ON REGULAR HARMONICS OF ONE QUATERNIONIC VARIABLE

A. PEROTTI

ABSTRACT. We prove some results about the Fueter-regular homogeneous polynomials, which appear as components in the power series of any quaternionic regular function. We obtain a differential condition that characterizes the homogeneous polynomials whose trace on the unit sphere extends as a regular polynomial. We apply this result to define an injective linear operator from the space of complex spherical harmonics to the module of regular homogeneous polynomials of a fixed degree k.

1. Introduction

Let *B* denote the unit ball in $\mathbb{C}^2 \simeq \mathbb{H}$ and $S = \partial B$ the group of unit quaternions. In §3.1 we obtain a differential condition that characterizes the homogeneous polynomials whose restriction to *S* coincides with the restriction of a regular polynomial. This result generalizes a similar characterization for holomorphic extensions of polynomials proved by Kytmanov (cf. [2] and [3]).

In §3.2 we show how to define an injective linear operator $R : \mathcal{H}_k(S) \to U_k^{\psi}$ from the space $\mathcal{H}_k(S)$ of complex-valued spherical harmonics of degree k to the \mathbb{H} -module U_k^{ψ} of ψ -regular homogeneous polynomials of the same degree (cf. §2.2 and §3.2 for precise definitions). In particular, we show how to construct bases of the module of regular homogeneous polynomials of a fixed degree starting from any choice of \mathbb{C} -bases of the spaces of complex harmonic homogeneous polynomials.

This work was partially supported by MIUR (Project "Proprietà geometriche delle varietà reali e complesse") and GNSAGA of INdAM.

2. Notations and definitions

2.1. Let $\Omega = \{z \in \mathbb{C}^2 : \rho(z) < 0\}$ be a bounded domain in \mathbb{C}^2 with smooth boundary. Let ν denote the outer unit normal to $\partial\Omega$ and $\tau = i\nu$. For every $F \in C^1(\overline{\Omega})$, let $\overline{\partial}_n F = \frac{1}{2} \left(\frac{\partial F}{\partial \nu} + i \frac{\partial F}{\partial \tau} \right)$ be the normal component of $\overline{\partial}F$ (see Kytmanov [2]§§3.3 and 14.2). It can be expressed by means of the Hodge *-operator and the Lebesgue surface measure as $\overline{\partial}_n f d\sigma = *\overline{\partial} f_{|\partial\Omega}$. In a neighbourhood of $\partial\Omega$ we have the decomposition of $\overline{\partial}F$ in the tangential and the normal parts:

1

¹⁹⁹¹ Mathematics Subject Classification. 32A30, 30G35, 32V10, 32W05.

Key words and phrases. Quaternionic regular functions, spherical harmonics.

 $\overline{\partial}F = \overline{\partial}_b F + \overline{\partial}_n F \frac{\overline{\partial}\rho}{|\overline{\partial}\rho|}.$ We denote by L the tangential Cauchy-Riemann operator $L = \frac{1}{|\overline{\partial}\rho|} \left(\frac{\partial\rho}{\partial \bar{z}_2} \frac{\partial}{\partial \bar{z}_1} - \frac{\partial\rho}{\partial \bar{z}_1} \frac{\partial}{\partial \bar{z}_2} \right).$ Let \mathbb{H} be the algebra of quaternions $q = x_0 + ix_1 + jx_2 + kx_3$, where

Let \mathbb{H} be the algebra of quaternions $q = x_0 + ix_1 + jx_2 + kx_3$, where x_0, x_1, x_2, x_3 are real numbers and i, j, k denote the basic quaternions. We identify the space \mathbb{C}^2 with the set \mathbb{H} by means of the mapping that associates the quaternion $q = z_1 + z_2 j$ to $(z_1, z_2) = (x_0 + ix_1, x_2 + ix_3)$. We refer to Sudbery [8] for the basic facts of quaternionic analysis. We will denote by \mathcal{D} the left Cauchy-Riemann-Fueter operator

$$\mathcal{D} = \frac{\partial}{\partial x_0} + i\frac{\partial}{\partial x_1} + j\frac{\partial}{\partial x_2} + k\frac{\partial}{\partial x_3}$$

A quaternionic C^1 function $f = f_1 + f_2 j$, is (*left-*)regular on a domain $\Omega \subseteq \mathbb{H}$ if $\mathcal{D}f = 0$ on Ω . We prefer to work with another class of regular functions, which is more explicitly connected with the hyperkähler structure of \mathbb{H} . It is defined by the Cauchy-Riemann-Fueter operator associated to the structural vector $\psi = \{1, i, j, -k\}$:

$$\mathcal{D}' = \frac{\partial}{\partial x_0} + i\frac{\partial}{\partial x_1} + j\frac{\partial}{\partial x_2} - k\frac{\partial}{\partial x_3} = 2\left(\frac{\partial}{\partial \bar{z}_1} + j\frac{\partial}{\partial \bar{z}_2}\right)$$

A quaternionic C^1 function $f = f_1 + f_2 j$, is called $(left)\psi$ -regular on a domain Ω , if $\mathcal{D}' f = 0$ on Ω . This condition is equivalent to the following system of complex differential equations:

$$\frac{\partial f_1}{\partial \bar{z}_1} = \frac{\partial f_2}{\partial z_2}, \qquad \frac{\partial f_1}{\partial \bar{z}_2} = -\frac{\partial f_2}{\partial z_1}.$$

The identity mapping is ψ -regular, and any holomorphic mapping (f_1, f_2) on Ω defines a ψ -regular function $f = f_1 + f_2 j$. This is no more true if we replace ψ -regularity with regularity. Moreover, the complex components of a ψ -regular function are either both holomorphic or both non-holomorphic (cf. Vasilevski [9], Mitelman et al [4] and Perotti [5]). Let γ be the transformation of \mathbb{C}^2 defined by $\gamma(z_1, z_2) = (z_1, \overline{z}_2)$. Then a C^1 function f is regular on the domain Ω if, and only if, $f \circ \gamma$ is ψ -regular on $\gamma^{-1}(\Omega)$.

2.2. The two-dimensional Bochner-Martinelli form $U(\zeta, z)$ is the first complex component of the Cauchy-Fueter kernel G'(p-q) associated to ψ -regular functions (cf. Fueter [1], Vasilevski [9], Mitelman et al [4]). Let $q = z_1 + z_2 j$, $p = \zeta_1 + \zeta_2 j$, $\sigma(q) = dx[0] - idx[1] + jdx[2] + kdx[3]$, where dx[k] denotes the product of dx_0, dx_1, dx_2, dx_3 with dx_k deleted. Then $G'(p-q)\sigma(p) = U(\zeta, z) + \omega(\zeta, z)j$, where $\omega(\zeta, z)$ is the complex (1, 2)-form

$$\omega(\zeta, z) = -\frac{1}{4\pi^2} |\zeta - z|^{-4} ((\bar{\zeta}_1 - \bar{z}_1)d\zeta_1 + (\bar{\zeta}_2 - \bar{z}_2)d\zeta_2) \wedge \overline{d\zeta}.$$

Here $\overline{d\zeta} = \overline{d\zeta_1} \wedge \overline{d\zeta_2}$ and we choose the orientation of \mathbb{C}^2 given by the volume form $\frac{1}{4}dz_1 \wedge dz_2 \wedge \overline{dz_1} \wedge \overline{dz_2}$. Given $g(\zeta, z) = \frac{1}{4\pi^2}|\zeta - z|^{-2}$, we can also write $U(\zeta, z) = -2 * \partial_{\zeta} g(\zeta, z)$ and $\omega(\zeta, z) = -\partial_{\zeta} (g(\zeta, z)\overline{d\zeta})$.

3. Regular polynomials

3.1. In this section we will obtain a differential condition that characterizes the homogeneous polynomials whose restrictions to the unit sphere extend regularly or ψ -regularly. We will use a computation made by Kytmanov in [3] (cf. also [2] Corollary 23.4), where the analogous result for holomorphic extensions is proved.

Let Ω be the unit ball B in \mathbb{C}^2 , $S = \partial B$ the unit sphere. In this case the operators $\overline{\partial}_n$ and L have the following forms:

$$\overline{\partial}_n = \bar{z}_1 \frac{\partial}{\partial \bar{z}_1} + \bar{z}_2 \frac{\partial}{\partial \bar{z}_2}, \qquad L = z_2 \frac{\partial}{\partial \bar{z}_1} - z_1 \frac{\partial}{\partial \bar{z}_2}$$

and they preserve harmonicity. Let $\Delta = \frac{\partial^2}{\partial z_1 \partial \bar{z}_1} + \frac{\partial^2}{\partial z_2 \partial \bar{z}_2}$ be the Laplacian in \mathbb{C}^2 and D_k the differential operator

$$D_k = \sum_{0 \le l \le k/2 - 1} \frac{(k - 2l - 1)!(2l - 1)!!}{k!(l + 1)!} 2^l \Delta^{l+1}.$$

Theorem 1. Let $f = f_1 + f_2 j$ be a \mathbb{H} -valued, homogeneous polynomial of degree k. Then its restriction to S extends as a ψ -regular function into B if, and only if,

$$(\overline{\partial}_n - D_k)f_1 + \overline{L(f_2)} = 0$$
 on S

Proof. In the first part we can proceed as in [3]. The harmonic extension \tilde{f}_1 of $f_{1|S}$ into B is given by Gauss's formula: $\tilde{f}_1 = \sum_{s\geq 0} g_{k-2s}$, where g_{k-2s} is the homogeneous harmonic polynomial of degree k - 2s defined by

$$g_{k-2s} = \frac{k-2s+1}{s!(k-s+1)!} \sum_{j\geq 0} \frac{(-1)^j (k-j-2s)!}{j!} |z|^{2j} \Delta^{j+s} f_1. \tag{(*)}$$

Then $\overline{\partial}_n \tilde{f}_1 = \overline{\partial}_n f_1 - D_k f_1$ on S (cf. [2] §23). Let \tilde{f}_2 be the harmonic extension of f_2 into B and $\tilde{f} = \tilde{f}_1 + \tilde{f}_2 j$. Then $(\overline{\partial}_n - D_k) f_1 + \overline{L(f_2)} = 0$ on S is equivalent to $\overline{\partial}_n \tilde{f}_1 + \overline{L(f_2)} = 0$ on S. We now show that this implies the ψ -regularity of \tilde{f} . Let F^+ and F^- be the ψ -regular functions defined respectively on B and on $\mathbb{C}^2 \setminus \overline{B}$ by the Cauchy-Fueter integral of \tilde{f} :

$$F^{\pm}(z) = \int_{S} U(\zeta, z)\tilde{f}(\zeta) + \int_{S} \omega(\zeta, z)j\tilde{f}(\zeta).$$

From the equalities $U(\zeta, z) = -2*\partial_{\zeta}g(\zeta, z), \ \omega(\zeta, z) = -\partial_{\zeta}(g(\zeta, z)d\overline{\zeta})$, we get that

for every $z \notin \overline{B}$. From the complex Green formula and Stokes' Theorem and from the equality $\overline{\partial} \tilde{f}_2 \wedge d\zeta_{|S|} = 2L(f_2)d\sigma$ on S, we get that the first complex component of $F^{-}(z)$ is

$$-2\int_{S}\tilde{f}_{1}\partial_{n}gd\sigma + \int_{S}\overline{\tilde{f}_{2}}\partial_{\zeta}g\wedge\overline{d\zeta} = -2\int_{S}g\overline{\partial}_{n}\tilde{f}_{1}d\sigma - \int_{S}g\partial_{\zeta}\overline{\tilde{f}_{2}}\wedge\overline{d\zeta}$$
$$= -2\int_{S}g(\overline{\partial}_{n}\tilde{f}_{1} + \overline{L(f_{2})})d\sigma$$

and then it vanishes on $\mathbb{C}^2 \setminus \overline{B}$. Therefore, $F^- = F_2 j$, with F_2 a holomorphic function that can be holomorphically continued to the whole space. Let $\tilde{F}^- = \tilde{F}_2 j$ be such extension. Then $F = F^+ - \tilde{F}_{|B|}$ is a ψ -regular function on B (indeed a polynomial of the same degree k), continuous on \overline{B} , such that $F_{|S|} = f_{|S|}$. The converse is immediate from the equations of ψ -regularity.

Let N and T be the differential operators

$$N = \bar{z}_1 \frac{\partial}{\partial \bar{z}_1} + z_2 \frac{\partial}{\partial z_2}, \qquad T = \bar{z}_2 \frac{\partial}{\partial \bar{z}_1} - z_1 \frac{\partial}{\partial z_2}.$$

T is a tangential operator w.r.t. S, while N is non-tangential, such that $N(\rho) = |\overline{\partial}\rho|^2$, $\operatorname{Re}(N) = |\overline{\partial}\rho| \operatorname{Re}(\overline{\partial}_n)$, where $\rho = |z_1|^2 + |z_2|^2 - 1$. Let γ be the reflection introduced at the end of §1.1. The operator D_k is γ -invariant, i.e. $D_k(f \circ \gamma) = D_k(f) \circ \gamma$, since Δ is invariant. It follows a criterion for regularity of homogeneous polynomials.

Corollary 2. Let $f = f_1 + f_2 j$ be a \mathbb{H} -valued, homogeneous polynomial of degree k. Then its restriction to S extends as a regular function into B if, and only if,

$$(N - D_k)f_1 + T(f_2) = 0$$
 on S.

Let $g = \sum_k g^k$ be the homogeneous decomposition of a polynomial g. After replacing $D_k g$ by $\sum_k D_k g^k$, we can extend the preceding results also to nonhomogeneous polynomials.

3.2. Let \mathcal{P}_k denote the space of homogeneous complex-valued polynomials of degree k on \mathbb{C}^2 , and \mathcal{H}_k the space of harmonic polynomials in \mathcal{P}_k . The space \mathcal{H}_k is the sum of the pairwise $L^2(S)$ -orthogonal spaces $\mathcal{H}_{p,q}$ (p+q=k), whose elements are the harmonic homogeneous polynomials of degree p in z_1, z_2 and q in \bar{z}_1, \bar{z}_2 (cf. for example Rudin [7]§12.2). The spaces \mathcal{H}_k and $\mathcal{H}_{p,q}$ can be identified with the spaces of the restrictions of their elements to S (spherical harmonics). These spaces will be denoted by $\mathcal{H}_k(S)$ and $\mathcal{H}_{p,q}(S)$ respectively.

Let U_k^{ψ} be the right \mathbb{H} -module of $(\text{left})\psi$ -regular homogeneous polynomials of degree k. The elements of the modules U_k^{ψ} can be identified with their restrictions to S, which we will call regular harmonics.

Theorem 3. For every $f_1 \in \mathcal{P}_k$, there exists $f_2 \in \mathcal{P}_k$ such that the trace of $f = f_1 + f_2 j$ on S extends as a ψ -regular polynomial of degree at most k on \mathbb{H} . If $f_1 \in \mathcal{H}_k$, then $f_2 \in \mathcal{H}_k$ and $f = f_1 + f_2 j \in U_k^{\psi}$.

Proof. We can suppose that f_1 has degree p in z and q in \bar{z} , p + q = k, and then extend by linearity. Let $\tilde{f}_1 = \sum_{s \ge 0} g_{p-s,q-s}$ be the harmonic extension of f_1 into B, where $g_{p-s,q-s} \in \mathcal{H}_{p-s,q-s}$ is given by formula (*). Then $\overline{\partial}_n \overline{L(g_{p-s,q-s})} = (p-s+1)\overline{L(g_{p-s,q-s})}$. We set

$$\tilde{f}_2 = \sum_{s \ge 0} \frac{1}{p - s + 1} \overline{L(g_{p - s, q - s})} \in \bigoplus_{s \ge 0} \mathcal{H}_{k - 2s}.$$

Then $\overline{\partial}_n \tilde{f}_2 = \overline{L(f_1)}$ on S and we can conclude as in the proof of Theorem 1 that $\tilde{f} = \tilde{f}_1 + \tilde{f}_2 j$ is a ψ -regular polynomial of degree at most k. Now it suffices to define

$$f_2 = \sum_{s \ge 0} \frac{|z|^{2s}}{p - s + 1} \overline{L(g_{p-s,q-s})} \in \mathcal{P}_k$$

to get a homogeneous polynomial $f = f_1 + f_2 j$, of degree k, that has the same restriction to S as \tilde{f} . If $f_1 \in \mathcal{H}_k$, then $\tilde{f}_1 = f_1$, $\tilde{f}_2 = f_2$ and therefore $f \in U_k^{\psi}$.

Let $C: U_k^{\psi} \to \mathcal{H}_k(S)$ be the complex-linear operator that associates to $f = f_1 + f_2 j$ the restriction to S of its first complex component f_1 . The function \tilde{f} in the preceding proof gives a right inverse $R: \mathcal{H}_k(S) \to U_k^{\psi}$ of the operator C. The function $R(f_1)$ is uniquely determined by the orthogonality condition with respect to the functions holomorphic on a neighbourhood of \overline{B} :

$$\int_{S} (R(f_1) - f_1)\overline{h}d\sigma = 0 \quad \forall h \in \mathcal{O}(\overline{B}).$$

Corollary 4. (i) The restriction operator C defined on U_k^{ψ} induces isomorphisms of real vector spaces

$$\frac{U_k^{\psi}}{\mathcal{H}_{k,0j}} \simeq \mathcal{H}_k(S), \qquad \frac{U_k^{\psi}}{\mathcal{H}_{k,0} + \mathcal{H}_{k,0j}} \simeq \frac{\mathcal{H}_k(S)}{\mathcal{H}_{k,0}(S)}.$$

(ii) U_k^{ψ} has dimension $\frac{1}{2}(k+1)(k+2)$ over \mathbb{H} .

Proof. The first part follows from ker $C = \{f = f_1 + f_2 j \in U_k^{\psi} : f_1 = 0 \text{ on } S\} = \mathcal{H}_{k,0}j$. Part (ii) can be obtained from any of the above isomorphisms, since $\mathcal{H}_{k,0}$ (as every space $\mathcal{H}_{p,q}, p + q = k$) and $\mathcal{H}_k(S)$ have real dimensions respectively 2(k+1) and $2(k+1)^2$.

As an application of Corollary 2, we have another proof of the known result (cf. Sudbery [8] Theorem 7) that the right \mathbb{H} -module U_k of left-regular homogeneous polynomials of degree k has dimension $\frac{1}{2}(k+1)(k+2)$ over \mathbb{H} .

A. PEROTTI

3.3. The operator $R : \mathcal{H}_k(S) = \bigoplus_{p+q=k} \mathcal{H}_{p,q}(S) \to U_k^{\psi}$ can also be used to obtain \mathbb{H} -bases for U_k^{ψ} starting from bases of the complex spaces $\mathcal{H}_{p,q}(S)$. On $\mathcal{H}_{p,q}(S)$, R acts in the following way:

$$R(h) = h + M(h)j$$
, where $M(h) = \frac{1}{p+1}\overline{L(h)} \in \mathcal{H}_{q-1,p+1}$ $(h \in \mathcal{H}_{p,q})$

Note that $M \equiv 0$ on $\mathcal{H}_{k,0}(S)$. If q > 0, $M^2 = -Id$ on $\mathcal{H}_{p,q}(S)$, since $qh = \overline{\partial}_n h = -\overline{L(M(h))}$ on S, and therefore

$$h = -\frac{1}{q}\overline{L(M(h))} = -\frac{1}{q(p+1)}\overline{L}L(h) = -M^2(h).$$

If k = 2m+1 is odd, then M is a complex conjugate isomorphism of $\mathcal{H}_{m,m+1}(S)$. Then M induces a quaternionic structure on this space, which has real dimension 4(m+1). We can find complex bases of $\mathcal{H}_{m,m+1}(S)$ of the form

$${h_1, M(h_1), \ldots, h_{m+1}, M(h_{m+1})}$$

Theorem 5. Let $\mathcal{B}_{p,q}$ denote a complex base of the space $\mathcal{H}_{p,q}(S)$ (p+q=k). Then:

(i) if k = 2m is even, a basis of U_k^{ψ} over \mathbb{H} is given by the set

$$\mathcal{B}_k = \{ R(h) : h \in \mathcal{B}_{p,q}, p+q = k, 0 \le q \le p \le k \}.$$

(ii) if k = 2m + 1 is odd, a basis of U_k^{ψ} over \mathbb{H} is given by

$$\mathcal{B}_k = \{R(h) : h \in \mathcal{B}_{p,q}, p+q = k, 0 \le q$$

where h_1, \ldots, h_{m+1} are chosen such that the set

$${h_1, M(h_1), \ldots, h_{m+1}, M(h_{m+1})}$$

forms a complex basis of $\mathcal{H}_{m,m+1}(S)$.

If the bases $\mathcal{B}_{p,q}$ are orthogonal in $L^2(S)$ and $h_1, \ldots, h_{m+1} \in \mathcal{H}_{m,m+1}(S)$ are mutually orthogonal, then \mathcal{B}_k is orthogonal, with norms

$$||R(h)||_{L^2(S,\mathbb{H})} = \left(\frac{p+q+1}{p+1}\right)^{1/2} ||h||_{L^2(S)} \quad (h \in \mathcal{B}_{p,q})$$

w.r.t. the scalar product of $L^2(S, \mathbb{H})$.

Proof. From dimension count, it suffices to prove that the sets \mathcal{B}_k are linearly independent. When $q \leq p, q' \leq p', p+q = p'+q' = k$, the spaces $\mathcal{H}_{p,q}$ and $\mathcal{H}_{q'-1,p'+1}$ are distinct. Since $R(h) = h + M(h)j \in \mathcal{H}_{p,q} \oplus \mathcal{H}_{q-1,p+1}j$, this implies the independence over \mathbb{H} of the images $\{R(h) : h \in \mathcal{B}_{p,q}\}$. It remains to consider the case when k = 2m + 1 is odd. If $h \in \mathcal{H}_{m,m+1}(S)$, the complex components h and M(h) of R(h) belong to the same space. The independence of $\{R(h_1), \ldots, R(h_{m+1})\}$ over \mathbb{H} follows from the particular form of the complex basis chosen in $\mathcal{H}_{m,m+1}(S)$. The scalar product of L(h) and L(h') in $\mathcal{H}_{p,q}(S)$ is

$$L(h), L(h')) = (h, L^*L(h')) = -(h, \overline{L}L(h')) = q(p+1)(h, h'),$$

since the adjoint L^* is equal to $-\overline{L}$ (cf. [7]§18.2.2) and $\overline{L}L = q(p+1)M^2 =$ -q(p+1)Id. Therefore, if h, h' are orthogonal, M(h) and M(h') are orthogonal in $\mathcal{H}_{q-1,p+1}$ and then also R(h) and R(h'). Finally, the norm of R(h), $h \in \mathcal{H}_{q-1,p+1}$ $\mathcal{H}_{p,q}(S)$, is

$$\|R(h)\|^{2} = \|h\|^{2} + \|M(h)\|^{2} = \|h\|^{2} + \frac{1}{(p+1)^{2}}\|L(h)\|^{2} = \frac{p+q+1}{p+1}\|h\|^{2}$$

If this concludes the proof.

and this concludes the proof.

From Theorem 3 it is immediate to obtain also bases of the right H-module U_k of left-regular homogeneous polynomials of degree k.

Examples. (i) The case k = 2. Starting from the orthogonal bases $\mathcal{B}_{2,0} = \{z_1^2, 2z_1z_2, z_2^2\}$ of $\mathcal{H}_{2,0}$ and $\mathcal{B}_{1,1} = \{z_1\bar{z}_2, |z_1|^2 - |z_2|^2, z_2\bar{z}_1\}$ of $\mathcal{H}_{1,1}$ we get the orthogonal basis of regular harmonics

$$\mathcal{B}_2 = \{z_1^2, 2z_1z_2, z_2^2, z_1\bar{z}_2 - \frac{1}{2}\bar{z}_1^2j, |z_1|^2 - |z_2|^2 + \bar{z}_1\bar{z}_2j, z_2\bar{z}_1 + \frac{1}{2}\bar{z}_2^2j\}$$

of the six-dimensional right \mathbb{H} -module U_2^{ψ} .

(ii) The case k = 3. From the orthogonal bases

 $\mathcal{B}_{3,0} = \{z_1^3, 3z_1^2z_2, 3z_1z_2^2, z_2^3\}, \quad \mathcal{B}_{2,1} = \{z_1^2\bar{z}_2, 2z_1|z_2|^2 - z_1|z_1|^2, 2z_2|z_1|^2 - z_2|z_2|^2, z_2^2\bar{z}_1\},$ $\mathcal{B}_{1,2} = \{h_1 = z_1 \bar{z}_2^2, M(h_1) = -z_2 \bar{z}_1^2, h_2 = -2\bar{z}_2 |z_1|^2 + \bar{z}_2 |z_2|^2, M(h_2) = -2\bar{z}_1 |z_2|^2 + \bar{z}_1 |z_1|^2\},$ we get the orthogonal basis of regular harmonics

$$\mathcal{B}_{3} = \{z_{1}^{3}, 3z_{1}^{2}z_{2}, 3z_{1}z_{2}^{2}, z_{2}^{3}, z_{1}^{2}\bar{z}_{2} - \frac{1}{3}\bar{z}_{1}^{3}j, 2z_{1}|z_{2}|^{2} - z_{1}|z_{1}|^{2} - \bar{z}_{1}^{2}\bar{z}_{2}j, 2z_{2}|z_{1}|^{2} - z_{2}|z_{2}|^{2} + \bar{z}_{1}\bar{z}_{2}^{2}j, z_{2}^{2}\bar{z}_{1} + \frac{1}{3}\bar{z}_{2}^{3}j, z_{1}\bar{z}_{2}^{2} - z_{2}\bar{z}_{1}^{2}j, -2\bar{z}_{2}|z_{1}|^{2} + \bar{z}_{2}|z_{2}|^{2} + (\bar{z}_{1}|z_{1}|^{2} - 2\bar{z}_{1}|z_{2}|^{2} +)j\}.$$

of the ten-dimensional right \mathbb{H} -module U_3^{ψ} .

In general, for any k, an orthogonal basis of $\mathcal{H}_{p,q}$ (p+q=k) is given by the polynomials $\{P_{a,l}^k\}_{l=0,\ldots,k}$ defined by formula (6.14) in Sudbery [8]. The basis of U_k obtained from these bases by means of Theorem 3 and applying the reflection γ is essentially the same given in Proposition 8 of Sudbery [8].

Another spanning set of the space $\mathcal{H}_{p,q}$ is given by the functions

$$g_{\alpha}^{p,q}(z_1, z_2) = (z_1 + \alpha z_2)^p (\overline{z}_2 - \alpha \overline{z}_1)^q \quad (\alpha \in \mathbb{C})$$

(cf. Rudin [7]§12.5.1). Since $M(g_{\alpha}^{p,q}) = \frac{(-1)^q q \bar{\alpha}^{p+q}}{p+1} g_{-1/\bar{\alpha}}^{q-1,p+1}$ for $\alpha \neq 0$ and $M(g_0^{p,q}) = -\frac{q}{p+1} z_2^{q-1} \bar{z}_1^{p+1}$, where we set $g_{\alpha}^{p,q} \equiv 0$ if p < 0, from Theorem 3 we get that U_k^{ψ} is spanned over \mathbb{H} by the polynomials

$$R(g_{\alpha}^{p,q}) = \begin{cases} g_{\alpha}^{p,q} + \frac{(-1)^{q} q \bar{\alpha}^{p+q}}{p+1} g_{-1/\bar{\alpha}}^{q-1,p+1} j & \text{for } \alpha \neq 0\\ z_{1}^{p} \bar{z}_{2}^{q} - \frac{q}{p+1} z_{2}^{q-1} \bar{z}_{1}^{p+1} j & \text{for } \alpha = 0 \end{cases} \qquad (\alpha \in \mathbb{C}, \ p+q=k)$$

A. PEROTTI

Any choice of k+1 distinct numbers $\alpha_0, \alpha_1, \ldots, \alpha_k$ gives rise to a basis of U_k^{ψ} .

The results obtained in this paper enabled the writing of a *Mathematica* package [6], named **RegularHarmonics**, which implements efficient computations with regular and ψ -regular functions and with harmonic and holomorphic functions of two complex variables.

References

- R. Fueter, Über einen Hartogs'schen Satz in der Theorie der analytischen Funktionen von n komplexen Variablen, Comment. Math. Helv., 14 (1942), 394–400.
- [2] A.M. Kytmanov, The Bochner-Martinelli integral and its applications, Birkhäuser Verlag, Basel, Boston, Berlin (1995).
- [3] A.M. Kytmanov, Some differential criteria for the holomorphy of functions in Cⁿ, In: Some problems of multidimensional complex analysis, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Fiz., Krasnoyarsk (1980), 51–64, 263–264.
- [4] I.M. Mitelman and M.V. Shapiro, Differentiation of the Martinelli-Bochner integrals and the notion of hyperderivability, *Math. Nachr.*, **172** (1995), 211–238.
- [5] A. Perotti, A differential criterium for regularity of quaternionic functions, C. R. Acad. Sci. Paris, Ser. I Math., 337 no. 2 (2003), 89–92.
- [6] A. Perotti, Regular Harmonics - a package for Mathematica 4.2 for computations with regular quaternionic functions

(available at http://www.science.unitn.it/~perotti/regular harmonics.htm).

- [7] W. Rudin, Function theory in the unit ball of Cⁿ, Springer-Verlag, New York, Heidelberg, Berlin (1980).
- [8] A. Sudbery, Quaternionic analysis, Mat. Proc. Camb. Phil. Soc., 85 (1979), 199–225.
- N.L. Vasilevski and M.V. Shapiro, Some questions of hypercomplex analysis, In: Complex analysis and applications '87 (Varna, 1987), Publ. House Bulgar. Acad. Sci., Sofia (1989), 523-531.

Department of Mathematics, University of Trento, Via Sommarive, 14, I-38050 Povo Trento ITALY

E-mail address: perotti@science.unitn.it