Proposition 8. A function g belongs to the space L2(S,H) if and only if f = gφ belongs
to L2(H0,H). Therefore W 1

∂p
(H0,H) ⊆ L2(H0,H) and f ∈ W 1

∂p
(H0,H) if and only if

f ∈ L2(H0,H) and (∂p(fψ))φ ∈ L2(H0,H).

Proof. Let g = fψ . Then
∫

S

|g(q)|2dσ = 8
∫

S

|f(ψ(q))|2
|1− γ(q)|6 dσ = 16

∫

φ(H0)

|f(q′)|2|1 + q′|6dσ(φ(q′))

since |1− γ(q)| = |1− φ(q′)| = 2|1 + q′|−1, with q′ = ψ(q) = x1i + x2j + x3k ∈ H0,
q = φ(q′) ∈ S. The Jacobian determinant of φ|H0 has order |q′|−6 for large |q′|. Then

∫

S

|g(q)|2dσ ≈
∫

H0

∣∣∣∣
q′

1 + q′
f(q′)

∣∣∣∣
2

dx1dx2dx3 =
∫

H0

|q′|2
1 + |q′|2 |f(q′)|2dx1dx2dx3.

¤

Remark 6. In general, (∂p(fψ))φ 6= ∂pf . Let p = γ(ra(i)). From Propositions 3 and 4 it
follows that

(∂p(fψ))a = ∂((fψ)a) = ∂((fa)ψ).

Then W 1
∂p

(H0,H)a := {fa | f ∈ W 1
∂p

(H0,H)} = W 1
∂
(H0,H).

The space W 1
∂p

(H0,H) contains the subspace of the rational functions gφ, g a poly-
nomial function (see the examples in this section).
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Theorem 9. For every p ∈ S2, there exists a Hilbert operator H3
p : W 1

∂p
(H0,H) →

W 1
∂p

(H0,H) which is right Cp–linear and H–linear and satisfies the estimate

‖H3
p (f)‖W 1

∂p
(H0,H) ≤

√
2 ‖f‖W 1

∂p
(H0,H).

For every f ∈ W 1
∂p

(H0,H), the function R3
p(f) := f + H3

p (f) is the trace of a regular

function on H+. A function f ∈ W 1
∂p

(H0,H) is in the kernel of H3
p if and only if fψ is a

CRp–function on S.

Proof. Given f ∈ W 1
∂p

(H0,H), we apply Corollary 7 and set H3
p (f) := (Hp(fψ))φ ∈

W 1
∂p

(H0,H). By definition, the correspondence g ←→ gφ is an isometry between the

spaces W 1
∂p

(S,H) and W 1
∂p

(H0,H), and the estimate follows. The function Rp(fψ) =

fψ + Hp(fψ) is the trace on S of a regular function on B. Then R3
p(f) = f + H3

p (f) =
(Rp(fψ))φ is the trace on H0 of a regular function on H+. ¤

The Hilbert operator H3
p on H0 can be expressed in terms of H3

i (i.e. by means of
the standard complex structure) using rotations. Let p = γ(ra(i)). It can be shown that
Hp(g)a = Hi(ga) for every g ∈ W 1

∂p
(S,H). Therefore

(H3
p (f)a)ψ = (H3

p (f)ψ)a = (Hp(fψ))a = Hi((fψ)a) = Hi((fa)ψ) = H3
i (fa)ψ

for every f ∈ W 1
∂p

(H0,H). Then H3
p (f)a = H3

i (fa).

Examples 2. 1. Let f = cφ be the Cayley transform of a constant quaternionic func-
tion (c ∈ H). We have

H = ∩p∈S2CRp(S), Hφ = 〈1φ〉 = {1φc | c ∈ H} = ∩p∈S2CRp(S)φ.

Then H3
p (cφ) = 0 for every direction p ∈ S2, since Hp(c) = 0 on S. The function

1φ, regular on H+, has trace on H0 = R3 given by

1φ
|H0

(x1, x2, x3) =
2
√

2
(1 + |x|2)2 (1,−x1,−x2, x3)

and has L2(R3) squared norm equal to 2π2 = V ol(S) = ‖1‖2L2(S).

2. Let f = zφ
1 . Then

f|H0(x1, x2, x3) =
2
√

2
(1 + |x|2)3 (−1 + 3x2

1 + x2
2 + x2

3, 3− x2
1 − x2

2 − x2
3,

x2 + 2x1x3 − x3
2 − x2

1x2 − x2
3x2, −1 + 2x1x2 + x2

1x2 + x2
2x3 + x3

3)

has Hilbert transforms H3
i (f) = 0, since z1 ∈ Holi, while

H3
j (f) =

√
2

(1 + |x|2)3 (−1 + 3x2
1 − x2

2 + 3x2
3, 3x1 + 4x2x3 − x3

1 − x1x
2
2 − x1x

2
3,

− x2(1 + |x|2), −3x3 + 4x1x2 + x3
3 + x3x

2
1 + x3x

2
2)
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3. Let f = z̄φ
1 , which is not regular on H+. Then the Hilbert transform H3

i (f) gives
the function

R3
i (f) =

2
√

2
(1 + |x|2)3 (−1− x2

1 + 3x2
2 + 3x2

3, −x1(1 + x2
1 + x2

2 + x2
3),

3x2 − 4x1x3 − x3
2 − x2x

2
1 − x2x

2
3, −3x3 − 4x1x2 + x2

1x2 + x2
2x3 + x3

3)

which is the trace on H0 of the regular function

F (z1, z2) =
2
√

2
(|1 + z1|2 + |z2|2)3 (−1− z1 + z̄2

1 + z1z̄
2
1 + (3 + z̄1)|z2|2

+ (z̄2(3− z1 + 3z̄1 − |z1|2 − |z2|2)j
defined on an open set containing the closure of the right–half space H+.
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