Holomorphic functions and regular quaternionic functions on the hyperkähler space $\mathbb H$

A. Perotti

Department of Mathematics University of Trento, Italy

V ISAAC Congress Catania 2005

Outline

Regular functions

- Fueter-regular and ψ -regular functions
- q-holomorphic functions (Joyce)

2 Holomorphic maps

- *J_p*-holomorphic maps
- Quaternionic maps (Sommese)

3 Question: Does ψ -regular imply holomorphic?

- Energy and regularity
- A criterion for holomorphicity
- Answer: There exist ψ -regular functions that are not holomorphic

Notations and definitions

۲

$$\mathbb{H} \simeq \mathbb{C}^2$$

 $\mathbb{C}^2 \ni (z_1, z_2) = (x_0 + ix_1, x_2 + ix_3)$
 $\longleftrightarrow q = z_1 + z_2 j = x_0 + ix_1 + jx_2 + kx_3 \in \mathbb{H}$

Ω bounded domain in ℍ ≃ ℂ².
 A quaternionic function f = f₁ + f₂j ∈ C¹(Ω) is (left) regular on Ω if

$$\mathcal{D}f = \frac{\partial f}{\partial x_0} + i\frac{\partial f}{\partial x_1} + j\frac{\partial f}{\partial x_2} + k\frac{\partial f}{\partial x_3} = 0 \quad \text{on } \Omega \quad \text{(Fueter)}$$

• "structural vector" $\psi = (1, i, j, -k) \Rightarrow f$ is (left) ψ -regular on Ω if

$$\mathcal{D}'f = \frac{\partial f}{\partial x_0} + i\frac{\partial f}{\partial x_1} + j\frac{\partial f}{\partial x_2} - k\frac{\partial f}{\partial x_3} = 0 \quad \text{on } \Omega.$$

Some properties of regular functions

• *f* is
$$\psi$$
-regular $\Leftrightarrow \quad \frac{\partial f_1}{\partial \overline{z}_1} = \frac{\partial \overline{f_2}}{\partial z_2}, \quad \frac{\partial f_1}{\partial \overline{z}_2} = -\frac{\partial \overline{f_2}}{\partial z_1}$

- 2 Every holomorphic map (f_1, f_2) on Ω defines a ψ -regular function $f = f_1 + f_2 j$.
- The complex components are both holomorphic or both non-holomorphic.
- Severy regular or ψ -regular function is harmonic.
- If Ω is pseudoconvex, every complex harmonic function is the complex component of a ψ-regular function on Ω.

$$*\overline{\partial}f_1 = -\frac{1}{2}\partial(\overline{f_2}d\overline{z}_1 \wedge d\overline{z}_2)$$

• The space $\mathcal{R}(\Omega)$ of ψ -regular functions on Ω is a *right* \mathbb{H} -module with integral representation formulas.

Regular functions Holomorphic maps Question References Regular functions q-holomorphic functions

q-holomorphic functions on the hypercomplex manifold ${\mathbb H}$

- Hypercomplex structure on H ≃ C²: *J*₁, *J*₂ complex structures on *T*H ≃ H defined by left multiplication by *i* and *j* ⇒ *J*₁*J*₂ + *J*₂*J*₁ = 0.
- J_1^*, J_2^* dual structures on $T^*\mathbb{H}$. In complex coordinates

$$\Rightarrow \begin{cases} J_1^* dz_1 = i \, dz_1, & J_1^* dz_2 = i \, dz_2 \\ J_2^* dz_1 = -d\bar{z}_2, & J_2^* dz_2 = d\bar{z}_1 \\ J_3^* dz_1 = i \, d\bar{z}_2, & J_3^* dz_2 = -i \, d\bar{z}_1 \end{cases}$$

where we make the choice $J_3^* = J_1^* J_2^* \Rightarrow J_3 = -J_1 J_2$.

Regular functions Holomorphic maps Question References Regular functions q-holomorphic functions

q-holomorphic functions on the hypercomplex manifold ${\mathbb H}$

f is ψ -regular \Leftrightarrow *f* is **q**-holomorphic (Joyce):

$$df + iJ_1^*(df) + jJ_2^*(df) + kJ_3^*(df) = 0$$

Joyce defined on them a (commutative) product. In complex components $f = f_1 + f_2 j$, we can rewrite the equations of ψ -regularity as

$$\overline{\partial} f_1 = J_2^*(\partial \overline{f}_2)$$

Holomorphic functions w.r.t. a complex structure J_p

Let $J_p = p_1 J_1 + p_2 J_2 + p_3 J_3$ be the complex structure on \mathbb{H} defined by a unit imaginary quaternion $p = p_1 i + p_2 j + p_3 k$ in the sphere S^2 . (i.e. compatible with the standard hyperkähler structure of \mathbb{H} .) Every J_p -holomorphic function $f = f^0 + if^1 : \Omega \to \mathbb{C}$ i.e.

$$df^0 = J^*_{
ho}(df^1) \quad \Leftrightarrow \quad df + i J^*_{
ho}(df) = 0$$

defines a ψ -regular function $\tilde{f} = f^0 + \rho f^1$ on Ω . We can identify \tilde{f} with a holomorphic function

$$\tilde{f}:(\Omega,J_p)\to(\mathbb{C}_p,L_p)$$

where $\mathbb{C}_{\rho} = \langle 1, \rho \rangle$ is a copy of \mathbb{C} in \mathbb{H} and L_{ρ} is the complex structure defined on $T^*\mathbb{C}_{\rho} \simeq \mathbb{C}_{\rho}$ by left multiplication by ρ .

Holomorphic maps w.r.t. a complex structure J_{ρ}

Space of holomorphic maps from (Ω, J_{ρ}) to (\mathbb{H}, L_{ρ})

$$\mathit{Hol}_p(\Omega,\mathbb{H}) = \{f: \Omega \to \mathbb{H} \mid \overline{\partial}_p f = 0 \text{ on } \Omega\} = \mathit{Ker}\overline{\partial}_p$$

 $(J_p$ -holomorphic maps on Ω) where $\overline{\partial}_p$ is the Cauchy-Riemann operator w.r.t. J_p :

$$\overline{\partial}_{\boldsymbol{\rho}} = rac{1}{2} \left(\boldsymbol{d} + \boldsymbol{\rho} J^*_{\boldsymbol{\rho}} \circ \boldsymbol{d}
ight).$$

For any positive orthonormal basis $\{1, p, q, pq\}$ of \mathbb{H} $(p, q \in S^2)$, the equations of ψ -regularity can be rewritten in complex form as

$$\overline{\partial}_{p}f_{1}=J_{q}^{*}(\partial_{p}\overline{f}_{2})$$

where $f = (f^0 + pf^1) + (f^2 + pf^3)q = f_1 + f_2q$

 \Rightarrow every $f \in Hol_{\rho}(\Omega, \mathbb{H})$ is a ψ -regular function on Ω .

Some properties of J_{ρ} -holomorphic maps

- The *identity* map is in Hol_i(Ω, ℍ) ∩ Hol_j(Ω, ℍ) but not in Hol_k(Ω, ℍ).
- $Hol_{-\rho}(\Omega, \mathbb{H}) = Hol_{\rho}(\Omega, \mathbb{H})$
- If $f \in Hol_p(\Omega, \mathbb{H}) \cap Hol_{p'}(\Omega, \mathbb{H})$, with $p \neq \pm p'$, $\Rightarrow f \in Hol_{p''}(\Omega, \mathbb{H})$ for every $p'' = \frac{\alpha p + \beta p'}{\|\alpha p + \beta p'\|}$.
- ψ-regularity distinguishes between holomorphic and anti-holomorphic maps: if *f* is an *anti-holomorphic* map from (Ω, *J_p*) to (𝔄, *L_p*), then *f* can be ψ-regular or not.
 - f = z
 ₁ + z
 ₂j ∈ Hol_j(Ω, ℍ) ∩ Hol_k(Ω, ℍ) is a ψ-regular function induced by the anti-holomorphic map

$$(\overline{z}_1,\overline{z}_2):(\Omega,J_1)\to (\mathbb{H},L_i)$$

• $(\overline{z}_1, 0) : (\Omega, J_1) \to (\mathbb{H}, L_i)$ induces the function $g = \overline{z}_1 \notin \mathcal{R}(\Omega)$.

Quaternionic maps on the quaternionic manifold Ω

Example

A quaternionic map between hypercomplex manifolds

$$f:(X,J_1,J_2)\to(Y,K_1,K_2)$$

is a map that is holomorphic from (X, J_1) to (Y, K_1) and from (X, J_2) to (Y, K_2) (Sommese).

In particular, a quaternionic map

$$f:(\Omega,J_1,J_2)\to (\mathbb{H},J_1,J_2)$$

is an element of $Hol_i(\Omega, \mathbb{H}) \cap Hol_j(\Omega, \mathbb{H}) \Rightarrow a \psi$ -regular function on Ω . Sommese showed that these quaternionic maps are affine. (transition functions for 4-dim *quaternionic manifolds*)

Question: Does ψ -regular imply holomorphic?

$$\mathcal{R}(\Omega) \supseteq \bigcup_{p \in S^2} Hol_p(\Omega, \mathbb{H})$$
 properly?

Q.: Can ψ -regular maps always be made holomorphic by rotating the complex structure or do they constitute a new class of harmonic maps?

Chen and Li (JDG 2000): analogous question for the larger class of q-maps between hyperkähler manifolds.

In their definition, the complex structures of the source and target manifold can rotate *independently*.

 $(\Rightarrow$ also anti-holomorphic maps are q-maps)

Energy functional

The energy (w.r.t. the euclidean metric g) of a map $f : \Omega \to \mathbb{C}^2 \simeq \mathbb{H}$, of class $C^1(\overline{\Omega})$, is the integral

$$\mathcal{E}(f) = \frac{1}{2} \int_{\Omega} \|df\|^2 dV = \frac{1}{2} \int_{\Omega} \langle g, f^*g \rangle dV = \frac{1}{2} \int_{\Omega} tr(J_{\mathbb{C}}(f) \overline{J_{\mathbb{C}}(f)}^T) dV$$

where $J_{\mathbb{C}}(f)$ is the Jacobian matrix of f with respect to the coordinates $\overline{z}_1, z_1, \overline{z}_2, z_2$.

Theorem

(Lichnerowicz) Holomorphic maps between Kähler manifolds minimize the energy functional in their homotopy classes.

(for maps smooth on $\overline{\Omega}$ the homotopy class contains the maps *u* with $u_{|\partial\Omega} = f_{|\partial\Omega}$ which are homotopic to *f* relative to $\partial\Omega$.)

Energy functional and ψ -regularity

From the theorem, functions $f \in Hol_p(\Omega, \mathbb{H})$ minimize the energy functional in their homotopy classes (relative to $\partial\Omega$). More generally:

Proposition

If f is ψ -regular on Ω , then it minimizes energy in its homotopy class (relative to $\partial\Omega$).

Sketch of proof (Lichnerowicz, Chen and Li). Let $i_1 = i, i_2 = j, i_3 = k$ and

$$\mathcal{K}(f) = \int_{\Omega} \sum_{\alpha=1}^{3} \langle J_{\alpha}, f^* L_{i_{\alpha}} \rangle dV, \quad \mathcal{I}(f) = \frac{1}{2} \int_{\Omega} \| df + \sum_{\alpha=1}^{3} L_{i_{\alpha}} \circ df \circ J_{\alpha} \|^2 dV$$

Then $\mathcal{K}(f)$ is a homotopy invariant of f, $\mathcal{I}(f) = 0 \iff f \in \mathcal{R}(\Omega)$ and

$$\mathcal{E}(f) + \mathcal{K}(f) = \frac{1}{4}\mathcal{I}(f) \ge 0$$

A criterion for holomorphicity

Let $f : \Omega \to \mathbb{H}$ be a function of class $C^1(\overline{\Omega})$.

Theorem

Let $A = (a_{\alpha\beta})$ be the 3 × 3 matrix with entries $a_{\alpha\beta} = -\int_{\Omega} \langle J_{\alpha}, f^*L_{i_{\beta}} \rangle dV$.

• f is
$$\psi$$
-regular $\iff \mathcal{E}(f) = trA$.

- 2 If $f \in \mathcal{R}(\Omega)$, then A is real, symmetric and $trA \ge \lambda_1 = \max\{eigenvalues of A\} \Longrightarrow \det(A (trA)I_3) \le 0.$
- If $f \in \mathcal{R}(\Omega)$, then f belongs to some space $Hol_p(\Omega, \mathbb{H})$ $\iff \mathcal{E}(f) = trA = \lambda_1 \iff \det(A - (trA)l_3) = 0.$
- If $\mathcal{E}(f) = trA = \lambda_1$, $X_p = (p_1, p_2, p_3)$ is a unit eigenvector of A relative to the largest eigenvalue $\lambda_1 \iff f \in Hol_p(\Omega, \mathbb{H})$.

Answer

A.: On every domain Ω , there exist ψ -regular functions that are not holomorphic.

Linear examples

- Let $f = z_1 + \overline{z}_1 + \overline{z}_2 j$. Then f is ψ -regular (on any Ω) but not J_p -holomorphic, for any p, since $rkJ_{\mathbb{C}}(f)$ is odd.
- Let g = z₁ + z₂ + z
 ₁ + (z₁ + z₂ + z
 ₂)j. Then g is ψ-regular, but not holomorphic even if rkJ_C(g) = 4.
 On the unit ball B in C², g has energy E(g) = 6 and the matrix A of the theorem is

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \Rightarrow \mathcal{E}(g) = trA > 2 = \lambda_1$$

More examples

Linear examples

The linear, ψ -regular functions constitute a \mathbb{H} -module of dimension 3 over \mathbb{H} , generated e.g. by { $id = z_1 + z_2j, z_2 + z_1j, \overline{z}_1 + \overline{z}_2j$ }. An element

$$f = (z_1 + z_2 j)q_1 + (z_2 + z_1 j)q_2 + (\bar{z}_1 + \bar{z}_2 j)q_3$$

is holomorphic \iff the coefficients $q_1 = a_1 + a_2 j$, $q_2 = b_1 + b_2 j$, $q_3 = c_1 + c_2 j$ satisfy the 6th-degree real homogeneous equation

$$\det(A - (trA)I_3) = 0$$

obtained after integration on *B*. So "almost all" (linear) ψ -regular functions are not-holomorphic.

More examples

Linear examples

A positive example (with $p \neq i, j, k$): Let $h = \overline{z}_1 + (z_1 + \overline{z}_2)j$. On the unit ball *h* has energy 3 and the matrix *A* is

$$A = \begin{bmatrix} -1 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix}$$

 $\implies \mathcal{E}(h) = trA$ is equal to the (simple) largest eigenvalue, with unit eigenvector $X = \frac{1}{\sqrt{5}}(1, 0, 2) \implies h$ is J_p -holomorphic with $p = \frac{1}{\sqrt{5}}(i+2k)$, i.e. it satisfies the equation

$$df + \frac{1}{5}(i+2k)(J_1^* + 2J_3^*)(df) = 0.$$

More examples

Example

A quadratic example: Let $f = |z_1|^2 - |z_2|^2 + \overline{z}_1 \overline{z}_2 j$. *f* has energy 2 on *B* and the matrix *A* is

$$A = egin{bmatrix} -2/3 & 0 & 0 \ 0 & 4/3 & 0 \ 0 & 0 & 4/3 \end{bmatrix}$$

 \implies *f* is ψ -regular but not holomorphic w.r.t. any complex structure J_{ρ} .

Other applications

If f ∈ Hol_p(Ω, ℍ) ∩ Hol_{p'}(Ω, ℍ) for two ℝ-independent p, p'
 ⇒ X_p, X_{p'} are independent eigenvectors relative to λ₁

 \Rightarrow the eigenvalues are $\lambda_1 = \lambda_2 = -\lambda_3$.

• If $f \in Hol_p(\Omega, \mathbb{H}) \cap Hol_{p'}(\Omega, \mathbb{H}) \cap Hol_{p''}(\Omega, \mathbb{H})$ for three \mathbb{R} -independent p, p', p''

$$\Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = \mathbf{0} \Rightarrow \mathbf{A} = \mathbf{0}$$

and then *f* has energy $0 \Rightarrow f$ is a (locally) *constant map*.

Application: $Hol_{p}(\Omega, \mathbb{H}) \cap Hol_{p'}(\Omega, \mathbb{H}) \ (p \neq \pm p')$ contains only affine maps (cf. Sommese)

Let Ω be connected. We can assume p = i, p' = j. Let

 $f \in Hol_i(\Omega, \mathbb{H}) \cap Hol_j(\Omega, \mathbb{H})$ and $a = \left(\frac{\partial f_1}{\partial z_1}, \frac{\partial f_2}{\partial z_1}\right), b = \left(\frac{\overline{\partial f_2}}{\partial z_2}, -\frac{\overline{\partial f_1}}{\partial z_2}\right).$

Since $f \in Hol_i(\Omega, \mathbb{H})$, the matrix A is obtained after integration on Ω of

$$\begin{bmatrix} |a|^2+|b|^2 & 0 & 0 \\ 0 & 2Re\langle a,b\rangle & -2Im\langle a,b\rangle \\ 0 & -2Im\langle a,b\rangle & -2Re\langle a,b\rangle \end{bmatrix}$$

 $f \in Hol_j(\Omega, \mathbb{H}) \Longrightarrow \int_{\Omega} Im\langle a, b \rangle dV = 0$ and $\int_{\Omega} |a - b|^2 dV = 0 \Longrightarrow a = b$ on Ω . Then *a* is holomorphic *and* anti-holomorphic (w.r.t. $J_1) \Longrightarrow a$ is constant on $\Omega \Longrightarrow f$ is an affine map with linear part of the form

$$(a_1z_1 - \bar{a}_2z_2) + (a_2z_1 + \bar{a}_1z_2)j$$

i.e. the *right multiplication* of $q = z_1 + z_2 j$ by the quaternion $a_1 + a_2 j$.

Classification of ψ -regular functions

Let Ω be connected. Given a function $f \in \mathcal{R}(\Omega)$, we set

$$\mathcal{J}(f) = \{ p \in S^2 \mid f \in Hol_p(\Omega, \mathbb{H}) \}.$$

The space $\mathcal{R}(\Omega)$ of ψ -regular functions is the disjoint union of subsets of functions of the following four types:

- *f* is J_p -holomorphic for three \mathbb{R} -independent structures $\implies f$ is a constant and $\mathcal{J}(f) = S^2$.
- If is *J_p*-holomorphic for exactly two ℝ-independent structures
 \implies *f* is a *ψ*-regular, invertible affine map and *J*(*f*) is an equator
 $S^1 ⊂ S^2$.
- *f* is J_p -holomorphic for exactly one structure J_p (up to sign of p) $\implies \mathcal{J}(f)$ is a two-point set S^0 .
- *f* is ψ -regular but not J_p -holomorphic w.r.t. any complex structure $\implies \mathcal{J}(f) = \emptyset$.

Sketch of proof of the criterion

If
$$f \in \mathcal{R}(\Omega) \Rightarrow \mathcal{E}(f) = -\mathcal{K}(f) = trA$$
.
Let $\mathcal{I}_{p}(f) = \frac{1}{2} \int_{\Omega} \|df + L_{p} \circ df \circ J_{p}\|^{2} dV$. Then
 $\mathcal{E}(f) + \int_{\Omega} \langle J_{p}, f^{*}L_{p} \rangle dV = \frac{1}{4} \mathcal{I}_{p}(f).$

If $X_p = (p_1, p_2, p_3)$, then

$$XAX^{T} = \sum_{\alpha,\beta} p_{\alpha} p_{\beta} a_{\alpha\beta} = -\int_{\Omega} \langle \sum_{\alpha} p_{\alpha} J_{\alpha}, f^{*} \sum_{\beta} p_{\beta} L_{i_{\beta}} \rangle dV =$$

 $-\int_{\Omega} \langle J_{p}, f^{*} L_{p} \rangle dV = \mathcal{E}(f) - \frac{1}{4} \mathcal{I}_{p}(f).$

Then $trA = \mathcal{E}(f) = XAX^T + \frac{1}{4}\mathcal{I}_p(f) \ge XAX^T$, with equality $\Leftrightarrow \mathcal{I}_p(f) = 0 \Leftrightarrow f$ is a J_p -holomorphic map.

Sketch of proof of the criterion

Let M_{α} ($\alpha = 1, 2, 3$) be the matrix associated to J_{α}^* w.r.t. the basis $\{d\bar{z}_1, dz_1, d\bar{z}_2, dz_2\}$. The entries of the matrix *A* can be computed by the formula

$$a_{\alpha\beta} = -\int_{\Omega} \langle J_{\alpha}, f^* L_{i_{\beta}} \rangle dV = \frac{1}{2} \int_{\Omega} tr(\overline{B_{\alpha}}^T C_{\beta}) dV$$

where $B_{\alpha} = M_{\alpha}J_{\mathbb{C}}(f)^{T}$ for $\alpha = 1, 2, B_{\alpha} = -M_{\alpha}J_{\mathbb{C}}(f)^{T}$ for $\alpha = 3$ and $C_{\beta} = J_{\mathbb{C}}(f)^{T}M_{\beta}$ for $\beta = 1, 2, 3$.

The particular form of the Jacobian matrix of a ψ -regular function gives the symmetry property of *A*.

Back

References

- Chen, J. and Li, J., *Quaternionic maps between hyperkähler* manifolds, J. Differential Geom. 55 (2000) 355–384
- Joyce, D., *Hypercomplex algebraic geometry*, Quart. J. Math. Oxford **49** (1998) 129–162
- Perotti, A., RegularHarmonics: a Mathematica 4.2 package available at www.science.unitn.it/~perotti /regular harmonics.htm (2004)
- Sommese, A.J., *Quaternionic Manifolds*, Math. Ann. 212 (1975) 191–214

 $\frac{1}{16}det(A - (trA)I_3) =$ $a_1a_2b_2c_1^2\bar{b}_1 - a_1a_2b_1c_1c_2\bar{b}_1 - a_1^2b_2c_1c_2\bar{b}_1 + a_1^2b_1c_2^2\bar{b}_1 - a_1c_1^2\bar{a}_1\bar{b}_1^2 - a_1c_2^2\bar{b}_1 - a_1c_1^2\bar{a}_1\bar{b}_1^2 - a_1c_1^2\bar{a}_1\bar{b}_1^2$ $a_1c_1c_2\bar{a}_2\bar{b}_1^2 + a_2^2b_2c_1^2\bar{b}_2 - a_2^2b_1c_1c_2\bar{b}_2 - a_1a_2b_2c_1c_2\bar{b}_2 + a_1a_2b_1c_2^2\bar{b}_2 - a_1a_2b_2c_1c_2\bar{b}_2 + a_1a_2b_1c_2\bar{b}_2 - a_1a_2b_2c_1c_2\bar{b}_2 + a_1a_2b_2c_1c_2\bar{b}_2 + a_1a_2b_2c_1c_2\bar{b}_2 + a_1a_2b_2c_1c_2\bar{b}_2 + a_1a_2b_2c_2\bar{b}_2 + a_1$ $a_2c_1^2\bar{a}_1\bar{b}_1\bar{b}_2 - a_1c_1c_2\bar{a}_1\bar{b}_1\bar{b}_2 - a_2c_1c_2\bar{a}_2\bar{b}_1\bar{b}_2 - a_1c_2^2\bar{a}_2\bar{b}_1\bar{b}_2 - a_2c_1c_2\bar{a}_1\bar{b}_2^2 - a_2c_1c_2\bar{a}_2\bar{b}_1\bar{b}_2 - a_2c_1c_2\bar{a}_1\bar{b}_2^2 - a_2c_1c_2\bar{a}_2\bar{b}_1\bar{b}_2 - a_2c_1c_2\bar{a}_2\bar{b}_1\bar{b}_2 - a_2c_1c_2\bar{a}_1\bar{b}_2^2 - a_2c_1c_2\bar{a}_1\bar{b}_2^2 - a_2c_1c_2\bar{a}_1\bar{b}_2^2 - a_2c_1c_2\bar{a}_1\bar{b}_2^2 - a_2c_1c_2\bar{a}_1\bar{b}_2 - a_2c_1c_2\bar{a}_2\bar{b}_1\bar{b}_2 - a_2c_1c_2\bar{a}_2\bar{b}_1\bar{b}_2 - a_2c_1c_2\bar{a}_2\bar{b}_1\bar{b}_2 - a_2c_1c_2\bar{a}_2\bar{b}_1\bar{b}_2 - a_2c_1c_2\bar{a}_2\bar{b}_1\bar{b}_2 - a_2c_1c_2\bar{a}_1\bar{b}_2 - a_2c_1c_2\bar{a}_2\bar{b}_1\bar{b}_2 - a_2c_1c_2\bar{a}_2\bar{b}_1\bar{b}_2 - a_2c_1c_2\bar{a}_1\bar{b}_2 - a_2c_1c_2\bar{b}_2\bar{b}_2 - a_2c_1c_2\bar{b}_2 - a_2c_2c_2\bar{b$ $a_2c_2^2\bar{a}_2\bar{b}_2^2 + a_1a_2b_1b_2c_1\bar{c}_1 - a_1^2b_2^2c_1\bar{c}_1 - a_1a_2b_1^2c_2\bar{c}_1 + a_1^2b_1b_2c_2\bar{c}_1 - a_1a_2b_1^2c_2\bar{c}_1 + a_1^2b_1b_2c_2\bar{c}_1 - a_1a_2b_1^2c_2\bar{c}_1 - a_1a_2b_1^2c_2\bar{c}_1 - a_1a_2b_1^2c_2\bar{c}_1 + a_1^2b_1b_2c_2\bar{c}_1 - a_1^2b_2c_2\bar{c}_1 + a_1^2b_2c_2\bar{c}_1 - a_1^2b_2c_2\bar{c}_1 + a_1^2b_2c_2\bar{c}_1 - a_1^2b_2c_2\bar{c}_1 + a_1^2b_2c_2\bar{c}_1 - a_1^2b_2c_2\bar{c}_1 + a_1^2b_2c_2\bar{c}_1 + a_1^2b_2c_2\bar{c}_1 - a_1^2b_2c_2\bar{c}_1 + a_1^2b_2c_2\bar{c}$ $2a_1b_1c_1\bar{a}_1\bar{b}_1\bar{c}_1 - a_1b_2c_1\bar{a}_2\bar{b}_1\bar{c}_1 - a_1b_1c_2\bar{a}_2\bar{b}_1\bar{c}_1 - a_2b_1c_1\bar{a}_1b_2\bar{c}_1 - a_1b_1c_2\bar{a}_2\bar{b}_1\bar{c}_1 - a_2b_1c_1\bar{a}_1b_2\bar{c}_1 - a_2b_1$ $2a_1b_2c_1\bar{a}_1\bar{b}_2\bar{c}_1 + a_1b_1c_2\bar{a}_1\bar{b}_2\bar{c}_1 - 2a_2b_2c_1\bar{a}_2\bar{b}_2\bar{c}_1 + a_2b_1c_2\bar{a}_2\bar{b}_2\bar{c}_1 - a_2b_1c_2\bar{b}_2\bar{c}_1 - a_2b_1c_$ $a_1b_2c_2\bar{a}_2\bar{b}_2\bar{c}_1 + c_1\bar{a}_1\bar{a}_2\bar{b}_1\bar{b}_2\bar{c}_1 + c_2\bar{a}_2^2\bar{b}_1\bar{b}_2\bar{c}_1 - c_1\bar{a}_1^2\bar{b}_2^2\bar{c}_1 - c_2\bar{a}_1\bar{a}_2\bar{b}_2^2\bar{c}_1 - c_2\bar{a}_1\bar{a}_2\bar{b}_2\bar{c}_1 - c_2\bar{a}_2\bar{c}_1\bar{c}_1 - c_2\bar{a}_2\bar{c}_1\bar{c}_1 - c_2\bar{a}_2\bar{c}_1\bar$ $a_1b_1^2\bar{a}_1\bar{c}_1^2 - a_1b_1b_2\bar{a}_2\bar{c}_1^2 + b_1\bar{a}_1\bar{a}_2\bar{b}_2\bar{c}_1^2 + b_2\bar{a}_2^2\bar{b}_2\bar{c}_1^2 + a_2^2b_1b_2c_1\bar{c}_2 - b_2\bar{a}_2\bar{b}_2\bar{c}_1^2 + a_2^2b_1b_2c_1\bar{c}_2 - b_2\bar{a}_2\bar{b}_2\bar{c}_1^2 + b_2\bar{a}_2\bar{b}_2\bar{c}_1\bar{c}_2 + b_2\bar{c}_2\bar{c}_2\bar{c}_2\bar{c}_2 + b_2\bar{c}_2\bar{c}_2\bar{c}_2\bar{c}_2 + b_2\bar{c}_2\bar{c}_2\bar{c}_2\bar{c}_2\bar{c}_2 + b_2\bar{c}_2\bar{c}_2\bar{c}_2\bar{c}_2\bar{c}_2 + b_2\bar{c}_2\bar{c}_2\bar{c}_2\bar{c}_2\bar{c}_2\bar{c}_2 + b_2\bar{c}_2\bar{c}_2\bar{c}_2\bar{c}_2\bar{c}_2\bar{c}_2 + b_2\bar{c}_2\bar{c}_2\bar{c}_2\bar{c}_2\bar{c}_2 + b_2\bar{c}_2\bar{c}_2\bar{c}_2\bar{c}_2\bar{c}_2\bar{c}_2 + b_2\bar{c}_2\bar{c}_2\bar{c}_2\bar{c}_2\bar{c}_2\bar{c}_2 + b_2\bar{c}_2\bar{c}_2\bar{c}_2\bar{c}_2\bar{c}_2\bar{c}_2\bar{c}$ $2a_1b_1c_2\bar{a}_1\bar{b}_1\bar{c}_2 + a_2b_2c_1\bar{a}_2\bar{b}_1\bar{c}_2 - 2a_2b_1c_2\bar{a}_2\bar{b}_1\bar{c}_2 - a_1b_2c_2\bar{a}_2\bar{b}_1\bar{c}_2 - a_1b_2c_2\bar{c}_2\bar{b}_1\bar{c}_2 - a_1b_2c_2\bar{c}_2\bar{c}_2\bar{b}_1\bar{c}_2 - a_1b_2c_2\bar{c}_2\bar{c}_2\bar{b}_1\bar{c}_2 - a_1b_2c_2\bar{c}_$ $c_1 \bar{a}_1 \bar{a}_2 \bar{b}_1^2 \bar{c}_2 - c_2 \bar{a}_2^2 \bar{b}_1^2 \bar{c}_2 - a_2 b_2 c_1 \bar{a}_1 \bar{b}_2 \bar{c}_2 - a_2 b_1 c_2 \bar{a}_1 \bar{b}_2 \bar{c}_2 - 2 a_2 b_2 c_2 \bar{a}_2 \bar{b}_2 \bar{c}_2 + c_2 \bar{a}_2 \bar{b}_2 \bar{c}_2 - a_2 b_2 c_2 \bar{c}_2 \bar{c}_2 - a_2 b_2 c_2 \bar{c}_2 \bar{c}_2 - a_2 b_2 c_2 \bar{c}_2 \bar{c}$ $c_1 \bar{a}_1^2 \bar{b}_1 \bar{b}_2 \bar{c}_2 + c_2 \bar{a}_1 \bar{a}_2 \bar{b}_1 \bar{b}_2 \bar{c}_2 - a_2 b_1^2 \bar{a}_1 \bar{c}_1 \bar{c}_2 - a_1 b_1 b_2 \bar{a}_1 \bar{c}_1 \bar{c}_2 - a_2 b_1^2 \bar{a}_1 \bar{c}_1 \bar{c}_2 - a_1 b_1 b_2 \bar{a}_1 \bar{c}_1 \bar{c}_2 - a_2 b_1^2 \bar{a}_1 \bar{c}_1 \bar{c}_2 - a_1 b_1 b_2 \bar{a}_1 \bar{c}_1 \bar{c}_2 - a_2 b_1^2 \bar{a}_1 \bar{c}_1 \bar{c}_2 - a_1 b_1 b_2 \bar{a}_1 \bar{c}_1 \bar{c}_2 - a_2 b_1^2 \bar{a}_1 \bar{c}_1 \bar{c}_2 - a_1 b_1 b_2 \bar{a}_1 \bar{c}_1 \bar{c}_2 - a_2 b_1^2 \bar{a}_1 \bar{c}_1 \bar{c}_2 - a_2 b_1 \bar{c}_1 \bar{c}_2 - a_2 b_1 \bar{c}_1 \bar{c}_2 - a_1 b_1 b_2 \bar{a}_1 \bar{c}_1 \bar{c}_2 - a_2 b_1 \bar{c}_2 \bar{c}_2 - a_2 b_1 \bar{c}_1 \bar{c}_2 - a_2 b_1 \bar{c}_1 \bar{c}_2 - a_1 \bar{c}_1 \bar{c}_2 \bar{c}_2 \bar{c}_2 \bar{c}_2 - a_1 \bar{c}_1 \bar{c}_2 \bar{$ $a_2b_1b_2\bar{a}_2\bar{c}_1\bar{c}_2 - a_1b_2^2\bar{a}_2\bar{c}_1\bar{c}_2 - b_1\bar{a}_1\bar{a}_2\bar{b}_1\bar{c}_1\bar{c}_2 - b_2\bar{a}_2^2\bar{b}_1\bar{c}_1\bar{c}_2 - b_1\bar{a}_1^2\bar{b}_2\bar{c}_1\bar{c}_2 - b_1\bar{a}_1\bar{c}_2\bar{c}_1\bar{c}_2 - b_1\bar{c}_1\bar{c}_2\bar{c}_1\bar{c}_2 - b_1\bar{c}_1\bar{c}_2\bar{c}_1\bar{c}_2\bar{c}_1\bar{c}_2 - b_1\bar{c}_1\bar{c}_2\bar{c}_1\bar{c}_2\bar{c}_1\bar{c}_2 - b_1\bar{c}_1\bar{c}_2\bar{c}_1\bar{c}_2\bar{c}_1\bar{c}_2 - b_1\bar{c}_1\bar{c}_2\bar{c}_1\bar{c}_2\bar{c}_1\bar{c}_2\bar{c}_1\bar{c}_2 - b_1\bar{c}_1\bar{c}_2\bar{c}_1\bar{c}_2\bar{c}_1\bar{c}_2 - b_1\bar{c}_1\bar{c}_2\bar{c}$ $b_2 \bar{a}_1 \bar{a}_2 \bar{b}_2 \bar{c}_1 \bar{c}_2 - a_2 b_1 b_2 \bar{a}_1 \bar{c}_2^2 - a_2 b_2^2 \bar{a}_2 \bar{c}_2^2 + b_1 \bar{a}_1^2 \bar{b}_1 \bar{c}_2^2 + b_2 \bar{a}_1 \bar{a}_2 \bar{b}_1 \bar{c}_2^2 = 0$ Back