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1 Regular functions
Fueter-regular and ψ-regular functions
q-holomorphic functions (Joyce)

2 Holomorphic maps
Jp-holomorphic maps
Quaternionic maps (Sommese)

3 Question: Does ψ-regular imply holomorphic?
Energy and regularity
A criterion for holomorphicity
Answer: There exist ψ-regular functions that are not holomorphic
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Notations and definitions

H ' C2

C2 3 (z1, z2) = (x0 + ix1, x2 + ix3)

←→ q = z1 + z2j = x0 + ix1 + jx2 + kx3 ∈ H

Ω bounded domain in H ' C2.
A quaternionic function f = f1 + f2j ∈ C1(Ω) is (left) regular on Ω if

Df =
∂f
∂x0

+ i
∂f
∂x1

+ j
∂f
∂x2

+ k
∂f
∂x3

= 0 on Ω (Fueter)

“structural vector” ψ = (1, i , j ,−k)⇒ f is (left) ψ-regular on Ω if

D′f =
∂f
∂x0

+ i
∂f
∂x1

+ j
∂f
∂x2
− k

∂f
∂x3

= 0 on Ω.
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Some properties of regular functions

1 f is ψ-regular⇔ ∂f1
∂z̄1

=
∂f2
∂z2

,
∂f1
∂z̄2

= − ∂f2
∂z1

2 Every holomorphic map (f1, f2) on Ω defines a ψ-regular function
f = f1 + f2j .

3 The complex components are both holomorphic or both
non-holomorphic.

4 Every regular or ψ-regular function is harmonic.
5 If Ω is pseudoconvex, every complex harmonic function is the

complex component of a ψ-regular function on Ω.

∗∂f1 = −1
2∂(f2dz̄1 ∧ dz̄2)

6 The space R(Ω) of ψ-regular functions on Ω is a right H-module
with integral representation formulas.
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q-holomorphic functions on the hypercomplex
manifold H

Hypercomplex structure on H ' C2:
J1, J2 complex structures on TH ' H defined by left multiplication
by i and j ⇒ J1J2 + J2J1 = 0.
J∗1 , J

∗
2 dual structures on T ∗H. In complex coordinates

⇒


J∗1dz1 = i dz1, J∗1dz2 = i dz2

J∗2dz1 = −dz̄2, J∗2dz2 = dz̄1

J∗3dz1 = i d z̄2, J∗3dz2 = −i d z̄1

where we make the choice J∗3 = J∗1J∗2 ⇒ J3 = −J1J2.
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q-holomorphic functions on the hypercomplex
manifold H

f is ψ-regular⇔ f is q-holomorphic (Joyce):

df + iJ∗1(df ) + jJ∗2(df ) + kJ∗3(df ) = 0

Joyce defined on them a (commutative) product.
In complex components f = f1 + f2j , we can rewrite the equations of
ψ-regularity as

∂f1 = J∗2(∂f 2)
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Holomorphic functions w.r.t. a complex structure Jp

Let Jp = p1J1 + p2J2 + p3J3 be the complex structure on H defined by
a unit imaginary quaternion p = p1i + p2j + p3k in the sphere S2.
(i.e. compatible with the standard hyperkähler structure of H.)
Every Jp-holomorphic function f = f 0 + if 1 : Ω→ C i.e.

df 0 = J∗p(df 1) ⇔ df + iJ∗p(df ) = 0

defines a ψ-regular function f̃ = f 0 + pf 1 on Ω.
We can identify f̃ with a holomorphic function

f̃ : (Ω, Jp)→ (Cp,Lp)

where Cp = 〈1,p〉 is a copy of C in H and Lp is the complex structure
defined on T ∗Cp ' Cp by left multiplication by p.
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Holomorphic maps w.r.t. a complex structure Jp

Space of holomorphic maps from (Ω, Jp) to (H,Lp)

Holp(Ω,H) = {f : Ω→ H | ∂pf = 0 on Ω} = Ker∂p

(Jp-holomorphic maps on Ω) where ∂p is the Cauchy-Riemann
operator w.r.t. Jp:

∂p =
1
2
(
d + pJ∗p ◦ d

)
.

For any positive orthonormal basis {1,p,q,pq} of H (p,q ∈ S2), the
equations of ψ-regularity can be rewritten in complex form as

∂pf1 = J∗q(∂pf 2)

where f = (f 0 + pf 1) + (f 2 + pf 3)q = f1 + f2q

⇒ every f ∈ Holp(Ω,H) is a ψ-regular function on Ω.
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Some properties of Jp-holomorphic maps

The identity map is in Holi(Ω,H) ∩ Holj(Ω,H)
but not in Holk (Ω,H).
Hol−p(Ω,H) = Holp(Ω,H)

If f ∈ Holp(Ω,H) ∩ Holp′(Ω,H), with p 6= ±p′,
⇒ f ∈ Holp′′(Ω,H) for every p′′ = αp+βp′

‖αp+βp′‖ .

ψ-regularity distinguishes between holomorphic and
anti-holomorphic maps: if f is an anti-holomorphic map from
(Ω, Jp) to (H,Lp), then f can be ψ-regular or not.

I f = z̄1 + z̄2j ∈ Holj(Ω,H) ∩ Holk (Ω,H) is a ψ-regular function
induced by the anti-holomorphic map

(z̄1, z̄2) : (Ω, J1)→ (H,Li)

I (z̄1,0) : (Ω, J1)→ (H,Li) induces the function g = z̄1 /∈ R(Ω).
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Quaternionic maps on the quaternionic manifold Ω

Example
A quaternionic map between hypercomplex manifolds

f : (X , J1, J2)→ (Y ,K1,K2)

is a map that is holomorphic from (X , J1) to (Y ,K1) and from (X , J2) to
(Y ,K2) (Sommese).
In particular, a quaternionic map

f : (Ω, J1, J2)→ (H, J1, J2)

is an element of Holi(Ω,H) ∩ Holj(Ω,H)⇒ a ψ-regular function on Ω.
Sommese showed that these quaternionic maps are affine.
(transition functions for 4-dim quaternionic manifolds)
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Question: Does ψ-regular imply holomorphic?

R(Ω) ⊇
⋃

p∈S2

Holp(Ω,H) properly?

Q.: Can ψ-regular maps always be made holomorphic
by rotating the complex structure

or do they constitute a new class of harmonic maps?

Chen and Li (JDG 2000): analogous question for the larger class of
q-maps between hyperkähler manifolds.
In their definition, the complex structures of the source and target
manifold can rotate independently.
(⇒ also anti-holomorphic maps are q-maps)
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Energy functional

The energy (w.r.t. the euclidean metric g) of a map f : Ω→ C2 ' H, of
class C1(Ω), is the integral

E(f ) =
1
2

∫
Ω
‖df‖2dV =

1
2

∫
Ω
〈g, f ∗g〉dV =

1
2

∫
Ω

tr(JC(f )JC(f )
T
)dV

where JC(f ) is the Jacobian matrix of f with respect to the coordinates
z̄1, z1, z̄2, z2.

Theorem
(Lichnerowicz) Holomorphic maps between Kähler manifolds minimize
the energy functional in their homotopy classes.

(for maps smooth on Ω the homotopy class contains the maps u with
u|∂Ω = f|∂Ω which are homotopic to f relative to ∂Ω.)

A. Perotti Holomorphic and regular functions on H



Regular functions Holomorphic maps Question References Energy and regularity A criterion for holomorphicity Answer

Energy functional and ψ-regularity

From the theorem, functions f ∈ Holp(Ω,H) minimize the energy
functional in their homotopy classes (relative to ∂Ω). More generally:

Proposition
If f is ψ-regular on Ω, then it minimizes energy in its homotopy class
(relative to ∂Ω).

Sketch of proof (Lichnerowicz, Chen and Li).
Let i1 = i , i2 = j , i3 = k and

K(f ) =

∫
Ω

3∑
α=1

〈Jα, f ∗Liα〉dV , I(f ) =
1
2

∫
Ω
‖df +

3∑
α=1

Liα ◦ df ◦ Jα‖2dV

Then K(f ) is a homotopy invariant of f , I(f ) = 0⇐⇒ f ∈ R(Ω) and

E(f ) +K(f ) =
1
4
I(f ) ≥ 0
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A criterion for holomorphicity

Let f : Ω→ H be a function of class C1(Ω).

Theorem
Let A = (aαβ) be the 3× 3 matrix with entries aαβ = −

∫
Ω〈Jα, f ∗Liβ 〉dV.

1 f is ψ-regular⇐⇒ E(f ) = trA.
2 If f ∈ R(Ω), then A is real, symmetric and

trA ≥ λ1 = max{eigenvalues of A} =⇒ det(A− (trA)I3) ≤ 0.
3 If f ∈ R(Ω), then f belongs to some space Holp(Ω,H)
⇐⇒ E(f ) = trA = λ1 ⇐⇒ det(A− (trA)I3) = 0.

4 If E(f ) = trA = λ1, Xp = (p1,p2,p3) is a unit eigenvector of A
relative to the largest eigenvalue λ1 ⇐⇒ f ∈ Holp(Ω,H).

A. Perotti Holomorphic and regular functions on H



Regular functions Holomorphic maps Question References Energy and regularity A criterion for holomorphicity Answer

Answer

A.: On every domain Ω, there exist ψ-regular functions
that are not holomorphic.

Linear examples
Let f = z1 + z̄1 + z̄2j . Then f is ψ-regular (on any Ω) but not
Jp-holomorphic, for any p, since rkJC(f ) is odd.
Let g = z1 + z2 + z̄1 + (z1 + z2 + z̄2)j . Then g is ψ-regular, but not
holomorphic even if rkJC(g) = 4.
On the unit ball B in C2, g has energy E(g) = 6 and the matrix A
of the theorem is

A =

2 0 0
0 2 0
0 0 2

 ⇒ E(g) = trA > 2 = λ1
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More examples

Linear examples
The linear, ψ-regular functions constitute a H-module of dimension 3
over H, generated e.g. by {id = z1 + z2j , z2 + z1j , z̄1 + z̄2j}. An element

f = (z1 + z2j)q1 + (z2 + z1j)q2 + (z̄1 + z̄2j)q3

is holomorphic⇐⇒ the coefficients q1 = a1 + a2j , q2 = b1 + b2j ,
q3 = c1 + c2j satisfy the 6th-degree real homogeneous equation

det(A− (trA)I3) = 0

obtained after integration on B. So “almost all” (linear) ψ-regular
functions are not-holomorphic.
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More examples

Linear examples
A positive example (with p 6= i , j , k ): Let h = z̄1 + (z1 + z̄2)j . On the unit
ball h has energy 3 and the matrix A is

A =

−1 0 2
0 2 0
2 0 2


=⇒ E(h) = trA is equal to the (simple) largest eigenvalue, with unit
eigenvector X = 1√

5
(1,0,2) =⇒ h is Jp-holomorphic with

p = 1√
5
(i + 2k), i.e. it satisfies the equation

df + 1
5(i + 2k)(J∗1 + 2J∗3)(df ) = 0.
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More examples

Example

A quadratic example: Let f = |z1|2 − |z2|2 + z̄1z̄2j . f has energy 2 on B
and the matrix A is

A =

−2/3 0 0
0 4/3 0
0 0 4/3


=⇒ f is ψ-regular but not holomorphic w.r.t. any complex structure Jp.
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Other applications

If f ∈ Holp(Ω,H) ∩ Holp′(Ω,H) for two R-independent p,p′

⇒ Xp,Xp′ are independent eigenvectors relative to λ1

⇒ the eigenvalues are λ1 = λ2 = −λ3.

If f ∈ Holp(Ω,H) ∩ Holp′(Ω,H) ∩ Holp′′(Ω,H) for three
R-independent p,p′,p′′

⇒ λ1 = λ2 = λ3 = 0⇒ A = 0

and then f has energy 0⇒ f is a (locally) constant map.
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Application: Holp(Ω,H) ∩ Holp′(Ω,H) (p 6= ±p′)
contains only affine maps (cf. Sommese)

Let Ω be connected. We can assume p = i , p′ = j . Let

f ∈ Holi(Ω,H) ∩ Holj(Ω,H) and a =

(
∂f1
∂z1

,
∂f2
∂z1

)
, b =

(
∂f2
∂z2

,− ∂f1
∂z2

)
.

Since f ∈ Holi(Ω,H), the matrix A is obtained after integration on Ω of|a|2 + |b|2 0 0
0 2Re〈a,b〉 −2Im〈a,b〉
0 −2Im〈a,b〉 −2Re〈a,b〉


f ∈ Holj(Ω,H) =⇒

∫
Ω Im〈a,b〉dV = 0 and

∫
Ω |a− b|2dV = 0 =⇒ a = b

on Ω. Then a is holomorphic and anti-holomorphic (w.r.t. J1) =⇒ a is
constant on Ω =⇒ f is an affine map with linear part of the form

(a1z1 − ā2z2) + (a2z1 + ā1z2)j

i.e. the right multiplication of q = z1 + z2j by the quaternion a1 + a2j .
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Classification of ψ-regular functions

Let Ω be connected. Given a function f ∈ R(Ω), we set

J (f ) = {p ∈ S2 | f ∈ Holp(Ω,H)}.

The space R(Ω) of ψ-regular functions is the disjoint union of subsets
of functions of the following four types:

1 f is Jp-holomorphic for three R-independent structures
=⇒ f is a constant and J (f ) = S2.

2 f is Jp-holomorphic for exactly two R-independent structures
=⇒ f is a ψ-regular, invertible affine map and J (f ) is an equator
S1 ⊂ S2.

3 f is Jp-holomorphic for exactly one structure Jp (up to sign of p)
=⇒ J (f ) is a two-point set S0.

4 f is ψ-regular but not Jp-holomorphic w.r.t. any complex structure
=⇒ J (f ) = ∅.
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Sketch of proof of the criterion

If f ∈ R(Ω)⇒ E(f ) = −K(f ) = trA.
Let Ip(f ) = 1

2

∫
Ω ‖df + Lp ◦ df ◦ Jp‖2dV . Then

E(f ) +

∫
Ω
〈Jp, f ∗Lp〉dV =

1
4
Ip(f ).

If Xp = (p1,p2,p3), then

XAX T =
∑
α,β

pαpβaαβ = −
∫

Ω
〈
∑
α

pαJα, f ∗
∑
β

pβLiβ 〉dV =

−
∫

Ω
〈Jp, f ∗Lp〉dV = E(f )− 1

4
Ip(f ).

Then trA = E(f ) = XAX T + 1
4Ip(f ) ≥ XAX T , with equality

⇔ Ip(f ) = 0⇔ f is a Jp-holomorphic map.
Back
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Sketch of proof of the criterion

Let Mα (α = 1,2,3) be the matrix associated to J∗α w.r.t. the basis
{dz̄1,dz1,dz̄2,dz2}. The entries of the matrix A can be computed by
the formula

aαβ = −
∫

Ω
〈Jα, f ∗Liβ 〉dV =

1
2

∫
Ω

tr(Bα
T

Cβ)dV

where Bα = MαJC(f )T for α = 1,2, Bα = −MαJC(f )T for α = 3 and
Cβ = JC(f )T Mβ for β = 1,2,3.
The particular form of the Jacobian matrix of a ψ-regular function gives
the symmetry property of A.

Back
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1
16det(A− (trA)I3) =

a1a2b2c2
1 b̄1 − a1a2b1c1c2b̄1 − a2

1b2c1c2b̄1 + a2
1b1c2

2 b̄1 − a1c2
1 ā1b̄2

1 −
a1c1c2ā2b̄2

1 + a2
2b2c2

1 b̄2 − a2
2b1c1c2b̄2 − a1a2b2c1c2b̄2 + a1a2b1c2

2 b̄2 −
a2c2

1 ā1b̄1b̄2−a1c1c2ā1b̄1b̄2−a2c1c2ā2b̄1b̄2−a1c2
2 ā2b̄1b̄2−a2c1c2ā1b̄2

2−
a2c2

2 ā2b̄2
2 + a1a2b1b2c1c̄1 − a2

1b2
2c1c̄1 − a1a2b2

1c2c̄1 + a2
1b1b2c2c̄1 −

2a1b1c1ā1b̄1c̄1 − a1b2c1ā2b̄1c̄1 − a1b1c2ā2b̄1c̄1 − a2b1c1ā1b̄2c̄1 −
2a1b2c1ā1b̄2c̄1 + a1b1c2ā1b̄2c̄1 − 2a2b2c1ā2b̄2c̄1 + a2b1c2ā2b̄2c̄1 −
a1b2c2ā2b̄2c̄1 + c1ā1ā2b̄1b̄2c̄1 + c2ā2

2b̄1b̄2c̄1− c1ā2
1b̄2

2c̄1− c2ā1ā2b̄2
2c̄1−

a1b2
1ā1c̄2

1 − a1b1b2ā2c̄2
1 + b1ā1ā2b̄2c̄2

1 + b2ā2
2b̄2c̄2

1 + a2
2b1b2c1c̄2 −

a1a2b2
2c1c̄2−a2

2b2
1c2c̄2+a1a2b1b2c2c̄2−a2b1c1ā1b̄1c̄2+a1b2c1ā1b̄1c̄2−

2a1b1c2ā1b̄1c̄2 + a2b2c1ā2b̄1c̄2 − 2a2b1c2ā2b̄1c̄2 − a1b2c2ā2b̄1c̄2 −
c1ā1ā2b̄2

1c̄2−c2ā2
2b̄2

1c̄2−a2b2c1ā1b̄2c̄2−a2b1c2ā1b̄2c̄2−2a2b2c2ā2b̄2c̄2+
c1ā2

1b̄1b̄2c̄2 + c2ā1ā2b̄1b̄2c̄2 − a2b2
1ā1c̄1c̄2 − a1b1b2ā1c̄1c̄2 −

a2b1b2ā2c̄1c̄2−a1b2
2ā2c̄1c̄2−b1ā1ā2b̄1c̄1c̄2−b2ā2

2b̄1c̄1c̄2−b1ā2
1b̄2c̄1c̄2−

b2ā1ā2b̄2c̄1c̄2 − a2b1b2ā1c̄2
2 − a2b2

2ā2c̄2
2 + b1ā2

1b̄1c̄2
2 + b2ā1ā2b̄1c̄2

2 = 0
Back
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