
ON REGULAR HARMONICS OF ONE QUATERNIONIC
VARIABLE

A. PEROTTI

Abstract. We prove some results about the Fueter-regular homoge-

neous polynomials, which appear as components in the power series of

any quaternionic regular function. We obtain a differential condition
that characterizes the homogeneous polynomials whose trace on the unit

sphere extends as a regular polynomial. We apply this result to define an

injective linear operator from the space of complex spherical harmonics
to the module of regular homogeneous polynomials of a fixed degree k.

1. Introduction

Let B denote the unit ball in C2 ' H and S = ∂B the group of unit
quaternions. In §3.1 we obtain a differential condition that characterizes the
homogeneous polynomials whose restriction to S coincides with the restriction
of a regular polynomial. This result generalizes a similar characterization for
holomorphic extensions of polynomials proved by Kytmanov (cf. [2] and [3]).

In §3.2 we show how to define an injective linear operator R : Hk(S) →
Uψk from the space Hk(S) of complex-valued spherical harmonics of degree
k to the H-module Uψk of ψ-regular homogeneous polynomials of the same
degree (cf. §2.2 and §3.2 for precise definitions). In particular, we show how to
construct bases of the module of regular homogeneous polynomials of a fixed
degree starting from any choice of C-bases of the spaces of complex harmonic
homogeneous polynomials.

This work was partially supported by MIUR (Project “Proprietà geomet-
riche delle varietà reali e complesse”) and GNSAGA of INdAM.

2. Notations and definitions

2.1. Let Ω = {z ∈ C2 : ρ(z) < 0} be a bounded domain in C2 with smooth
boundary. Let ν denote the outer unit normal to ∂Ω and τ = iν. For every
F ∈ C1(Ω), let ∂nF = 1

2

(
∂F
∂ν + i∂F∂τ

)
be the normal component of ∂F (see Kyt-

manov [2]§§3.3 and 14.2). It can be expressed by means of the Hodge ∗-operator
and the Lebesgue surface measure as ∂nfdσ = ∗∂f |∂Ω

. In a neighbourhood of
∂Ω we have the decomposition of ∂F in the tangential and the normal parts:
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∂F = ∂bF+∂nF ∂ρ

|∂ρ| . We denote by L the tangential Cauchy-Riemann operator

L = 1
|∂ρ|

(
∂ρ
∂z̄2

∂
∂z̄1

− ∂ρ
∂z̄1

∂
∂z̄2

)
.

Let H be the algebra of quaternions q = x0 + ix1 + jx2 + kx3, where
x0, x1, x2, x3 are real numbers and i, j, k denote the basic quaternions. We
identify the space C2 with the set H by means of the mapping that associates
the quaternion q = z1 + z2j to (z1, z2) = (x0 + ix1, x2 + ix3). We refer to
Sudbery [8] for the basic facts of quaternionic analysis. We will denote by D
the left Cauchy-Riemann-Fueter operator

D =
∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3
.

A quaternionic C1 function f = f1+f2j, is (left-)regular on a domain Ω ⊆ H
if Df = 0 on Ω. We prefer to work with another class of regular functions,
which is more explicitely connected with the hyperkähler structure of H. It is
defined by the Cauchy-Riemann-Fueter operator associated to the structural
vector ψ = {1, i, j,−k}:

D′ =
∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
− k

∂

∂x3
= 2

(
∂

∂z̄1
+ j

∂

∂z̄2

)
.

A quaternionic C1 function f = f1 + f2j, is called (left-)ψ-regular on a domain
Ω, if D′f = 0 on Ω. This condition is equivalent to the following system of
complex differential equations:

∂f1
∂z̄1

=
∂f2
∂z2

,
∂f1
∂z̄2

= −∂f2
∂z1

.

The identity mapping is ψ-regular, and any holomorphic mapping (f1, f2)
on Ω defines a ψ-regular function f = f1 + f2j. This is no more true if we
replace ψ-regularity with regularity. Moreover, the complex components of a
ψ-regular function are either both holomorphic or both non-holomorphic (cf.
Vasilevski [9], Mitelman et al [4] and Perotti [5]). Let γ be the transformation
of C2 defined by γ(z1, z2) = (z1, z̄2). Then a C1 function f is regular on the
domain Ω if, and only if, f ◦ γ is ψ-regular on γ−1(Ω).

2.2. The two-dimensional Bochner-Martinelli form U(ζ, z) is the first complex
component of the Cauchy-Fueter kernel G′(p− q) associated to ψ-regular func-
tions (cf. Fueter [1], Vasilevski [9], Mitelman et al [4]). Let q = z1 + z2j, p =
ζ1+ζ2j, σ(q) = dx[0]−idx[1]+jdx[2]+kdx[3], where dx[k] denotes the product
of dx0, dx1, dx2, dx3 with dxk deleted. Then G′(p− q)σ(p) = U(ζ, z)+ω(ζ, z)j,
where ω(ζ, z) is the complex (1, 2)-form

ω(ζ, z) = − 1
4π2

|ζ − z|−4((ζ̄1 − z̄1)dζ1 + (ζ̄2 − z̄2)dζ2) ∧ dζ.

Here dζ = dζ1 ∧ dζ2 and we choose the orientation of C2 given by the volume
form 1

4dz1 ∧ dz2 ∧ dz1 ∧ dz2. Given g(ζ, z) = 1
4π2 |ζ − z|−2, we can also write

U(ζ, z) = −2 ∗ ∂ζg(ζ, z) and ω(ζ, z) = −∂ζ(g(ζ, z)dζ).
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3. Regular polynomials

3.1. In this section we will obtain a differential condition that characterizes the
homogeneous polynomials whose restrictions to the unit sphere extend regularly
or ψ-regularly. We will use a computation made by Kytmanov in [3] (cf. also
[2] Corollary 23.4), where the analogous result for holomorphic extensions is
proved.

Let Ω be the unit ball B in C2, S = ∂B the unit sphere. In this case the
operators ∂n and L have the following forms:

∂n = z̄1
∂

∂z̄1
+ z̄2

∂

∂z̄2
, L = z2

∂

∂z̄1
− z1

∂

∂z̄2

and they preserve harmonicity. Let ∆ = ∂2

∂z1∂z̄1
+ ∂2

∂z2∂z̄2
be the Laplacian in

C2 and Dk the differential operator

Dk =
∑

0≤l≤k/2−1

(k − 2l − 1)!(2l − 1)!!
k!(l + 1)!

2l∆l+1.

Theorem 1. Let f = f1 + f2j be a H-valued, homogeneous polynomial of
degree k. Then its restriction to S extends as a ψ-regular function into B if,
and only if,

(∂n −Dk)f1 + L(f2) = 0 on S.

Proof. In the first part we can proceed as in [3]. The harmonic extension f̃1
of f1|S into B is given by Gauss’s formula: f̃1 =

∑
s≥0 gk−2s, where gk−2s is

the homogeneous harmonic polynomial of degree k − 2s defined by

gk−2s =
k − 2s+ 1

s!(k − s+ 1)!

∑
j≥0

(−1)j(k − j − 2s)!
j!

|z|2j∆j+sf1. (∗)

Then ∂nf̃1 = ∂nf1−Dkf1 on S (cf. [2] §23). Let f̃2 be the harmonic extension
of f2 into B and f̃ = f̃1 + f̃2j. Then (∂n−Dk)f1 +L(f2) = 0 on S is equivalent
to ∂nf̃1 + L(f2) = 0 on S. We now show that this implies the ψ-regularity of
f̃ . Let F+ and F− be the ψ-regular functions defined respectively on B and
on C2 \B by the Cauchy-Fueter integral of f̃ :

F±(z) =
∫
S

U(ζ, z)f̃(ζ) +
∫
S

ω(ζ, z)jf̃(ζ).

From the equalities U(ζ, z) = −2∗∂ζg(ζ, z), ω(ζ, z) = −∂ζ(g(ζ, z)dζ̄), we get
that

F−(z) = −2
∫
S

(f̃1(ζ) + f2(ζ)j)∗∂ζg(ζ, z)−
∫
S

∂ζ(g(ζ, z)dζ)(f̃1j − f̃2)

for every z /∈ B. From the complex Green formula and Stokes’ Theorem and
from the equality ∂f̃2 ∧ dζ|S = 2L(f2)dσ on S, we get that the first complex
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component of F−(z) is

−2
∫
S

f̃1∂ngdσ +
∫
S

f̃2∂ζg ∧ dζ = −2
∫
S

g∂nf̃1dσ −
∫
S

g∂ζ f̃2 ∧ dζ

= −2
∫
S

g(∂nf̃1 + L(f2))dσ

and then it vanishes on C2 \ B. Therefore, F− = F2j, with F2 a holomorphic
function that can be holomorphically continued to the whole space. Let F̃− =
F̃2j be such extension. Then F = F+−F̃−

|B is a ψ-regular function on B (indeed
a polynomial of the same degree k), continuous on B, such that F|S = f|S . The
converse is immediate from the equations of ψ-regularity. �

Let N and T be the differential operators

N = z̄1
∂

∂z̄1
+ z2

∂

∂z2
, T = z̄2

∂

∂z̄1
− z1

∂

∂z2
.

T is a tangential operator w.r.t. S, while N is non-tangential, such that
N(ρ) = |∂ρ|2, Re(N) = |∂ρ|Re(∂n), where ρ = |z1|2 + |z2|2 − 1. Let γ be the
reflection introduced at the end of §1.1. The operator Dk is γ-invariant, i.e.
Dk(f ◦ γ) = Dk(f) ◦ γ, since ∆ is invariant. It follows a criterion for regularity
of homogeneous polynomials.

Corollary 2. Let f = f1 + f2j be a H-valued, homogeneous polynomial of
degree k. Then its restriction to S extends as a regular function into B if, and
only if,

(N −Dk)f1 + T (f2) = 0 on S.

Let g =
∑
k g

k be the homogeneous decomposition of a polynomial g. After
replacing Dkg by

∑
kDkg

k, we can extend the preceding results also to non-
homogeneous polynomials.

3.2. Let Pk denote the space of homogeneous complex-valued polynomials of
degree k on C2, and Hk the space of harmonic polynomials in Pk. The space
Hk is the sum of the pairwise L2(S)-orthogonal spaces Hp,q (p+ q = k), whose
elements are the harmonic homogeneous polynomials of degree p in z1, z2 and
q in z̄1, z̄2 (cf. for example Rudin [7]§12.2). The spaces Hk and Hp,q can be
identified with the spaces of the restrictions of their elements to S (spherical
harmonics). These spaces will be denoted by Hk(S) and Hp,q(S) respectively.

Let Uψk be the right H-module of (left)ψ-regular homogeneous polynomials
of degree k. The elements of the modules Uψk can be identified with their
restrictions to S, which we will call regular harmonics.

Theorem 3. For every f1 ∈ Pk, there exists f2 ∈ Pk such that the trace
of f = f1 + f2j on S extends as a ψ-regular polynomial of degree at most k on

H. If f1 ∈ Hk, then f2 ∈ Hk and f = f1 + f2j ∈ Uψk .
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Proof. We can suppose that f1 has degree p in z and q in z̄, p + q = k,
and then extend by linearity. Let f̃1 =

∑
s≥0 gp−s,q−s be the harmonic exten-

sion of f1 into B, where gp−s,q−s ∈ Hp−s,q−s is given by formula (*). Then
∂nL(gp−s,q−s) = (p− s+ 1)L(gp−s,q−s). We set

f̃2 =
∑
s≥0

1
p− s+ 1

L(gp−s,q−s) ∈
⊕
s≥0

Hk−2s.

Then ∂nf̃2 = L(f1) on S and we can conclude as in the proof of Theorem 1
that f̃ = f̃1 + f̃2j is a ψ-regular polynomial of degree at most k. Now it suffices
to define

f2 =
∑
s≥0

|z|2s

p− s+ 1
L(gp−s,q−s) ∈ Pk

to get a homogeneous polynomial f = f1 + f2j, of degree k, that has the
same restriction to S as f̃ . If f1 ∈ Hk, then f̃1 = f1, f̃2 = f2 and therefore
f ∈ Uψk . �

Let C : Uψk → Hk(S) be the complex-linear operator that associates to
f = f1 + f2j the restriction to S of its first complex component f1. The
function f̃ in the preceding proof gives a right inverse R : Hk(S) → Uψk of the
operator C. The function R(f1) is uniquely determined by the orthogonality
condition with respect to the functions holomorphic on a neighbourhood of B:∫

S

(R(f1)− f1)hdσ = 0 ∀h ∈ O(B).

Corollary 4. (i) The restriction operator C defined on Uψk induces iso-
morphisms of real vector spaces

Uψk
Hk,0j

' Hk(S),
Uψk

Hk,0 +Hk,0j
' Hk(S)
Hk,0(S)

.

(ii) Uψk has dimension 1
2 (k + 1)(k + 2) over H.

Proof. The first part follows from kerC = {f = f1 + f2j ∈ Uψk : f1 =
0 on S} = Hk,0j. Part (ii) can be obtained from any of the above isomorphisms,
since Hk,0 (as every space Hp,q, p + q = k) and Hk(S) have real dimensions
respectively 2(k + 1) and 2(k + 1)2. �

As an application of Corollary 2, we have another proof of the known re-
sult (cf. Sudbery [8] Theorem 7) that the right H-module Uk of left-regular
homogeneous polynomials of degree k has dimension 1

2 (k + 1)(k + 2) over H.
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3.3. The operator R : Hk(S) =
⊕

p+q=kHp,q(S) → Uψk can also be used to
obtain H-bases for Uψk starting from bases of the complex spaces Hp,q(S). On
Hp,q(S), R acts in the following way:

R(h) = h+M(h)j, where M(h) =
1

p+ 1
L(h) ∈ Hq−1,p+1 (h ∈ Hp,q)

Note that M ≡ 0 on Hk,0(S). If q > 0, M2 = −Id on Hp,q(S), since qh =
∂nh = −L(M(h)) on S, and therefore

h = −1
q
L(M(h)) = − 1

q(p+ 1)
LL(h) = −M2(h).

If k = 2m+1 is odd, thenM is a complex conjugate isomorphism ofHm,m+1(S).
Then M induces a quaternionic structure on this space, which has real dimen-
sion 4(m+ 1). We can find complex bases of Hm,m+1(S) of the form

{h1,M(h1), . . . , hm+1,M(hm+1)}.

Theorem 5. Let Bp,q denote a complex base of the space Hp,q(S) (p+ q =
k). Then:

(i) if k = 2m is even, a basis of Uψk over H is given by the set

Bk = {R(h) : h ∈ Bp,q, p+ q = k, 0 ≤ q ≤ p ≤ k}.

(ii) if k = 2m+ 1 is odd, a basis of Uψk over H is given by

Bk = {R(h) : h ∈ Bp,q, p+ q = k, 0 ≤ q < p ≤ k} ∪ {R(h1), . . . , R(hm+1)},

where h1, . . . , hm+1 are chosen such that the set

{h1,M(h1), . . . , hm+1,M(hm+1)}

forms a complex basis of Hm,m+1(S).
If the bases Bp,q are orthogonal in L2(S) and h1, . . . , hm+1 ∈ Hm,m+1(S)

are mutually orthogonal, then Bk is orthogonal, with norms

‖R(h)‖L2(S,H) =
(
p+ q + 1
p+ 1

)1/2

‖h‖L2(S) (h ∈ Bp,q)

w.r.t. the scalar product of L2(S,H).

Proof. From dimension count, it suffices to prove that the sets Bk are linearly
independent. When q ≤ p, q′ ≤ p′, p + q = p′ + q′ = k, the spaces Hp,q and
Hq′−1,p′+1 are distinct. Since R(h) = h + M(h)j ∈ Hp,q ⊕ Hq−1,p+1j, this
implies the independence over H of the images {R(h) : h ∈ Bp,q}. It remains
to consider the case when k = 2m+ 1 is odd. If h ∈ Hm,m+1(S), the complex
components h and M(h) of R(h) belong to the same space. The independence
of {R(h1), . . . , R(hm+1)} over H follows from the particular form of the complex
basis chosen in Hm,m+1(S).
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The scalar product of L(h) and L(h′) in Hp,q(S) is

(L(h), L(h′)) = (h, L∗L(h′)) = −(h, LL(h′)) = q(p+ 1)(h, h′),

since the adjoint L∗ is equal to −L (cf. [7]§18.2.2) and LL = q(p + 1)M2 =
−q(p+1)Id. Therefore, if h, h′ are orthogonal, M(h) and M(h′) are orthogonal
in Hq−1,p+1 and then also R(h) and R(h′). Finally, the norm of R(h), h ∈
Hp,q(S), is

‖R(h)‖2 = ‖h‖2 + ‖M(h)‖2 = ‖h‖2 +
1

(p+ 1)2
‖L(h)‖2 =

p+ q + 1
p+ 1

‖h‖2

and this concludes the proof. �

From Theorem 3 it is immediate to obtain also bases of the right H-module
Uk of left-regular homogeneous polynomials of degree k.

Examples. (i) The case k = 2. Starting from the orthogonal bases B2,0 =
{z2

1 , 2z1z2, z
2
2} of H2,0 and B1,1 = {z1z̄2, |z1|2 − |z2|2, z2z̄1} of H1,1 we get the

orthogonal basis of regular harmonics

B2 = {z2
1 , 2z1z2, z

2
2 , z1z̄2 −

1
2
z̄2
1j, |z1|2 − |z2|2 + z̄1z̄2j, z2z̄1 +

1
2
z̄2
2j}

of the six-dimensional right H-module Uψ2 .

(ii) The case k = 3. From the orthogonal bases

B3,0 = {z3
1 , 3z

2
1z2, 3z1z

2
2 , z

3
2}, B2,1 = {z2

1 z̄2, 2z1|z2|2−z1|z1|2, 2z2|z1|2−z2|z2|2, z2
2 z̄1},

B1,2 = {h1 = z1z̄
2
2 ,M(h1) = −z2z̄2

1 , h2 = −2z̄2|z1|2+z̄2|z2|2,M(h2) = −2z̄1|z2|2+z̄1|z1|2},
we get the orthogonal basis of regular harmonics

B3 = {z3
1 , 3z

2
1z2, 3z1z

2
2 , z

3
2 , z

2
1 z̄2−

1
3
z̄3
1j, 2z1|z2|2−z1|z1|2−z̄2

1 z̄2j, 2z2|z1|2−z2|z2|2+z̄1z̄2
2j,

z2
2 z̄1 +

1
3
z̄3
2j, z1z̄

2
2 − z2z̄

2
1j,−2z̄2|z1|2 + z̄2|z2|2 + (z̄1|z1|2 − 2z̄1|z2|2+)j}.

of the ten-dimensional right H-module Uψ3 .
In general, for any k, an orthogonal basis of Hp,q (p + q = k) is given by

the polynomials {P kq,l}l=0,...,k defined by formula (6.14) in Sudbery [8]. The
basis of Uk obtained from these bases by means of Theorem 3 and applying the
reflection γ is essentially the same given in Proposition 8 of Sudbery [8].

Another spanning set of the space Hp,q is given by the functions

gp,qα (z1, z2) = (z1 + αz2)p(z̄2 − αz̄1)q (α ∈ C)

(cf. Rudin [7]§12.5.1). Since M(gp,qα ) = (−1)qqᾱp+q

p+1 gq−1,p+1
−1/ᾱ for α 6= 0 and

M(gp,q0 ) = − q
p+1z

q−1
2 z̄p+1

1 , where we set gp,qα ≡ 0 if p < 0, from Theorem 3 we

get that Uψk is spanned over H by the polynomials

R(gp,qα ) =

{
gp,qα + (−1)qqᾱp+q

p+1 gq−1,p+1
−1/ᾱ j for α 6= 0

zp1 z̄
q
2 −

q
p+1z

q−1
2 z̄p+1

1 j for α = 0
(α ∈ C, p+ q = k)
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Any choice of k+ 1 distinct numbers α0, α1, . . . , αk gives rise to a basis of Uψk .
The results obtained in this paper enabled the writing of a Mathematica

package [6], named RegularHarmonics, which implements efficient computa-
tions with regular and ψ-regular functions and with harmonic and holomorphic
functions of two complex variables.
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