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Abstract

We present the main results of the theory of slice regular functions on
a real Cli�ord algebra Rn. Our theory includes the theory of slice regu-
lar functions of a quaternionic variable and the theory of slice monogenic
functions of a Cli�ord variable. In particular, we show that a fundamental
theorem of algebra with multiplicities holds for an ample class of polyno-
mials with coe�cients in Rn. We also give some hints and results about
the appearing (almost) complex manifold structure of the quadratic cone
of Rn, which is the natural domain of de�nition for slice regular functions.
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1 Introduction

The present paper has two aims. The �rst one is to review some of the most
relevant results about slice regularity on real Cli�ord algebras which can be
obtained with the novel approach proposed (in a more general setting) in [9] and
[11]. The second aim is to announce some results about the (almost) complex
manifold structure which appears when considering the �quadratic cone� of a
Cli�ord algebra (see Section 2 for de�nitions).

The concept of slice regularity for functions of one quaternionic, octonionic
or Cli�ord variable has been recently introduced by Gentili and Struppa in
[5, 6, 8] and by Colombo, Sabadini and Struppa in [1].

∗Work partially supported by MIUR (PRIN Project �Proprietà geometriche delle varietà
reali e complesse") and GNSAGA of INdAM
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In [9], a theory of slice regular functions on a real alternative algebra A
with a �xed antiinvolution was developed. The domains on which slice regular
functions can be de�ned are open subsets of what we call the quadratic cone of
the algebra. This cone is the whole algebra only in the case in which A is a real
division algebra (i.e. the complex numbers, the quaternions or the octonions).

If A is the algebra of quaternions, we get the theory of slice regular functions
of a quaternionic variable introduced by Gentili and Struppa [5, 6]. If A is the
Cli�ord algebra Cl0,n = Rn, the quadratic cone is a real algebraic (proper for
n ≥ 3) subset Qn of Rn, containing the subspace of paravectors. By restricting
the Cli�ord variables to the paravectors, we get the theory of slice monogenic
functions introduced by Colombo, Sabadini and Struppa in [1].

In Sections 3 and 4, we recall the de�nition of slice regular functions on Rn

and the algebra structure induced on these functions by the pointwise product
in the complexi�ed algebra Rn⊗C. This product for slice functions generalizes
the usual product of polynomials and power series.

In Section 5, we recall some properties of the zero set of slice functions. We
restrict our attention to admissible slice regular functions, which preserve many
relevant properties of classical holomorphic functions. We generalize a structure
theorem for the zero set proved by Pogorui and Shapiro [14] for quaternionic
polynomials and by Gentili and Stoppato [4] for quaternionic power series. We
also de�ne a notion of multiplicity for the zeros of an admissible slice regular
function.

Polynomials with right Cli�ord coe�cients are slice regular functions on the
quadratic cone. We obtain a fundamental theorem of algebra with multiplicities
for slice regular admissible polynomials. A version of this theorem was proved,
for quaternionic polynomials, by Eilenberg and Niven [3, 13] (case n = 2).
Gordon and Motzkin [12] proved, for polynomials on a (associative) division
ring, that the number of conjugacy classes containing zeros of p cannot exceed
the degree m of p. This estimate was improved on the quaternions by Pogorui
and Shapiro [14]. Gentili and Struppa [7] showed that, using the right de�nition
of multiplicity, the number of zeros of p equals the degree of the polynomial.
In [10], this strong form was generalized to the octonions. Recently, Colombo,
Sabadini and Struppa [1, 2] and Yang and Qian [15] proved some results on the
structure of the set of zeros of a polynomial with paravector coe�cients in a
Cli�ord algebra.

We give several examples that illustrate the relevance of the quadratic cone
and of the condition of admissibility for the algebraic and topological properties
of the zero set of a Cli�ord polynomial.

In the last section, we try to shed some light on an interesting aspect of
the �smooth� quadratic cone SQn = Qn \ R of the Cli�ord algebra Rn. In
the case n = 2 (the quaternions), SQ2 = H \ R has a natural almost complex
structure J related to the quaternionic product. It follows that (SQ2,J ) is a
2-dim complex manifold. We give an interpretation of slice regularity in terms
of holomorphicity w.r.t. this complex structure. We also show that this almost
complex structure has a generalization to SQn. In the general case, the results
are not de�nitive. If Rn satis�es a condition, which is ful�lled for n = 2 and 3,
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we can show that SQn has a natural almost complex structure J . In particular,
SQn is a smooth manifold of even dimension over R.

2 The quadratic cone of Rn

Let Rn denote the real Cli�ord algebra Cl0,n = R0,n. An element x of Rn can
be represented in the form x =

∑
K xKeK , with K = (i1, . . . , ik) an increasing

multiindex of length k, 0 ≤ k ≤ n, eK = ei1 · · · eik , e∅ = 1, xK ∈ R, x∅ = x0,
e1, . . . , en basis elements.

De�nition 1. Let Im(Rn) := {x ∈ Rn | x2 ∈ R, x /∈ R \ {0}}. The elements of
Im(Rn) are called purely imaginary elements of Rn.

De�nition 2. For every element x of Rn, the trace of x is t(x) := x+ xc ∈ Rn

and the (squared) norm of x is n(x) := xxc ∈ Rn. We call quadratic cone of Rn

the subset
Qn := {x ∈ Rn | t(x) ∈ R, n(x) ∈ R}.

We also set Sn := {J ∈ Qn | J2 = −1} (square roots of −1). We call smooth
quadratic cone of the Cli�ord algebra the set SQn := Qn \ R.

Proposition 1. The following statements hold.

1. Every x ∈ Qn satis�es the real quadratic equation x2 − x t(x) + n(x) = 0.

2. Every nonzero x ∈ Qn is invertible: x−1 = n(x)
−1
xc.

3. Sn = {x ∈ Rn | t(x) = 0, n(x) = 1}.

4. Qn contains the subspace of paravectors Rn+1 := {x ∈ Rn | [x]k =
0 for every k > 1}.

5. Qn is the real algebraic subset (proper for n > 2) of Rn de�ned by xK = 0,
x · (xeK) = 0 for every eK 6= 1 such that e2

K = 1.

Examples 1.
(1) n = 3. A direct computation shows that the quadratic cone is the 6�

dimensional real algebraic set

Q3 = {x ∈ R3 | x123 = 0, x2x13 − x1x23 − x3x12 = 0}.

(2) n = 4. The quadratic cone Q4 is the 8�dimensional real algebraic set
de�ned by

x14x23 − x13x24 + x12x34 = x3x24 − x2x34 − x23x4 = x3x14 − x1x34 − x13x4 = 0,

x2x14 − x1x24 − x12x4 = x2x13 − x1x23 − x12x3 = x123 = x124 = x134 = x234 = x1234 = 0.
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Remark 1. The de�nitions given above can be generalized to a �nite-dimensional,
alternative real algebra A with a �xed antiinvolution x 7→ xc (cf. [9]). In this
general case, the quadratic cone is de�ned as QA := R ∪ SQA, where

SQA := {x ∈ A | t(x) ∈ R, n(x) ∈ R, 4n(x) > t(x)2}

is called smooth quadratic cone.
For example, we can consider the quaternions H and the octonions O with

the usual conjugation: in these cases QH = H and QO = O, SH is a two-
dimensional sphere and SO is a six-dimensional sphere. Other examples are the
Cli�ord algebras Clp,q = Rp,q with Cli�ord conjugation as antiinvolution. For
example, in R1,2 the quadratic cone Q1,2 is a 6-dim real semi-algebraic set.

Proposition 2.

1. If x ∈ Qn, then there exist unique x0 ∈ R, y ∈ Im(Rn)∩Qn, with t(y) = 0,
such that x = x0 + y. We will denote y by Im(x).

For J ∈ Sn, let CJ := 〈1, J〉 ' C be the subalgebra generated by J . Then
Qn =

⋃
J∈Sn CJ and CI ∩ CJ = R for every I, J ∈ Sn, I 6= ±J .

2. SQn := Qn\R ' C+×Sn with di�eomeorphism x 7→
(
x0 + |y|

√
−1,

y

|y|

)
.

3 Slice regular functions

Let Cn = Rn ⊗R C be the complexi�ed Cli�ord algebra.

De�nition 3. Let D ⊆ C be an open subset. If a function F : D → Cn is
complex intrinsic, i.e. F (z) = F (z) for every z ∈ D such that z ∈ D, then F is
called a stem function on D. Let

ΩD := {x = α+ βJ ∈ CJ | α+ iβ ∈ D, J ∈ Sn}

be a circular set in the quadratic cone Qn. Any stem function F : D → Cn

induces a (left) slice function f =: I(F ) : ΩD → Rn: if x = α + βJ ∈ DJ :=
ΩD ∩ CJ and F = F1 + iF2, we set

f(x) := F1(z) + JF2(z) (z = α+ iβ).

There is an analogous de�nition for right slice functions when J is placed on
the right of F2(z). We will denote the real vector space of (left) slice functions
on ΩD by S(ΩD).

Left multiplication by i de�nes a complex structure on Cn. With respect to
this structure, a C1 function F = F1 + iF2 : D → Cn is holomorphic if and only
if its components F1, F2 satisfy the Cauchy�Riemann equations.

De�nition 4. A slice function is (left) slice regular if its stem function F is
holomorphic. We set SR(ΩD) := {f ∈ S(ΩD) | f = I(F ), F holomorphic}
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Examples 2.
(1) Standard polynomials p(x) =

∑m
j=0 x

jaj with right Cli�ord coe�cients
are slice regular functions on Qn.

(2) Convergent power series
∑

k x
kak are slice regular functions on the in-

tersection of Qn with a ball centered in the origin.
(3) Let J0 ∈ S2 ⊆ H be �xed. The function de�ned on SQ2 = H \ R by

f(x) = 1+JJ0 for x ∈ C+
J = {x = α+βJ ∈ H | β ≥ 0} is slice regular on H\R.

Proposition 3. Let f = I(F ) ∈ S(ΩD). Then f is slice regular on ΩD if and
only if the restriction fJ := f |CJ∩ΩD

: DJ = CJ ∩ΩD → Rn is holomorphic for
every J ∈ Sn with respect to the complex structures de�ned by left multiplication
by J .

Proposition 3 implies that if R2 = H is the algebra of quaternions, and D
intersects the real axis, then f is slice regular on ΩD if and only if it is Cullen
regular in the sense introduced by Gentili and Struppa in [5, 6]. If n > 2, slice
regularity generalizes the concept of slice monogenic functions introduced by
Colombo, Sabadini and Struppa in [1]. If f = I(F ) ∈ SR(ΩD), F ∈ C1(D) and
D intersects the real axis, then the restriction of f to the subspace of paravectors
is a slice monogenic function.

4 Product of slice functions

In general, the pointwise product of two slice functions is not a slice function.
However, pointwise product of stem functions induces a natural product on slice
functions.

De�nition 5. Let f = I(F ), g = I(G) ∈ S(ΩD). The product of f and g is the
slice function f · g := I(FG) ∈ S(ΩD).

Let f c := I(F c) = I(F1
c + iF2

c). The slice function N(f) := f · f c is called
the normal function of f .

This product is distributive and associative. If the components F1, F2 of the
�rst stem function F are real�valued, then (f · g)(x) = f(x)g(x) for every x ∈
ΩD. In this case, f = I(F ) is called real. Real slice functions are characterized
by the following property: for every J ∈ Sn, f(CJ ∩ ΩD) is contained in CJ .

Remark 2. Let f(x) =
∑

j x
jaj and g(x) =

∑
k x

kbk be polynomials or conver-
gent power series with coe�cients aj , bk ∈ Rn. Then the product f · g coincides
with the star product (f ∗ g)(x) :=

∑
n x

n
(∑

j+k=n ajbk
)
.

If f is slice regular, then also f c and N(f) are slice regular. If n = 2, then
the normal function N(f) is always real. For a general algebra Rn, this is not
true for every slice function. This is the motivation for the following de�nition.

De�nition 6. Let

Nn := {0} ∪ {x ∈ Rn | n(x) = n(xc) ∈ R \ {0}} ⊇ Qn
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be the normal cone of Rn. A slice function f = I(F ) is admissible if the spherical
value vsf(x) = 1

2 (f(x) + f(xc)) ∈ Nn for every x ∈ ΩD and the subspace
〈vsf(x), ∂sf(x)〉 ⊆ Nn for every x ∈ ΩD \ R. Here ∂sf(x) = 1

2 Im(x)−1(f(x) −
f(xc)) denotes the spherical derivative of f in x /∈ R.

We will denote by AR(ΩD) the space of slice regular admissible function on
ΩD. If f is real, then it is admissible. If f is admissible, then N(f) is real. The
normal cone Nn of Rn contains the subspace of paravectors. Therefore every
polynomial p(x) =

∑
n x

nan with paravector coe�cients is admissible.

5 Zeros of admissible slice functions

Let Sx := {y ∈ Qn | y = α + βI, I ∈ Sn} be the �sphere� containing x. The
zero set V (f) = {x ∈ ΩD | f(x) = 0} of an admissible slice function f has a
particular structure. For every �xed x ∈ Qn, Sx is entirely contained in V (f)
or it contains at most one zero of f . Moreover, if f is not real, there can be
isolated, non�real zeros.

Theorem 4. Let f ∈ S(ΩD) be an admissible slice function. Let x ∈ ΩD. Then
one of the following holds:

1. Sx ∩ V (f) = ∅.

2. Sx ⊆ V (f). Then x is called a real (if x ∈ R) or spherical (if x /∈ R) zero
of f .

3. Sx∩V (f) consists of a single, non-real point (a Sx-isolated non-real zero).

Moreover, V (N(f)) =
⋃

x∈V (f) Sx and if f ∈ AR(ΩD) is slice regular and

N(f) 6≡ 0, then CJ∩
⋃

x∈V (f) Sx is closed and discrete in DJ = CJ∩ΩD ∀J ∈ Sn.

In the quaternionic case, a structure theorem for the zero set of slice regular
functions was proved by Pogorui and Shapiro [14] for polynomials and by Gentili
and Stoppato [4] for power series. Similar results for polynomials with paravec-
tor coe�cients in Rn have been obtained by Colombo, Sabadini and Struppa
[1, 2] and by Yang and Qian [15].

Theorem 5. Let f ∈ AR(ΩD) and y ∈ ΩD. If Sy contains at least one zero of
f , then N(x− y) | N(f) in AR(ΩD).

De�nition 7. Let f ∈ AR(ΩD) with N(f) 6≡ 0. Given y ∈ V (f), we say that
y is a zero of f of multiplicity s if N(x− y)s | N(f) and N(x− y)s+1 - N(f).

If y is a spherical zero, then s ≥ 2. If p(x) =
∑m

j=0 x
jaj is an admissible

polynomial of degree m with coe�cients aj ∈ Rn, then N(p) has degree 2m and
real coe�cients. A su�cient condition for the admissibility of p is that the real
vector subspace 〈a0, . . . , am〉 is contained in Nn.
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Theorem 6 (Fundamental Theorem of Algebra with multiplicities). Let p(x) =∑m
j=0 x

jaj be an admissible polynomial of degree m > 0 with coe�cients in Rn.
Then V (p) = {y ∈ Qn | p(y) = 0} is non-empty. Moreover, there are distinct
�spheres� Sx1

, . . . ,Sxt
such that

V (p) ⊆
t⋃

k=1

Sxk
= V (N(p)), V (p) ∩ Sxj

6= ∅ for every j,

and, for any choice of zeros y1 ∈ Sx1 , . . . , yt ∈ Sxt of p,
∑t

k=1mp(yk) = m.

Remark 3. If r denotes the number of real zeros of the polynomial p, i the
number of isolated non�real zeros of p and s the number of �spheres� Sy (y /∈ R)
containing spherical zeros of p, we have that r + i+ 2s ≤ deg(p).

Examples 3. (1) Every polynomial
∑m

j=0 x
jaj , with paravector coe�cients aj

has m roots in Qn (counted with their multiplicities). If the coe�cients are real,
then it has at least one root in the paravector space Rn+1, since every �sphere�
Sy intersect Rn+1 (cf. [15, Theorem 3.1]).

(2) In R3, the polynomial p(x) = xe23 + e1 vanishes only at y = e123 /∈ Q3

(p is not admissible: e1, e23 ∈ N3, but e1 + e23 /∈ N3).
(3) An admissible polynomial of degree m, even in the case of non�spherical

zeros, can have more than m roots in the whole algebra. For example, p(x) =
x2−1 has four roots in R3, two in the quadratic cone (x = ±1) and two outside
it (x = ±e123).

(4) In R3, the admissible polynomial p(x) = x3 − 1 has zero set V (p) =

{1} ∪ Sy (y = − 1
2 +

√
3

2 J , J ∈ S3) in Q3, while in R3 \ Q3 the polynomial p
vanishes on two 2�spheres.

(5) In the algebras H,R3, the solutions of the equation x
2 = −1 are exactly

the elements of S2 ⊆ Q2 and S3 ⊆ Q3, but in R4 the equation x2 = −1 has
in�nite other roots outside the quadratic cone.

6 The almost complex structure of SQn

The smooth quadratic cone SQ2 = H\R has a natural almost complex structure
related to the quaternionic product: given x ∈ SQ2, let Jx := Im(x)/| Im(x)| ∈
S2 and J (x) the endomorphism of the tangent space Tx(SQ2) de�ned by left
multiplication by Jx. The di�eomorphism SQ2 ' C+ × S2 is compatible with
J . Therefore (SQ2,J ) is a 2-dim complex manifold, isomorphic to C+ × CP1.
Now two questions naturally arise.

1. Can we interpret slice regularity in terms of this almost complex structure?

2. Does it generalize to the cone SQn in Rn?

The �rst question has a positive answer.
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Proposition 7. If ΩD ∩R = ∅, then ΩD ⊆ SQ2 and SR(ΩD) ' Hol(ΩD,H⊗
C) by the map f = I(F ) 7→ F ′ = F ◦ π1 where π1 : SQ2 ' C+ × S2 → C+.

If ΩD ∩ R 6= ∅, then SR(ΩD) is isomorphic to the space

{F ′ ∈ Hol(ΩD\R,H⊗C)|F ′ has a C0 extension to ΩD s.t. F ′|ΩD∩R is H-valued}.

Examples 4. (1) F ′(x) =
∑m

j=0 z
jaj induces the polynomial f(x) =

∑m
j=0 x

jaj
(the extension of F ′ to H is H-valued on R).

(2) Let J0 ∈ S2 be �xed. The constant function F ′(x) = 1 + iJ0 induces the
slice regular function f(x) = 1 + JxJ0 (x ∈ C+

J ) (its continuous extension to H
is not H-valued on R).
Remark 4. The function f ∈ SR(H\R) in Ex.4.2 has normal function N(f) ≡ 0
and zero set V (f) = C+

J0
. In general, the non-spherical zero set of a slice regular

function with N(f) ≡ 0 is a �wing� WJ di�eomorphic toD (we assumeD ⊂ C+)
de�ned by a holomorphic curve J(z) : D → (S2,J ), of the form

WJ := {Re(z) + Im(z)J(z) | z ∈ D}.

For the second question posed above, the answer is not de�nitive. We are
able to prove the following result.

Theorem 8. Assume that for every y, z ∈ Sn, y 6= ±z, there exists x ∈ Nn,
x 6= 0, such that xyx−1 = z. Then:

1. SQn and Sn are smooth manifolds of even dimension over R.

2. SQn and Sn have an almost complex structure J de�ned by left multipli-
cation by Jx.

It can be shown that the assumption of the preceding theorem is true for
n = 2 and n = 3.

Examples 5. (1) n = 3. The normal cone is

N3 = {x ∈ R3 | x0x123 + x2x13 − x1x23 − x3x12 = 0}

(di�eomorphic to the Simons minimal cone in R8). The almost complex struc-
ture J on the smooth quadratic cone SQ3 = {x ∈ R3 \ R | x123 = 0, x2x13 −
x1x23 − x3x12 = 0} is integrable. More precisely, (SQ3,J ) is a 3-dim complex
manifold, isomorphic to C+ × CP1 × CP1.

(2) n = 4. The normal cone N4 is the 11�dimensional real algebraic set with
equations

x1x1234 + x124x13 − x12x134 − x123x14 = 0, x2x1234 + x124x23 − x12x234 − x123x24 = 0,

x3x1234 + x134x23 − x13x234 − x123x34 = 0, x4x1234 − x14x234 + x134x24 − x124x34 = 0,

x134x2 − x1x234 − x124x3 + x123x4 = 0, x0x1234 − x14x23 + x13x24 − x12x34 = 0,

x0x234 + x3x24 − x2x34 − x23x4 = 0, x0x134 + x3x14 − x1x34 − x13x4 = 0,

x0x124 + x2x14 − x1x24 − x12x4 = 0, x0x123 + x2x13 − x1x23 − x12x3 = 0,

while the quadratic cone Q4 is a 8-dim real algebraic set, singular at every real
point (cf. Ex.1.2 for its de�ning equations)
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Remark 5. If the assumption of the theorem is true for Rn, the complex dimen-
sion of SQn is equal to n for n = 2, 3, 4, 5, but starting from n = 6 it is larger
than n. The exact formula is

dimC(SQn) = 1 +
∑

k≡1 mod4
1≤k≤n−1

(
n− 1

k

)
∈ {2, 3, 4, 5, 7, 13, . . .}.

References

[1] F. Colombo, I. Sabadini, and D. C. Struppa. Slice monogenic functions.
Israel J. Math., 171:385�403, 2009.

[2] F. Colombo, I. Sabadini, and D. C. Struppa. An extension theorem for
slice monogenic functions and some of its consequences. Israel J. Math.,
177:369�389, 2010.

[3] S. Eilenberg and I. Niven. The �fundamental theorem of algebra� for quater-
nions. Bull. Amer. Math. Soc., 50:246�248, 1944.

[4] G. Gentili and C. Stoppato. Zeros of regular functions and polynomials of
a quaternionic variable. Michigan Math. J., 56(3):655�667, 2008.

[5] G. Gentili and D. C. Struppa. A new approach to Cullen-regular functions
of a quaternionic variable. C. R. Math. Acad. Sci. Paris, 342(10):741�744,
2006.

[6] G. Gentili and D. C. Struppa. A new theory of regular functions of a
quaternionic variable. Adv. Math., 216(1):279�301, 2007.

[7] G. Gentili and D. C. Struppa. On the multiplicity of zeroes of polynomials
with quaternionic coe�cients. Milan J. Math., 76:15�25, 2008.

[8] G. Gentili and D. C. Struppa. Regular functions on the space of Cayley
numbers. Rocky Mountain J. Math., 40(1):225�241, 2010.

[9] R. Ghiloni and A. Perotti. Slice regular functions on real alternative alge-
bras. To appear in Adv. Math., DOI 10.1016/j.aim.2010.08.015.

[10] R. Ghiloni and A. Perotti. Zeros of regular functions of quaternionic and
octonionic variable: a division lemma and the camshaft e�ect. To appear
in Ann. Mat. Pura Appl., DOI 10.1007/s10231-010-0162-1.

[11] R. Ghiloni and A. Perotti. A new approach to slice regularity on real
algebras. In I. Sabadini and F. Sommen, editors, Hypercomplex analysis
and its Applications, Trends Math. Birkhäuser, Basel, 2010.

[12] B. Gordon and T. S. Motzkin. On the zeros of polynomials over division
rings. Trans. Amer. Math. Soc., 116:218�226, 1965.

9



[13] I. Niven. Equations in quaternions. Amer. Math. Monthly, 48:654�661,
1941.

[14] A. Pogorui and M. Shapiro. On the structure of the set of zeros of quater-
nionic polynomials. Complex Var. Theory Appl., 49(6):379�389, 2004.

[15] Y. Yang and T. Qian. On sets of zeroes of Cli�ord algebra�valued polyno-
mials. To appear in Acta Math. Sin., 2009.

10


