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Abstract. We propose a continuous functional calculus in quaternionic Hilbert spaces. The class of
continuous functions considered is the one of slice quaternionic functions. Slice functions generalize
the concept of slice regular function, which comprises power series with quaternionic coefficients
on one side and that can be seen a generalization to quaternions of holomorphic functions of one
complex variable. The notion of slice function allows to introduce suitable classes of real, complex
and quaternionic C∗–algebras and to define, on each of these C∗–algebras, a functional calculus
for quaternionic normal operators.
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1. Introduction

We start from basic issues regarding the general notion of spherical spectrum of an operator on a (right)
quaternionic Hilbert space. For the definition of the spectrum we follow the viewpoint adopted in [3]
for quaternionic Banach modules. A pivotal tool in our investigation is the notion of slice function [8].
That notion allows one to introduce suitable classes of real, complex and quaternionic C∗–algebras of
functions and to define, on each of these C∗–algebras, a functional calculus for normal operators. In
particular, we establish several versions of the spectral map theorem. For quaternionic Hilbert spaces,
a formulation of the spectral theorem already exists [9] without any systematic investigation of the
continuous functional calculus. We also show that our continuous functional calculus, when restricted
to slice regular functions, coincides with the functional calculus developed in [3] as a generalization of
the classical holomorphic functional calculus. We refer to [6] for complete proofs of the stated result.

2. Quaternionic Hilbert spaces

We recall some basic notions about quaternionic Hilbert spaces (see e.g. [1]). Let H denote the skew
field of quaternions. Let H be a right H–module. H is called a quaternionic pre–Hilbert space if there
exists a Hermitian quaternionic scalar product H × H 3 (u, v) 7→ 〈u|v〉 ∈ H satisfying the following
three properties:

• Right linearity : 〈u|vp+ wq〉 = 〈u|v〉p+ 〈u|w〉q if p, q ∈ H and u, v, w ∈ H.

• Quaternionic Hermiticity : 〈u|v〉 = 〈v|u〉 if u, v ∈ H.
• Positivity : If u ∈ H, then 〈u|u〉 ∈ R+ and u = 0 if 〈u|u〉 = 0.

We can define the quaternionic norm by setting

‖u‖ :=
√
〈u|u〉 ∈ R+ if u ∈ H.
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Definition 2.1. A quaternionic pre–Hilbert space H is said to be a quaternionic Hilbert space if it is
complete with respect to its natural distance d(u, v) := ‖u− v‖.

Example. The space Hn with scalar product 〈u, v〉 =
∑n
i=1 ūivi is a finite-dimensional quaternionic

Hilbert space.

Definition 2.2. A right H–linear operator is a map T : D(T ) −→ H such that:

T (ua+ vb) = (Tu)a+ (Tv)b if u, v ∈ D(T ) and a, b ∈ H,

where the domain D(T ) of T is a (not necessarily closed) right H–linear subspace of H.

It can be shown that an operator T : D(T ) −→ H is continuous if and only if it is bounded, i.e.
there exists K ≥ 0 such that

‖Tu‖ ≤ K‖u‖ for each u ∈ D(T ).

The set B(H) of all bounded operators T : H −→ H is a complete metric space w.r.t. the metric

D(T, S) := ‖T − S‖, where ‖T‖ := supu∈D(T )\{0}
‖Tu‖
‖u‖ = inf{K ∈ R | ‖Tu‖ ≤ K‖u‖ ∀u ∈ D(T )}.

Many assertions that are valid in the complex Hilbert spaces case, continue to hold for quater-
nionic operators. We mention the uniform boundedness principle, the open map theorem, the closed
graph theorem, the Riesz representation theorem and the polar decomposition of operators.
Left scalar multiplications. It is possible to equip a (right) quaternionic Hilbert space H with a left
multiplication by quaternions. It is a non–canonical operation relying upon a choice of a preferred
Hilbert basis. So, pick out a Hilbert basis N of H and define the left scalar multiplication of H induced
by N as the map H× H 3 (q, u) 7→ qu ∈ H given by

qu :=
∑
z∈N zq〈z|u〉 if u ∈ H and q ∈ H.

For every q ∈ H, the map Lq : u 7→ qu belongs to B(H). Moreover, the map LN : H −→ B(H), defined
by setting LN (q) := Lq is a norm–preserving real algebra homomorphism.

The set B(H) is always a real Banach C∗–algebra with unity. It suffices to consider the right scalar
multiplication (Tr)(u) = T (u)r for real r and the adjunction T 7→ T ∗ as ∗–involution. By means of a
left scalar multiplication, it can be given the richer structure of quaternionic Banach C∗–algebra.

Theorem 2.1. Let H be a quaternionic Hilbert space equipped with a left scalar multiplication. Then
the set B(H), equipped with the pointwise sum, with the scalar multiplications defined by

(qT )u := q(Tu) and (Tq)(u) := T (qu),

with the composition as product, with T 7→ T ∗ as ∗-involution, is a quaternionic two–sided Banach
C∗–algebra with unity.

Observe that the map LN gives a ∗-representation of H in B(H).

3. Resolvent and spectrum

It is not clear how to extend the definitions of spectrum and resolvent in quaternionic Hilbert spaces.
Let us focus on the simpler case of eigenvalues of a bounded right H–linear operator T . Without fixing
any left scalar multiplication of H, the equation determining the eigenvalues reads as follows:

Tu = uq.

Here a drawback arises: if q ∈ H \ R is fixed, the map u 7→ uq is not right H–linear. Consequently,
the eigenspace of q cannot be a right H–linear subspace. Indeed, if λ 6= 0, uλ is an eigenvector of
λ−1qλ instead of q itself. As a second guess, one could decide to deal with quaternionic Hilbert spaces
equipped with a left scalar multiplication and require that

Tu = qu.
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Now both sides are right H–linear. However, this approach is not suitable for physical applications,
where self–adjoint operators should have real spectrum. We come back to the former approach and
accept that each eigenvalue q brings a whole conjugation class of the quaternions, the eigensphere

Sq := {λ−1qλ ∈ H |λ ∈ H \ {0}}.
We adopt the viewpoint introduced in [3] for quaternionic two-sided Banach modules. Given an

operator T : D(T ) −→ H and q ∈ H, let

∆q(T ) := T 2 − T (q + q) + I|q|2.

Definition 3.1. The spherical resolvent set of T is the set ρS(T ) of q ∈ H such that:

(a) Ker(∆q(T )) = {0}.
(b) Range(∆q(T )) is dense in H.
(c) ∆q(T )−1 : Range(∆q(T )) −→ D(T 2) is bounded.

The spherical spectrum σS(T ) of T is defined by σS(T ) := H \ ρS(T ). It decomposes into three
disjoint circular (i.e. invariant by conjugation) subsets:

(i) the spherical point spectrum of T (the set of eigenvalues):

σpS (T ) := {q ∈ H |Ker(∆q(T )) 6= {0}}.
(ii) the spherical residual spectrum of T :

σrS (T ) :=
{
q ∈ H

∣∣∣Ker(∆q(T )) = {0}, Range(∆q(T )) 6= H
}
.

(iii) the spherical continuous spectrum of T :

σcS (T ) :=
{
q ∈ H

∣∣∆q(T )−1 is densely defined but not bounded
}
.

The spherical spectral radius of T is defined as

rS(T ) := sup
{
|q|
∣∣ q ∈ σS(T )

}
∈ R+ ∪ {+∞}.

In our context, the subspace Ker(∆q(T )) has the role of an “eigenspace”. In particular, Ker(∆q(T )) 6=
{0} if and only if Sq is an eigensphere of T .

3.1. Spectral properties

The spherical resolvent and the spherical spectrum can be defined for bounded right H–linear operators
on quaternionic two–sided Banach modules in a form similar to that introduced above (see [3]). Several
spectral properties of bounded operators on complex Banach or Hilbert spaces remain valid in that
general context. Here we recall some of these properties in the quaternionic Hilbert setting.

Theorem 3.1. Let H be a quaternionic Hilbert space and let T ∈ B(H). Then

(a) rS(T ) ≤ ‖T‖.
(b) σS(T ) is a non–empty compact subset of H.
(c) Let P ∈ R[X]. Then, if T is self–adjoint, the following spectral map property holds:

σS(P (T )) = P (σS(T )).

(d) Gelfand’s spectral radius formula holds:

rS(T ) = lim
n→+∞

‖Tn‖1/n.

In particular, if T is normal (i.e. TT ∗ = T ∗T ), then rS(T ) = ‖T‖.

Regardless different definitions with respect to the complex Hilbert space case, the notions of
spherical spectrum and resolvent set enjoy some properties which are quite similar to those for complex
Hilbert spaces. Other features, conversely, are proper to the quaternionic Hilbert space case. First of
all, it turns out that the spherical point spectrum coincides with the set of eigenvalues of T .

Proposition 3.2. Let H be a quaternionic Hilbert space and let T : D(T ) −→ H be an operator. Then
σpS(T ) coincides with the set of all eigenvalues of T .
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Theorem 3.2. Let T be an operator with dense domain on a quaternionic Hilbert space H.

(a) σS(T ) = σS(T ∗).
(b) If T ∈ B(H) is normal, then

(i) σpS (T ) = σpS (T ∗).
(ii) σrS (T ) = σrS (T ∗) = ∅.

(iii) σcS (T ) = σcS (T ∗).
(c) If T is self–adjoint, then σS(T ) ⊂ R and σrS (T ) is empty.
(d) If T is anti self–adjoint, then σS(T ) ⊂ Im(H) and σrS (T ) is empty.
(e) If T ∈ B(H) is unitary, then σS(T ) ⊂ {q ∈ H | |q| = 1}.
(f) If T ∈ B(H) is anti self–adjoint and unitary, then σS(T ) = σpS(T ) = S (the sphere of quater-

nionic imaginary units).

It can be shown that, differently from operators on complex Hilbert spaces, a normal operator
T on a quaternionic space is unitarily equivalent to T ∗.

4. Slice functions

The concept of slice regularity has been introduced by Gentili and Struppa [4, 5] for functions of one
quaternionic variable and then extended to other real ∗-algebras (e.g. Clifford algebras [2] and alterna-
tive ∗–algebras [7, 8]). This function theory comprises polynomials and power series with quaternionic
coefficients on one side. At the base of the definition there is the “slice” character of H:

• H =
⋃
∈S C where C is the real subalgebra 〈〉 ' C.

• C ∩ Cκ = R for every , κ ∈ S with  6= ±κ.

The original definition requires that, for every  ∈ S, the restriction f|C
is holomorphic with

respect to the complex structures given by left multiplication by . Another approach (see [7, 8])
starts from the embedding of the space of slice regular functions into a larger class, that of continuous
slice functions. Given K ⊂ C, consider the circular set ΩK defined by

ΩK = {α+ β ∈ H |α, β ∈ R, α+ iβ ∈ K,  ∈ S}.

Let H ⊗R C = {x + iy |x, y ∈ H}, with complex conjugation w = x + iy 7→ w = x − iy. A function

F : K −→ H⊗R C satisfying F (z) = F (z) for every z ∈ K, is called a stem function on K. Any stem
function induces a (left) slice function f = I(F ) : ΩK → H: if q = α + β ∈ ΩK ∩ C, with  ∈ S, we
set

f(q) := F1(α+ iβ) + F2(α+ iβ)

where F1, F2 are the two H–valued components of F . A quaternionic function f turns out to be slice
regular if and only if it is the slice function induced by a holomorphic stem function F .

4.1. C∗–algebras of slice functions

Given two slice functions f = I(F ) and g = I(G) on ΩK, their pointwise product is not necessarily a
slice function. However, we can define their slice product by means of the multiplication in H⊗ C:

f · g = I(FG) = I((F1G1 − F2G2) + i(F1G2 + F2G1)).

Theorem 4.1. The set S(ΩK,H) of continuous slice functions on ΩK is a quaternionic two–sided
Banach C∗–algebra with unity the constant function 1ΩK w.r.t. the slice product, the ∗-involution
defined by f∗ := I(F1 − iF2) and the supremum norm.

Remark 4.1. The scalar multiplications on S(ΩK,H) are defined by f · q := f · cq and q · f := cq · f ,
where cq denotes the constant slice function with value q on ΩK. f · q coincides with the pointwise
scalar multiplication fq for every q ∈ H. If q ∈ R, then also q · f is equal to the pointwise scalar
multiplication qf . Otherwise, qf is not, in general, a slice function and hence is different from q · f .
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5. Slice Functional Calculus

5.1. Slice nature of normal operators

The definition of a continuous slice function of a normal operator on a quaternionic Hilbert space is
based on the “operatorial” counterpart of the slice character of H.

Theorem 5.1. Given any normal operator T ∈ B(H), there exist three operators A,B, J ∈ B(H) such
that:

(i) T = A+ JB.
(ii) A is self–adjoint and B is positive.

(iii) J is anti self–adjoint and unitary.
(iv) A, B and J commute mutually.

Furthermore, it holds:

• A and B are uniquely determined by T : A = (T + T ∗) 1
2 and B = |T − T ∗| 12 .

• J is uniquely determined by T on Ker(T − T ∗)⊥.

(where for S ∈ B(H), |S| denotes the operator defined as the square root of the positive operator S∗S).

This parallelism suggests a natural way to define the operator f(T ) for the class of H-intrinsic

continuous slice functions, i.e. functions satisfying f(q̄) = f(q) for every q ∈ ΩK or, equivalently,
f(ΩK ∩ C) ⊂ C ∀ ∈ S. If f = I(F ) = I(F1 + iF2) is a polynomial slice function, with components
F1, F2 ∈ R[X,Y ], we define the normal operator f(T ) ∈ B(H) by setting

f(T ) := F1(A,B) + JF2(A,B)

and then extend the definition to H–intrinsic continuous slice functions on σS(T ) by density.

Remark 5.1.
(i) f is H-intrinsic if and only if the components F1, F2 of the stem function F are real valued.

(ii) Even when J is not uniquely determined, f(T ) does not depend on the choice of the operator J .

Continuous slice functional calculus for normal operators: the H-intrinsic functions case. Consider
the commutative real Banach C∗-subalgebra SR(σS(T ),H) of S(σS(T ),H) consisting of H-intrinsic
slice functions. The functional calculus f 7→ f(T ) defined above has the following properties.

Theorem 5.2. The mapping f 7→ f(T ) is the unique continuous ∗-homomorphism

ΨR,T : SR(σS(T ),H)→ B(H)

of real Banach unital C∗-algebras such that:

(i) ΨR,T is unity–preserving; that is, ΨR,T (1σS(T )) = I.
(ii) ΨR,T (id) = T .

Moreover, the following facts hold true:

(a) f(T ) is normal.
(b) ΨR,T is isometric: ‖f(T )‖ = ‖f‖∞ for every f ∈ SR(σS(T ),H).
(c) the spectral map property σS(f(T )) = f(σS(T )) holds.

Continuous slice functional calculus for normal operators: the C-slice functions case. The definition
of f(T ) can be extended to other classes of continuous slice functions. The set SC

(ΩK,H) of functions
which leave only one slice C invariant is a commutative C–Banach unital C∗-subalgebra of S(ΩK,H).
The space B(H) has a similar structure of complex C∗–algebra depending on the choice of the anti
self-adjoint operator J such that T = A+ JB and J commutes with T, T ∗.

Theorem 5.3. There exists a unique continuous ∗-homomorphism

ΨC,T : SC(σS(T ),H)→ B(H)

of C–Banach C∗-algebras such that

(i) ΨC,T is unity–preserving; that is, ΨR,T (1σS(T )) = I.
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(ii) ΨC,T (id) = T .

Moreover, the following facts hold true:

(a) f(T ) is normal.
(b) For every f ∈ SC

(σS(T ),H), the following C–slice spectral map property holds:

σS(f(T )) = Ωf(σS(T )∩C+
 )

(c) ΨC,T is norm decreasing: ‖f(T )‖ ≤ ‖f‖∞ if f ∈ SC
(σS(T ),H). More precisely, it holds:

‖f(T )‖ = ‖f |σS(T )∩C+

‖∞

for every f ∈ SC(σS(T ),H).

Continuous slice functional calculus for normal operators: the circular case. Fix an anti self–adjoint
and unitary operator J ∈ B(H) such that T = A + JB and J commutes with T, T ∗. Choose  ∈ S
and a left scalar multiplication q 7→ Lq with L = J and LqA = ALq and LqB = BLq for each q ∈ H.
Then B(H) get a structure of quaternionic two–sided Banach unital C∗-algebra.

The set Sc(ΩK,H) of circular slice functions, those which satisfy the condition f(q̄) = f(q) for
every q, is a non–commutative quaternionic Banach C∗-subalgebra of S(ΩK,H).

Theorem 5.4. There exists a unique continuous (isometric) ∗-homomorphism

Ψc,T : Sc(σS(T ),H)→ B(H)

of quaternionic Banach C∗-algebras such that

(i) Ψc,T is unity–preserving; that is, ΨR,T (1σS(T )) = I.
(ii) Ψc,T (id) = T .

Continuous slice functional calculus for normal operators: the general case. The previous definitions of
f(T ) can be extended to a generic continuous slice function f ∈ S(σS(T ),H). We get a map f 7→ f(T )
that is R–linear and continuous: there exists C > 0 such that

‖f(T )‖ ≤ C‖f‖∞

for every f ∈ S(σS(T ),H). In the general case the ∗-homomorphism property is necessarily lost.
However, if e.g. f ∈ SC(σS(T ),H) or g ∈ Sc(σS(T ),H), then the multiplicative property

(f · g)(T ) = f(T )g(T )

remains true.

5.2. The slice regular case

A functional calculus for slice regular functions of a bounded operator T on a quaternionic two–sided
Banach module V has been developed in [3] as a generalization of the holomorphic functional calculus.
Let S−1

L (s, x) denote the Cauchy kernel for slice regular functions (cf. [3] or [8]).

Definition 5.2. [3, Def. 4.10.4] Let f be slice regular on ΩD ⊃ σS(T ). Fix any  ∈ S and define

f(T )reg :=
1

2π

∫
∂(U∩C)

S−1
L (s, T ) ds −1 f(s) ∈ B(V ).

It can be shown that on slice regular functions our continuous calculus for normal operators on
a quaternionic Hulbert space H coincides with the one defined by means of the Cauchy integral.

Proposition 5.3. Let T ∈ B(H) be normal and let f : U −→ H be a slice regular function defined on
a circular open neighborhood of σS(T ) in H. Then f(T )reg = f |σS(T )(T ), that is, the two functional
calculi coincide if T is normal and f is slice regular.



Slice Functional Calculus in Quaternionic Hilbert Spaces 7

References

[1] F. Brackx, R. Delanghe, and F. Sommen, Clifford analysis, Research Notes in Mathematics, vol. 76, Pitman
(Advanced Publishing Program), Boston, MA, 1982.

[2] F. Colombo, I. Sabadini, and D. C. Struppa, Slice monogenic functions, Israel J. Math. 171 (2009), 385–403.

[3] , Noncommutative functional calculus, Progress in Mathematics, vol. 289, Birkhäuser/Springer Basel
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