
Abstract

In this paper we study the action of conformal mappings of the quaternionic space on a class of regular functions of one quaternionic variable. We consider functions in the kernel of the Cauchy-Riemann operator $$
\mathcal{D}=2\left(\frac{\partial}{\partial \bar{z}_{1}}+j \frac{\partial}{\partial \bar{z}_{2}}\right)=\frac{\partial}{\partial x_{0}}+i \frac{\partial}{\partial x_{1}}+j \frac{\partial}{\partial x_{2}}-k \frac{\partial}{\partial x_{3}},
$$ a variant of the Cauchy-Fueter operator. This choice is motivated by the strict relation existing between this type of regularity and holomorphicity w.r.t. the whole class of complex structures on \mathbb{H}. For every imaginary unit $p \in \mathbb{S}^{2}$, let J_{p} be the corresponding complex structure on \mathbb{H}. Let $\operatorname{Hol}_{p}(\Omega, \mathbb{H})$ be the space of holomorphic maps from $\left(\Omega, J_{p}\right)$ to (\mathbb{H}, L_{p}), where L_{p} is defined by left multiplication by p. Every element of $\operatorname{Hol}_{p}(\Omega, \mathbb{H})$ is regular, but there exist regular functions that are not holomorphic for any p. These properties can be recognized by computing the energy quadric of a function. We show that the energy quadric is invariant w.r.t. three-dimensional rotations of \mathbb{H}. As an application, we obtain that every rotation of the space \mathbb{H} can be generated by biregular rotations, invertible regular functions with regular inverse. Moreover, we prove that the energy quadric of a regular function can always be diagonalized by means of a three-dimensional rotation.

Math. Subj. Class: Primary 30G35; Secondary 30A30
Keywords: Quaternionic regular functions, hyperholomorphic functions, conformal mappings, Möbius transformations

Regular quaternionic functions and conformal mappings

Alessandro Perotti *
Department of Mathematics
University of Trento
Via Sommarive, 14
I-38050 Povo Trento ITALY
perotti@science.unitn.it

July 11, 2008

1 Introduction

The aim of this paper is to analyze the action of the conformal group of the onepoint compactification \mathbb{H}^{*} of \mathbb{H} on a class of regular functions of one quaternionic variable

Let Ω be a smooth bounded domain in \mathbb{C}^{2}. Let \mathbb{H} be the space of real quaternions $q=x_{0}+i x_{1}+j x_{2}+k x_{3}$, where i, j, k denote the basic quaternions. We identify \mathbb{H} with \mathbb{C}^{2} by means of the mapping that associates the quaternion $q=z_{1}+z_{2} j$ with the pair $\left(z_{1}, z_{2}\right)=\left(x_{0}+i x_{1}, x_{2}+i x_{3}\right)$. We consider the class $\mathcal{R}(\Omega)$ of left-regular (also called hyperholomorphic) functions $f: \Omega \rightarrow \mathbb{H}$ in the kernel of the Cauchy-Riemann operator

$$
\mathcal{D}=2\left(\frac{\partial}{\partial \bar{z}_{1}}+j \frac{\partial}{\partial \bar{z}_{2}}\right)=\frac{\partial}{\partial x_{0}}+i \frac{\partial}{\partial x_{1}}+j \frac{\partial}{\partial x_{2}}-k \frac{\partial}{\partial x_{3}} .
$$

This differential operator is a variant of the original Cauchy-Riemann-Fueter operator (cf. for example [19] and [4, 5])

$$
\frac{\partial}{\partial x_{0}}+i \frac{\partial}{\partial x_{1}}+j \frac{\partial}{\partial x_{2}}+k \frac{\partial}{\partial x_{3}} .
$$

Hyperholomorphic functions have been studied by many authors (see for instance $[1,7,11,12,14,17,18])$. Many of their properties can be easily deduced from known properties satisfied by Fueter-regular functions, since a function f

[^0]is regular on Ω if and only if $f \circ \gamma$ is Fueter-regular on $\gamma(\Omega)=\gamma^{-1}(\Omega)$, where γ is the reflection of \mathbb{C}^{2} defined by $\gamma\left(z_{1}, z_{2}\right)=\left(z_{1}, \bar{z}_{2}\right)$. However, regular functions in the space $\mathcal{R}(\Omega)$ have some characteristics that are more intimately related to the theory of holomorphic functions of two complex variables. In particular, the space $\mathcal{R}(\Omega)$ contains the spaces of holomorphic maps with respect to any constant complex structure. This is no longer true if we adopt the original definition of Fueter regularity (see Section 2 for more details).

Let J_{1}, J_{2} be the complex structures on the tangent bundle $T \mathbb{H} \simeq \mathbb{H}$ defined by left multiplication by i and j. Let J_{1}^{*}, J_{2}^{*} be the dual structures on the cotangent bundle $T^{*} \mathbb{H} \simeq \mathbb{H}$ and set $J_{3}^{*}=J_{1}^{*} J_{2}^{*}$. For every complex structure $J_{p}=p_{1} J_{1}+p_{2} J_{2}+p_{3} J_{3}$ (p a imaginary unit in the unit sphere \mathbb{S}^{2}), let

$$
\bar{\partial}_{p}=\frac{1}{2}\left(d+p J_{p}^{*} \circ d\right)
$$

be the Cauchy-Riemann operator with respect to the structure J_{p}. Let us define $\operatorname{Hol}_{p}(\Omega, \mathbf{H})=\operatorname{Ker} \bar{\partial}_{p}$, the space of holomorphic maps from $\left(\Omega, J_{p}\right)$ to $\left(\mathbf{H}, L_{p}\right)$, where L_{p} is the complex structure defined by left multiplication by p. Then every element of $\operatorname{Hol}_{p}(\Omega, \mathbf{H})$ is regular. These subspaces do not fill the whole space of regular functions (cf. [13]). This result is a consequence of a criterion of J_{p}-holomorphicity, based on the concept of energy quadric of a regular function (cf. Section 3.2 for exact definitions).

In Section 4 we come to conformal transformations. From a theorem of Liouville, the general conformal mapping of \mathbb{H}^{*} is the composition of a sequence of translations, dilations, rotations and inversions. It can be written as a quaternionic Möbius transformation, i.e. a fractional linear map of the form

$$
L_{A}(q)=(a q+b)(c q+d)^{-1}
$$

with $A \in G L(2, \mathbb{H})$. For properties of these maps, see for example [2], [4]§6.2, [16] and [19] and the references cited in those papers.

Given a function $f \in C^{1}(\Omega)$ and a conformal transformation L_{A}, let f^{A} be the function

$$
f^{A}(q)=\frac{(c \gamma(q)+d)^{-1}}{|c \gamma(q)+d|^{2}} f\left(L_{\gamma(A)}^{\prime}(q)\right)
$$

where $L_{\gamma(A)}^{\prime}(q)=\gamma \circ L_{A} \circ \gamma(q)$. In Theorem 4, we prove that f is regular on Ω if and only if f^{A} is regular on $\Omega^{\prime}=\left(L_{\gamma(A)}^{\prime}\right)^{-1}(\Omega)$. Moreover, $\left(f^{A}\right)^{B}=f^{A B}$ for every $A, B \in G L(2, \mathbb{H})$. The first property can be deduced from Theorem 6 of Sudbery [19] using the reflection γ.

We are interested also in the action of conformal mappings on the energy quadric and on the holomorphicity properties of the maps. For a general conformal transformation L_{A}, the energy and, a fortiori, the energy quadric of a regular function is not conserved. However, we show that three-dimensional rotations of \mathbb{H} (those which fix the real numbers) conserve the energy quadric (for translations this it is a trivial fact).

Let $a \in \mathbb{H}, a \neq 0$. Let $\operatorname{rot}_{a}(q)=a q a^{-1}$ be the three-dimensional rotation of \mathbb{H} defined by a. In Theorem 7, we prove that the function

$$
f^{a}=\operatorname{rot}_{\gamma(a)} \circ f \circ \operatorname{rot}_{a}
$$

is regular on $\Omega^{a}=\operatorname{rot}_{a}^{-1}(\Omega)$ if and only if f is regular on Ω. Moreover, the energy density of f^{a} is $\mathcal{E}\left(f^{a}\right)=\mathcal{E}(f) \circ \operatorname{rot}_{a}$ and the matrix function $M(f)$ (for f regular $M(f)$ is the energy quadric, cf. Section 3) transforms in the following way

$$
M\left(f^{a}\right)=Q_{a}\left(M(f) \circ \operatorname{rot}_{a}\right) Q_{a}^{T}
$$

where $Q_{a} \in S O(3)$ is the orthogonal matrix associated to the rotation $\operatorname{rot}_{\gamma(a)}$ of the space $\mathbb{R}^{3}=\langle i, j, k\rangle$.

This formula has many consequences. It allows to obtain (Corollary 9) that f^{a} is J_{p}-holomorphic if and only if f is $J_{p^{\prime}}$-holomorphic, with $p^{\prime}=\operatorname{rot}_{\gamma(a)}^{-1}(p)$. Moreover, we get (Corollary 10) that the energy quadric of a regular function can always be diagonalized by means of a three-dimensional rotation. Finally, we obtain a biregularity result about rotations (Proposition 11 and Corollary 12). We prove that every three-dimensional rotation is the composition of (at most) two three-dimensional biregular rotations, and that every four-dimensional rotation is the composition of two biregular rotations.

2 Notations and definitions

2.1 Fueter regular functions

We identify the space \mathbb{C}^{2} with the set \mathbb{H} of quaternions by means of the mapping that associates the pair $\left(z_{1}, z_{2}\right)=\left(x_{0}+i x_{1}, x_{2}+i x_{3}\right)$ with the quaternion $q=$ $z_{1}+z_{2} j=x_{0}+i x_{1}+j x_{2}+k x_{3} \in \mathbb{H}$. A quaternionic function $f=f_{1}+f_{2} j \in C^{1}(\Omega)$ is (left) regular (or hyperholomorphic) on Ω if

$$
\mathcal{D} f=2\left(\frac{\partial}{\partial \bar{z}_{1}}+j \frac{\partial}{\partial \bar{z}_{2}}\right)=\frac{\partial f}{\partial x_{0}}+i \frac{\partial f}{\partial x_{1}}+j \frac{\partial f}{\partial x_{2}}-k \frac{\partial f}{\partial x_{3}}=0 \quad \text { on } \Omega .
$$

We will denote by $\mathcal{R}(\Omega)$ the space of regular functions on Ω.
With respect to this definition of regularity, the space $\mathcal{R}(\Omega)$ contains the identity mapping and every holomorphic mapping $\left(f_{1}, f_{2}\right)$ on Ω (with respect to the standard complex structure) defines a regular function $f=f_{1}+f_{2} j$. We recall some properties of regular functions, for which we refer to the papers of Sudbery[19], Shapiro and Vasilevski[17] and Nōno[12]:

1. The complex components are both holomorphic or both non-holomorphic.
2. Every regular function is harmonic.
3. If Ω is pseudoconvex, every complex harmonic function is the complex component of a regular function on Ω.
4. The space $\mathcal{R}(\Omega)$ of regular functions on Ω is a right \mathbb{H}-module with integral representation formulas.
5. f is regular $\Leftrightarrow \quad \frac{\partial f_{1}}{\partial \bar{z}_{1}}=\frac{\partial \overline{f_{2}}}{\partial z_{2}}, \quad \frac{\partial f_{1}}{\partial \bar{z}_{2}}=-\frac{\partial \overline{f_{2}}}{\partial z_{1}}$.

We note that a function $f=f_{1}+f_{2} j$ is regular on Ω if and only if its Jacobian matrix has the form

$$
J(f)=\left(\frac{\partial\left(f_{1}, f_{2}, \bar{f}_{1}, \bar{f}_{2}\right)}{\partial\left(z_{1}, z_{2}, \bar{z}_{1}, \bar{z}_{2}\right)}\right)=\left(\begin{array}{rr|rr}
a_{1} & -\bar{b}_{2} & -\bar{c}_{2} & -c_{1} \\
a_{2} & \bar{b}_{1} & \bar{c}_{1} & -c_{2} \\
\hline-c_{2} & -\bar{c}_{1} & \bar{a}_{1} & -b_{2} \\
c_{1} & -\bar{c}_{2} & \bar{a}_{2} & b_{1}
\end{array}\right)
$$

at every $z \in \Omega$, where $a=\left(\frac{\partial f_{1}}{\partial z_{1}}, \frac{\partial f_{2}}{\partial z_{1}}\right), b=\left(\frac{\partial \bar{f}_{2}}{\partial \bar{z}_{2}},-\frac{\partial \bar{f}_{1}}{\partial \bar{z}_{2}}\right), c=\left(\frac{\partial \bar{f}_{2}}{\partial z_{1}},-\frac{\partial \bar{f}_{1}}{\partial z_{1}}\right)=$ $-\left(\frac{\partial f_{1}}{\partial \bar{z}_{2}}, \frac{\partial f_{2}}{\partial \bar{z}_{2}}\right)$. We shall call a matrix of this form a regular matrix. Note that a regular matrix can have rank $0,2,3$ or 4 but not rank 1 .

A definition equivalent to regularity has been given by Joyce[6] in the setting of hypercomplex manifolds. Joyce introduced the module of q-holomorphic functions on a hypercomplex manifold.

A hypercomplex structure on the manifold \mathbb{H} is given by the complex structures J_{1}, J_{2} on $T \mathbb{H} \simeq \mathbb{H}$ defined by left multiplication by i and j. Let J_{1}^{*}, J_{2}^{*} be the dual structures on $T^{*} \mathbb{H} \simeq \mathbb{H}$. In complex coordinates

$$
\begin{cases}J_{1}^{*} d z_{1}=i d z_{1}, & J_{1}^{*} d z_{2}=i d z_{2} \\ J_{2}^{*} d z_{1}=-d \bar{z}_{2}, & J_{2}^{*} d z_{2}=d \bar{z}_{1} \\ J_{3}^{*} d z_{1}=i d \bar{z}_{2}, & J_{3}^{*} d z_{2}=-i d \bar{z}_{1}\end{cases}
$$

where we make the choice $J_{3}^{*}=J_{1}^{*} J_{2}^{*}$, which is equivalent to $J_{3}=-J_{1} J_{2}$. In real coordinates, the action of the structures is the following

$$
\begin{cases}J_{1} d x_{0}=-d x_{1}, & J_{1} d x_{2}=-d x_{3}, \\ J_{2} d x_{0}=-d x_{2}, & J_{2} d x_{1}=d x_{3}, \\ J_{3} d x_{0}=d x_{3}, & J_{3} d x_{1}=d x_{2} .\end{cases}
$$

A function f is regular if and only if f is q-holomorphic, i.e.

$$
d f+i J_{1}^{*}(d f)+j J_{2}^{*}(d f)+k J_{3}^{*}(d f)=0 .
$$

In complex components $f=f_{1}+f_{2} j$, we can rewrite the equations of regularity as

$$
\bar{\partial} f_{1}=J_{2}^{*}\left(\partial \bar{f}_{2}\right)
$$

The original definition of regularity given by Fueter (cf. [19] or [4]) differs from that adopted here by a real coordinate reflection. Let γ be the transformation of \mathbb{C}^{2} defined by $\gamma\left(z_{1}, z_{2}\right)=\left(z_{1}, \bar{z}_{2}\right)$. Then a C^{1} function f is regular
on the domain Ω if and only if $f \circ \gamma$ is Fueter-regular on $\gamma(\Omega)=\gamma^{-1}(\Omega)$, i.e. it satisfies the differential equation

$$
\left(\frac{\partial}{\partial x_{0}}+i \frac{\partial}{\partial x_{1}}+j \frac{\partial}{\partial x_{2}}+k \frac{\partial}{\partial x_{3}}\right)(f \circ \gamma)=0 \quad \text { on } \gamma^{-1}(\Omega) .
$$

2.2 Biregular functions

A quaternionic function $f \in C^{1}(\Omega)$ is called biregular if f is invertible and f, f^{-1} are regular. If this property holds locally, f is called locally biregular. These functions were studied in [8], [9] and [15].

The class $\mathcal{B R}(\Omega)$ of biregular functions is closed with respect to right multiplication by a non-zero quaternion, but it is not closed with respect to composition or sum: even if $f+g$ is invertible and $f, g \in \mathcal{B} \mathcal{R}(\Omega)$, the sum can be not biregular.

Examples

1. Every biholomorphic map $\left(f_{1}, f_{2}\right)$ on Ω defines a biregular function $f=$ $f_{1}+f_{2} j$.
2. The identity function is biregular on \mathbb{H}. More generally, the affine functions $f(q)=q a+b, a \in \mathbb{H}^{*}, b \in \mathbb{H}$, are biregular on \mathbb{H}.
3. $f=\bar{z}_{1}+\bar{z}_{2} j \in \mathcal{R}(\mathbb{H}), f^{-1}=f \in \mathcal{B} \mathcal{R}(\mathbb{H})$.
4. The function $f=z_{1}+z_{2}+\bar{z}_{1}+\left(z_{1}+z_{2}+\bar{z}_{2}\right) j$ is regular, but the inverse map

$$
f^{-1}=\frac{1}{3}\left(z_{1}+z_{2}+\bar{z}_{1}-2 \bar{z}_{2}+\left(z_{1}+z_{2}-2 \bar{z}_{1}+\bar{z}_{2}\right) j\right)
$$

is not regular. Note that in this case the Jacobian determinant is negative. This cannot happen for a biregular function (cf. [15]).

2.3 Holomorphic functions w.r.t. a complex structure J_{p}

Let $J_{p}=p_{1} J_{1}+p_{2} J_{2}+p_{3} J_{3}$ be the orthogonal complex structure on \mathbb{H} defined by a unit imaginary quaternion $p=p_{1} i+p_{2} j+p_{3} k$ in the sphere $\mathbb{S}^{2}=\{p \in$ $\left.\mathbb{H} \mid p^{2}=-1\right\}$. In particular, J_{1} is the standard complex structure of $\mathbb{C}^{2} \simeq \mathbb{H}$.

Let $\mathbb{C}_{p}=\langle 1, p\rangle$ be the complex plane spanned by 1 and p and let L_{p} be the complex structure defined on $T^{*} \mathbb{C}_{p} \simeq \mathbb{C}_{p}$ by left multiplication by p. If $f=f^{0}+i f^{1}: \Omega \rightarrow \mathbb{C}$ is a J_{p}-holomorphic function, i.e. $d f^{0}=J_{p}^{*}\left(d f^{1}\right)$ or, equivalently, $d f+i J_{p}^{*}(d f)=0$, then f defines a regular function $\tilde{f}=f^{0}+p f^{1}$ on Ω. We can identify \tilde{f} with a holomorphic function

$$
\tilde{f}:\left(\Omega, J_{p}\right) \rightarrow\left(\mathbb{C}_{p}, L_{p}\right)
$$

We have $L_{p}=J_{\gamma(p)}$, where $\gamma(p)=p_{1} i+p_{2} j-p_{3} k$. More generally, we can consider the space of holomorphic maps from $\left(\Omega, J_{p}\right)$ to ($\left.\mathbb{H}, L_{p}\right)$

$$
\operatorname{Hol}_{p}(\Omega, \mathbb{H})=\left\{f: \Omega \rightarrow \mathbb{H} \text { of class } C^{1} \mid \bar{\partial}_{p} f=0 \text { on } \Omega\right\}=\operatorname{Ker} \bar{\partial}_{p}
$$

where $\bar{\partial}_{p}$ is the Cauchy-Riemann operator with respect to the structure J_{p}

$$
\bar{\partial}_{p}=\frac{1}{2}\left(d+p J_{p}^{*} \circ d\right) .
$$

These functions will be called J_{p}-holomorphic maps on Ω.
For any positive orthonormal basis $\{1, p, q, p q\}$ of $\mathbb{H}\left(p, q \in \mathbb{S}^{2}\right)$, let $f=$ $f_{1}+f_{2} q$ be the decomposition of f with respect to the orthogonal sum

$$
\mathbb{H}=\mathbb{C}_{p} \oplus\left(\mathbb{C}_{p}\right) q
$$

Let $f_{1}=f^{0}+p f^{1}, f_{2}=f^{2}+p f^{3}$, with $f^{0}, f^{1}, f^{2}, f^{3}$ the real components of f w.r.t. the basis $\{1, p, q, p q\}$. Then the equations of regularity can be rewritten in complex form as

$$
\bar{\partial}_{p} f_{1}=J_{q}^{*}\left(\partial_{p} \bar{f}_{2}\right),
$$

where $\bar{f}_{2}=f^{2}-p f^{3}$ and $\partial_{p}=\frac{1}{2}\left(d-p J_{p}^{*} \circ d\right)$. Therefore every $f \in \operatorname{Hol}_{p}(\Omega, \mathbb{H})$ is a regular function on Ω.
Remark 1. 1. The identity map belongs to the space $\operatorname{Hol}_{i}(\Omega, \mathbb{H}) \cap \operatorname{Hol}_{j}(\Omega, \mathbb{H})$ but not to $\operatorname{Hol}_{k}(\Omega, \mathbb{H})$.
2. For every $p \in \mathbb{S}^{2}, \operatorname{Hol}_{-p}(\Omega, \mathbb{H})=\operatorname{Hol}_{p}(\Omega, \mathbb{H})$.
3. Every \mathbb{C}_{p}-valued regular function is a J_{p}-holomorphic function.
4. If $f \in \operatorname{Hol}_{p}(\Omega, \mathbb{H}) \cap \operatorname{Hol}_{q}(\Omega, \mathbb{H})$, with $p \neq \pm q$, then $f \in \operatorname{Hol}_{r}(\Omega, \mathbb{H})$ for every $r=\frac{\alpha p+\beta q}{\|\alpha p+\beta q\|}(\alpha, \beta \in \mathbb{R})$ in the circle of \mathbb{S}^{2} generated by p and q.
If the almost complex structure J_{p} is not constant, i.e. not compatible with the hyperkähler structure of \mathbb{H}, we get a similar result. Note that in this case the structure is not necessarily integrable. Let $f \in C^{1}(\Omega)$ and assume that $p=p(z) \in \mathbb{S}^{2}$ varies continuously with z in Ω. We will say that p is f-equivariant if $f(z)=f\left(z^{\prime}\right)$ implies $p(z)=p\left(z^{\prime}\right)\left(z, z^{\prime} \in \Omega\right)$. This property allows to define $p^{*}: f(\Omega) \rightarrow \mathbb{S}^{2}$ such that $p^{*} \circ f=p$ on Ω. In [15], the following result was proved.

Proposition 1. If $f \in C^{1}(\Omega)$ satisfies the equation

$$
\begin{equation*}
\bar{\partial}_{p(z)} f=\frac{1}{2}\left[d f(z)+p(z) J_{p(z)}^{*} \circ d f(z)\right]=0 \tag{1}
\end{equation*}
$$

at every $z \in \Omega$, then f is a regular function on Ω. If, moreover, the structure p is f-equivariant and p^{*} admits a continuous extension to an open set $U \supseteq f(\Omega)$, then f is a (pseudo)holomorphic map from $\left(\Omega, J_{p}\right)$ to $\left(U, L_{p^{*}}\right)$.

Example 1. $f(z)=\bar{z}_{1}+z_{2}^{2}+\bar{z}_{2} j$ is regular on \mathbb{H}. On $\Omega=\mathbb{H} \backslash\left\{z_{2}=0\right\} f$ is holomorphic w.r.t. the almost complex structure J_{p}, where

$$
p(z)=\frac{1}{\sqrt{\left|z_{2}\right|^{2}+\left|z_{2}\right|^{4}}}\left(\left|z_{2}\right|^{2} i+\left(\operatorname{Im} z_{2}\right) j-\left(\operatorname{Re} z_{2}\right) k\right)
$$

Note that $p(z)$ can not be continued to \mathbb{H} as a continuous map. Also the inverse map $f^{-1}(z)=\bar{z}_{1}-z_{2}^{2}+\bar{z}_{2} j$ is regular on \mathbb{H}. Then f is biregular on \mathbb{H}. But f is also (pseudo)biholomorphic on $\Omega: f(\Omega)=\Omega$ and $f^{-1}:\left(\Omega, J_{p^{\prime}}\right) \rightarrow\left(\mathbb{H}, L_{p^{\prime} \circ f}\right)$ is holomorphic, where

$$
p^{\prime}(z)=\frac{1}{\sqrt{\left|z_{2}\right|^{2}+\left|z_{2}\right|^{4}}}\left(\left|z_{2}\right|^{2} i-\left(\operatorname{Im} z_{2}\right) j+\left(\operatorname{Re} z_{2}\right) k\right) .
$$

Note that $L_{p^{*}}=L_{p \circ f f^{-1}}=J_{p^{\prime}}$ at $f(z)$ and $L_{p^{\prime} \circ f}=J_{p}$ at $z \in \Omega$.

3 A criterion for holomorphicity

3.1 Energy and regularity

In [13] it was proved that on every domain Ω there exist regular functions that are not J_{p}-holomorphic for any p. A similar result was obtained by Chen and $\mathrm{Li}[3]$ for the larger class of q-maps between hyperkähler manifolds.

The criterion for holomorphicity is based on an energy-minimizing property of holomorphic maps.

The energy density (w.r.t. the euclidean metric) of a function $f: \Omega \rightarrow \mathbb{H}$, of class $C^{1}(\Omega)$, is given by

$$
\mathcal{E}(f)=\frac{1}{2}\|d f\|^{2}=\frac{1}{2} \operatorname{tr}\left(J(f) \overline{J(f)}^{T}\right)
$$

After integration on Ω, we get the energy of $f \in C^{1}(\bar{\Omega})$:

$$
\mathcal{E}_{\Omega}(f)=\frac{1}{2} \int_{\Omega} \mathcal{E}(f) d V
$$

Using ideas from [10] and [3], it was proved in [13] that a regular function $f \in C^{1}(\bar{\Omega})$ minimizes energy in the homotopy class constituted by maps u with $u_{\mid \partial \Omega}=f_{\mid \partial \Omega}$ which are homotopic to f relative to $\partial \Omega$:

Now we introduce the Lichnerowicz invariants. Let $A(f)=\left(a_{\alpha \beta}\right)$ be the 3×3 matrix with entries the real functions $a_{\alpha \beta}=-\left\langle J_{\alpha}, f^{*} L_{i_{\beta}}\right\rangle$, where $\left(i_{1}, i_{2}, i_{3}\right)=$ (i, j, k). For $f \in C^{1}(\bar{\Omega})$, we set

$$
A_{\Omega}(f)=\int_{\Omega} A(f) d V \quad \text { and } \quad M_{\Omega}(f)=\frac{1}{2}\left(\left(\operatorname{tr} A_{\Omega}(f)\right) I_{3}-A_{\Omega}(f)\right)
$$

where I_{3} denotes the identity matrix.
We recall the criterion for regularity and holomorphicity proved in [13].
Theorem 2. 1. $M_{\Omega}(f)$ is a relative homotopy invariant of f.
2. f is regular on Ω if and only if $\mathcal{E}_{\Omega}(f)=\operatorname{tr} M_{\Omega}(f)$.
3. If $f \in \mathcal{R}(\Omega)$, then $M_{\Omega}(f)$ is symmetric and positive semidefinite.
4. If $f \in \mathcal{R}(\Omega)$, then f belongs to some space $\operatorname{Hol}_{p}(\Omega, \mathbb{H})$ (for a constant structure J_{p}) if and only if $\operatorname{det} M_{\Omega}(f)=0$.
5. $f \in \operatorname{Hol}_{p}(\Omega, \mathbb{H})$ if and only if $X_{p}=\left(p_{1}, p_{2}, p_{3}\right)$ is a unit vector in the kernel of $M_{\Omega}(f)$.

From the criterion it can be seen that almost all regular functions are not holomorphic with respect to any constant complex structure J_{p}.
Example 2. $f=\bar{z}_{1}+z_{2}+\bar{z}_{2} j$ is J_{p}-holomorphic, with $p=\frac{1}{\sqrt{5}}(i-2 k)$, since on the unit ball B (with normalized unit volume)

$$
\mathcal{E}_{B}(f)=3 \quad \text { and } \quad M_{B}(f)=\left[\begin{array}{ccc}
2 & 0 & 1 \\
0 & \frac{1}{2} & 0 \\
1 & 0 & \frac{1}{2}
\end{array}\right] .
$$

Example 3. $f=z_{1}+z_{2}+\bar{z}_{1}+\left(z_{1}+z_{2}+\bar{z}_{2}\right) j$ is regular, but not holomorphic:

$$
\mathcal{E}_{B}(f)=6 \quad \text { and } \quad M_{B}(f)=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Example 4. $f=\bar{z}_{1}+\bar{z}_{2} j$ is regular and has matrix

$$
M_{B}(f)=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

of rank one. This means that $f \in \operatorname{Hol}_{j}(\mathbb{H}, \mathbb{H}) \cap \operatorname{Hol}_{k}(\mathbb{H}, \mathbb{H})$.
Example 5. The identity mapping belongs to the space

$$
\operatorname{Hol}_{i}(\mathbb{H}, \mathbb{H}) \cap \operatorname{Hol}_{j}(\mathbb{H}, \mathbb{H})=\bigcap_{p \in<i, j>} \operatorname{Hol}_{p}(\mathbb{H}, \mathbb{H})
$$

Example 6 (Nonlinear case). $f=\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}+\bar{z}_{1} \bar{z}_{2} j$ has energy $\mathcal{E}_{B}(f)=2$ on the unit ball. The matrix $M_{B}(f)$ is

$$
M_{B}(f)=\left[\begin{array}{ccc}
\frac{4}{3} & 0 & 0 \\
0 & \frac{1}{3} & 0 \\
0 & 0 & \frac{1}{3}
\end{array}\right]
$$

Therefore f is regular but not holomorphic w.r.t. any constant complex structure J_{p}.

3.2 The energy quadric

In [15], a pointwise version of the criterion for holomorphicity was established.
Theorem 3. Let Ω be connected and $f \in C^{1}(\Omega)$. Consider the matrix of real functions on Ω

$$
M(f)=\frac{1}{2}\left((\operatorname{tr} A(f)) I_{3}-A(f)\right) .
$$

1. f is regular on Ω if and only if $\mathcal{E}(f)=\operatorname{tr} M(f)$ at every point $z \in \Omega$.
2. If $f \in \mathcal{R}(\Omega)$, then $M(f)$ is symmetric and positive semidefinite.
3. If $f \in \mathcal{R}(\Omega)$, then $\operatorname{det} M(f)=0$ on Ω if and only if there exists an open, dense subset $\Omega^{\prime} \subseteq \Omega$ on which f satisfies equation (1) for some function $p(z): \Omega^{\prime} \rightarrow \mathbb{S}^{2}$. Moreover, if $\operatorname{det} M(f)=0$ and $p(z)$ is f-equivariant, $p^{*} \circ f=p$ and p^{*} extends continuously to an open set $U \supseteq f(\Omega)$, then f is a (pseudo)holomorphic map from $\left(\Omega^{\prime}, J_{p}\right)$ to $\left(U, L_{p^{*}}\right)$.
Let
$a=\left(\frac{\partial f_{1}}{\partial z_{1}}, \frac{\partial f_{2}}{\partial z_{1}}\right), b=\left(\frac{\partial \bar{f}_{2}}{\partial \bar{z}_{2}},-\frac{\partial \bar{f}_{1}}{\partial \bar{z}_{2}}\right), c=\left(\frac{\partial \bar{f}_{2}}{\partial z_{1}},-\frac{\partial \bar{f}_{1}}{\partial z_{1}}\right), d=-\left(\frac{\partial f_{1}}{\partial \bar{z}_{2}}, \frac{\partial f_{2}}{\partial \bar{z}_{2}}\right)$.
Then the energy density is given by $\mathcal{E}(f)=|a|^{2}+|b|^{2}+|c|^{2}+|d|^{2}$. A lengthy but straightforward computation gives the following expression for the matrix $M(f)$:

$$
M(f)=\left[\begin{array}{ccc}
|c|^{2}+|d|^{2} & \operatorname{Im}(\langle d, a\rangle-\langle c, b\rangle) & \operatorname{Re}(\langle d, a\rangle+\langle c, b\rangle) \\
\operatorname{Im}(\langle c, a\rangle-\langle d, b\rangle) & \frac{1}{2}|a-b|^{2}+\frac{1}{2}|c-d|^{2} & -\operatorname{Im}(\langle a, b\rangle+\langle c, d\rangle) \\
\operatorname{Re}(\langle c, a\rangle+\langle d, b\rangle) & -\operatorname{Im}(\langle a, b\rangle-\langle c, d\rangle) & \frac{1}{2}|a+b|^{2}+\frac{1}{2}|c-d|^{2}
\end{array}\right] .
$$

Then $\mathcal{E}(f)=\operatorname{tr} M(f)$ if and only if $c=d$, i.e. f is regular. In this case the matrix $M(f)$ becomes

$$
M(f)=\left[\begin{array}{ccc}
2|c|^{2} & \operatorname{Im}\langle c, a-b\rangle & \operatorname{Re}\langle c, a+b\rangle \\
\operatorname{Im}\langle c, a-b\rangle & \frac{1}{2}|a-b|^{2} & -\operatorname{Im}\langle a, b\rangle \\
\operatorname{Re}\langle c, a+b\rangle & -\operatorname{Im}\langle a, b\rangle & \frac{1}{2}|a+b|^{2}
\end{array}\right] .
$$

Definition 1. For a regular function f on Ω, the family of positive semi-definite quadrics with matrices $\{M(f)(z) \mid z \in \Omega\}$ will be called the energy quadric of f.
Remark 2. If f is invertible, then every $p(z)$ is f-equivariant. If p is a constant complex structure, then p is f-equivariant for every f.
Remark 3. If f is (real) affine, $M(f)$ is a constant matrix. If f is not affine, $\operatorname{det} M(f)=0$ on Ω does not imply that $\operatorname{det} M_{\Omega}(f)=0$, but Theorems 2 and 3 imply that the converse is true.

Example 7. The function $f(z)=\bar{z}_{1}+z_{2}^{2}+\bar{z}_{2} j$ is regular (also biregular, cf. Example 1) on \mathbb{H}. We have

$$
\mathcal{E}(f)=2+4\left|z_{2}\right|^{2}, \quad M(f)=2\left[\begin{array}{ccc}
1 & -\operatorname{Im} z_{2} & \operatorname{Re} z_{2} \\
-\operatorname{Im} z_{2} & \left|z_{2}\right|^{2} & 0 \\
\operatorname{Re} z_{2} & 0 & \left|z_{2}\right|^{2}
\end{array}\right] .
$$

Then the energy quadric of f is singular on \mathbb{H}. On the domain $\Omega^{\prime}=\mathbb{H} \backslash\left\{z_{2}=0\right\}$, where $M(f)$ has maximum rank 2, the kernel of $M(f)$ is spanned by the vector $X=\left(\left|z_{2}\right|^{2}, \operatorname{Im} z_{2},-\operatorname{Re} z_{2}\right)$. Then f is J_{p}-holomorphic on Ω^{\prime}, with

$$
p(z)=\frac{1}{\sqrt{\left|z_{2}\right|^{2}+\left|z_{2}\right|^{4}}}\left(\left|z_{2}\right|^{2} i+\left(\operatorname{Im} z_{2}\right) j-\left(\operatorname{Re} z_{2}\right) k\right) .
$$

On the unit ball $B, \mathcal{E}_{B}(f)=\frac{10}{3}$ and the matrix

$$
M_{B}(f)=\int_{B} M(f) d V=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & \frac{2}{3} & 0 \\
0 & 0 & \frac{2}{3}
\end{array}\right]
$$

is non-singular. Therefore, f is not J_{q}-holomorphic for any constant complex structure J_{q}.
Example 8. The function $f=\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}+\bar{z}_{1} \bar{z}_{2} j$ introduced in Example 6 has energy density $3|z|^{2}$ and energy quadric with matrix

$$
M(f)=\left[\begin{array}{ccc}
2|z|^{2} & 0 & 0 \\
0 & \frac{1}{2}|z|^{2} & 0 \\
0 & 0 & \frac{1}{2}|z|^{2}
\end{array}\right]
$$

Therefore f is regular but not holomorphic w.r.t. any almost complex structure J_{p}. Note that $\operatorname{det} M(f)=\frac{1}{2}|z|^{6}$ vanishes only at the origin.

In [15], it was shown that if $f \in \mathcal{B} \mathcal{R}(\Omega)$ is a biregular function, then there exists an open, dense subset $\Omega^{\prime} \subseteq \Omega$, and an almost complex structure $p(z)$ on Ω^{\prime}, such that

$$
f:\left(\Omega^{\prime}, J_{p}\right) \rightarrow\left(f\left(\Omega^{\prime}\right), L_{p^{*}}\right)
$$

is a holomorphic map, with holomorphic inverse $f^{-1}:\left(f\left(\Omega^{\prime}\right), J_{p^{\prime}}\right) \rightarrow\left(\Omega^{\prime}, L_{p^{\prime} \circ f}\right)$. Here $p=p_{1} i+p_{2} j+p_{3} k: \Omega^{\prime} \rightarrow \mathbb{S}^{2}, p^{*}=p \circ f^{-1}$ and $p^{\prime}=p_{1} i+p_{2} j-p_{3} k$. In particular, any such map f preserves orientation.

4 Regular functions and conformal mappings

In this section we are going to analyze the action of the conformal group of \mathbb{H} on regular functions. Some of the results we describe can be deduced from [19] Theorem 6 using the reflection $\gamma\left(z_{1}, z_{2}\right)=\left(z_{1}, \bar{z}_{2}\right)$ introduced in $\S 2.1$, but here we want to investigate also the action on the energy quadric and the holomorphicity properties of the maps.

We recall some definitions and properties of conformal and orientation preserving mappings of the one-point compactification $\widehat{\mathbb{H}}$ of \mathbb{H}, for which we refer to $[2],[4] \S 6.2,[16]$ and $[19]$ and to the references cited in those papers.

The Dieudonné determinant of a quaternionic matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is the real non-negative number

$$
\operatorname{det}_{\mathbb{H}}(A)=\sqrt{|a|^{2}|d|^{2}+|b|^{2}|c|^{2}-2 \operatorname{Re}(c \bar{a} b \bar{d})} .
$$

It satisfies Binet property $\operatorname{det}_{\mathbb{H}}(A B)=\operatorname{det}_{\mathbb{H}}(A) \operatorname{det}_{\mathbb{H}}(B)$ and a 2×2 matrix A is (left and right) invertible if and only if $\operatorname{det}_{\mathbb{H}} A \neq 0$. Then we can consider the general linear group

$$
G L(2, \mathbb{H})=\left\{A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \text { quaternionic matrix of order } 2 \mid \operatorname{det}_{\mathbb{H}} A \neq 0\right\}
$$

A theorem of Liouville tells that the general conformal transformation of \mathbb{H}^{*} is a quaternionic Möbius transformation, i.e. a fractional linear map of the form

$$
L_{A}(q)=(a q+b)(c q+d)^{-1}
$$

for $A \in G L(2, \mathbb{H})$. The matrix A is determined by L_{A} up to a real scalar multiple. For every pair of matrices $A, B \in G L(2, \mathbb{H}), L_{A} \circ L_{B}=L_{A B}$. We have also the alternative representation of conformal mappings

$$
L_{A}^{\prime}(q)=(q c+d)^{-1}(q a+b), \quad \operatorname{det}_{\mathbb{H}} \bar{A} \neq 0 .
$$

Theorem 4. Given a function $f \in C^{1}(\Omega)$ and a conformal transformation $L_{A}(q)=(a q+b)(c q+d)^{-1}$, let f^{A} be the function

$$
f^{A}(q)=\frac{(c \gamma(q)+d)^{-1}}{|c \gamma(q)+d|^{2}} f\left(L_{\gamma(A)}^{\prime}(q)\right)
$$

where $\gamma(A)=\left[\begin{array}{ll}\gamma(a) & \gamma(b) \\ \gamma(c) & \gamma(d)\end{array}\right]$. Then f is regular on Ω if and only if f^{A} is regular on $\Omega^{\prime}=\left(L_{\gamma(A)}^{\prime}\right)^{-1}(\Omega)$. Moreover, $\left(f^{A}\right)^{B}=f^{A B}$ for every $A, B \in G L(2, \mathbb{H})$.

Proof. We deduce the first statement from the result of Sudbery (cf. [19] Theorem 6), since $f \in \mathcal{R}(\Omega)$ iff $F=f \circ \gamma$ is Fueter-regular on $\gamma(\Omega)$. This last condition is equivalent to the Fueter-regularity of the transformed function

$$
F^{A}(p)=\frac{(c p+d)^{-1}}{|c p+d|^{2}} F\left(L_{A}(p)\right)
$$

on $\left(L_{A}\right)^{-1}(\gamma(\Omega))$. Note that this function differs from the one given by Sudbery by a real constant factor. We then obtain that f is regular iff $F^{A} \circ \gamma$ is regular. We have

$$
F^{A} \circ \gamma(q)=\frac{(c \gamma(q)+d)^{-1}}{|c \gamma(q)+d|^{2}} f \circ \gamma \circ L_{A} \circ \gamma(q)=f^{A}(q),
$$

since $\gamma \circ L_{A} \circ \gamma(q)=L_{\gamma(A)}^{\prime}(q)$. Now we come to the last statement of the theorem. Let $B=\left[\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right]$ and $C=A B=\left[\begin{array}{ll}a^{\prime \prime} & b^{\prime \prime} \\ c^{\prime \prime} & d^{\prime \prime}\end{array}\right]$. Then

$$
\begin{aligned}
\left(f^{A}\right)^{B}(q) & =\frac{\left(c^{\prime} \gamma(q)+d^{\prime}\right)^{-1}}{\left|c^{\prime} \gamma(q)+d^{\prime}\right|^{2}} f^{A}\left(L_{\gamma(B)}^{\prime}(q)\right) \\
& =\frac{\left(c^{\prime} \gamma(q)+d^{\prime}\right)^{-1}}{\left|c^{\prime} \gamma(q)+d^{\prime}\right|^{2}} \frac{\left(c \gamma\left(L_{\gamma(B)}^{\prime}(q)\right)+d\right)^{-1}}{\left|c \gamma\left(L_{\gamma(B)}^{\prime}(q)\right)+d\right|^{2}} f\left(\left(L_{\gamma(A)}^{\prime} \circ L_{\gamma(B)}^{\prime}\right)(q)\right)
\end{aligned}
$$

Let $q^{\prime}=\gamma(q)$. The last statement of the theorem follows from the equalities

$$
L_{\gamma(A)}^{\prime} \circ L_{\gamma(B)}^{\prime}=\left(\gamma \circ L_{A} \circ \gamma\right) \circ\left(\gamma \circ L_{B} \circ \gamma\right)=\gamma \circ L_{A B} \circ \gamma=L_{\gamma(A B)}^{\prime}
$$

and

$$
\begin{aligned}
\overline{\left(c^{\prime} q^{\prime}+d^{\prime}\right)} \overline{\left(c \gamma\left(L_{\gamma(B)}^{\prime}(q)\right)+d\right)} & =\left(\overline{q^{\prime} c^{\prime}}+\overline{d^{\prime}}\right)\left(\left(\overline{q^{\prime} c^{\prime}}+\overline{d^{\prime}}\right)^{-1}\left(\overline{q^{\prime} a^{\prime}}+\overline{b^{\prime}}\right) \bar{c}+\bar{d}\right) \\
& =\left(\overline{q^{\prime} a^{\prime}}+\overline{b^{\prime}}\right) \bar{c}+\left(\overline{q^{\prime} c^{\prime}}+\overline{d^{\prime}}\right) \bar{d} \\
& =\overline{q^{\prime}}\left(\overline{a^{\prime}} \bar{c}+\overline{c^{\prime}} \bar{d}\right)+\overline{b^{\prime}} \bar{c}+\overline{d^{\prime}} \bar{d} \\
& =\overline{c^{\prime \prime} q^{\prime}+d^{\prime \prime}}
\end{aligned}
$$

Remark 4. If t is a non-zero real number, $f^{t A}=t^{-3} f^{A}$. Then f^{A} depends only for a real scalar multiple on the matrix chosen to represent the conformal transformation L_{A}. We can also restrict the choice of the matrix to the subgroup $S L(2, \mathbb{H})=\left\{A \in G L(2, \mathbb{H}) \mid \operatorname{det}_{\mathbb{H}}(A)=1\right\}$. In this case, the same conformal transformation gives rise to two functions, f^{A} and $f^{-A}=-f^{A}$.

Every conformal transformation is the composition of a sequence of translations, dilations, rotations and inversions. In order to illustrate the preceding theorem, we now apply it to these basic cases.

Example 9. The inversion $q \mapsto q^{-1}$ corresponds to the matrix $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ (up to a real scalar multiple) and transforms a regular $f \in \mathcal{R}(\Omega)$ into

$$
f^{i n v}(q)=\frac{\gamma(q)^{-1}}{|q|^{2}} f\left(q^{-1}\right),
$$

regular on $\Omega^{\prime}=\left\{q \in \mathbb{H} \mid q^{-1} \in \Omega\right\}$.
Example 10. In particular, the inverted function of the constant function $f=$ $\frac{1}{2 \pi^{2}}$ is the Cauchy-Fueter kernel for the module of regular functions

$$
G(q)=G\left(z_{1}+z_{2} j\right)=\frac{1}{2 \pi^{2}} \frac{\bar{z}_{1}-\bar{z}_{2} j}{|z|^{4}} .
$$

Example 11. A translation $q \mapsto q+b$ corresponds to the matrix $A=\left[\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right]$. The transformed function is

$$
f^{A}(q)=f\left(L_{\gamma(A)}^{\prime}(q)\right)=f(q+\gamma(b)) .
$$

Example 12. A dilation $q \mapsto a q, a \neq 0$ real, has matrix $A=\left[\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right] . A$ function f transforms into

$$
f^{A}(q)=f(q a)
$$

Example 13. Given two unit quaternions $a, d \in \mathbb{H}$, the diagonal matrix $A=$ $\left[\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right]$ induces the four-dimensional rotation $q \mapsto a q d^{-1}$. Given a regular
function f on Ω, the function

$$
f^{A}(q)=d^{-1} f\left(\gamma(d)^{-1} q \gamma(a)\right)
$$

is regular on $\Omega^{\prime}=\gamma(d) \Omega \gamma(a)^{-1}$.
Example 14. The quaternionic Cayley transformation $\psi(q)=(q+1)(1-$ $q)^{-1}$ maps diffeomorphically the unit ball B to the right half-space $\mathbb{H}^{+}=\{q \in$ $\mathbb{H} \mid \operatorname{Re}(q)>0\}$ (see [2] for geometric properties of ψ). It transforms regular functions f on \mathbb{H}^{+}into

$$
f^{\psi}(q)=2^{3 / 2} \frac{(1-\gamma(q))^{-1}}{|1-\gamma(q)|^{2}} f(\psi(q))
$$

regular on B. The inverse mapping $\psi^{-1}(q)=(q-1)(1+q)^{-1}$ transforms $f \in \mathcal{R}(B)$ into

$$
f^{\psi^{-1}}(q)=2^{3 / 2} \frac{(1+\gamma(q))^{-1}}{|1+\gamma(q)|^{2}} f\left(\psi^{-1}(q)\right) \in \mathcal{R}\left(\mathbb{H}^{+}\right)
$$

The factor $2^{3 / 2}$ in the formulas has been chosen to get $\left(f^{\psi}\right)^{\psi^{-1}}=f$.
If we take the identity map, which is regular on \mathbb{H}, as f, from Theorem 4 we get the following:

Corollary 5. For every conformal transformation $L_{A}(q)=(a q+b)(c q+d)^{-1}$, the function

$$
\frac{(c \gamma(q)+d)^{-1}}{|c \gamma(q)+d|^{2}} L_{\gamma(A)}^{\prime}(q),
$$

is regular on $\{q \in \mathbb{H} \mid c \gamma(q)+d \neq 0\}$.

4.1 The quadric energy of rotated regular functions

A unit quaternion d defines the three-dimensional rotation $q \mapsto \operatorname{rot}_{d}(q):=$ $d q d^{-1}$, which gives rise to the function (cf. Example 13)

$$
f^{A}(q)=d^{-1} f\left(\gamma(d)^{-1} q \gamma(d)\right)
$$

where A is the scalar matrix $A=\left[\begin{array}{ll}d & 0 \\ 0 & d\end{array}\right]$. Taking $d=\gamma(a)^{-1}$ and multiplying by $\gamma(a)^{-1}$ on the right, we obtain the function $f^{a}=\operatorname{rot}_{\gamma(a)} \circ f \circ \operatorname{rot}_{a}$. From Theorem 4 we immediately get:
Corollary 6. Let $f \in C^{1}(\Omega)$ and let $a \in \mathbb{H}, a \neq 0$. Let $\operatorname{rot}_{a}(q)=a q a^{-1}$ be the three-dimensional rotation of \mathbb{H} defined by a. Then the function

$$
f^{a}=\operatorname{rot}_{\gamma(a)} \circ f \circ \operatorname{rot}_{a}
$$

is regular on $\Omega^{a}=\operatorname{rot}_{a}^{-1}(\Omega)=a^{-1} \Omega a$ if and only if f is regular on Ω.

Remark 5. The rotated function f^{a} has the following properties:

1. $\left(f^{a}\right)^{b}=f^{a b}$ and $(f+g)^{a}=f^{a}+g^{a}$.
2. $\left(f^{a}\right)^{a^{-1}}=f$.
3. $f^{-a}=f^{a}$.
4. If $b \in \mathbb{H}$, then $(f b)^{a}=f^{a} \operatorname{rot}_{\gamma(a)}(b)$.

Now we analyze the action of rotations on the energy quadric. We obtain in this way a new proof of the preceding result and we get new holomorphicity properties of rotated regular functions.

Theorem 7. Let $f \in C^{1}(\Omega)$ and let $a \in \mathbb{H}, a \neq 0$. Let $f^{a}=\operatorname{rot}_{\gamma(a)} \circ f \circ \operatorname{rot}_{a}$. Then the energy density of f^{a} is $\mathcal{E}\left(f^{a}\right)=\mathcal{E}(f) \circ$ rot $_{a}$ and the matrix function $M(f)$ defined in Section 3 transforms in the following way

$$
M\left(f^{a}\right)=Q_{a}\left(M(f) \circ r o t_{a}\right) Q_{a}^{T}
$$

where Q_{a} is the orthogonal matrix in $S O(3)$ associated to the rotation $\operatorname{rot}_{\gamma(a)}$ of the space $\langle i, j, k\rangle$.

Before coming to the theorem, we prove a simple result about holomorphicity of rotations.

Lemma 8. For every $p \in \mathbb{S}^{2}$, the three-dimensional $\operatorname{rotation~}^{\operatorname{rot}}{ }_{a}(q)=a q a^{-1}$ is a holomorphic map from $\left(\mathbb{H}, J_{\gamma(p)}\right)$ to $\left(\mathbb{H}, L_{r o t_{a}(p)}\right)$.
Proof. Let $\mathcal{B}=\left\{p, p^{\prime}, p p^{\prime}\right\}$ be a positive orthonormal base of $\mathbb{R}^{3}=\langle i, j, k\rangle$. Let $X_{p}=\left(p_{1}, p_{2}, p_{3}\right), X_{p^{\prime}}=\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}\right), X_{r}=\left(r_{1}, r_{2}, r_{3}\right)$, with $r=p p^{\prime}=$ $r_{1} i+r_{2} j+r_{3} k$. Given the transition matrix A with columns $X_{p}, X_{p^{\prime}}, X_{r}$, the coordinates $x_{\alpha}^{\prime}(\alpha=1,2,3)$ of $q=x_{0}+x_{1} i+x_{2} j+x_{3} k$ w.r.t. \mathcal{B} are given by the product $\left(x_{1}^{\prime} x_{2}^{\prime} x_{3}^{\prime}\right)^{T}=A^{T}\left(x_{1} x_{2} x_{3}\right)^{T}$. Then

$$
x_{1}^{\prime}=\sum_{\alpha} p_{\alpha} x_{\alpha}, \quad x_{2}^{\prime}=\sum_{\alpha} p_{\alpha}^{\prime} x_{\alpha}, \quad x_{3}^{\prime}=\sum_{\alpha} r_{\alpha} x_{\alpha} .
$$

From this we get that the functions $g_{1}=x_{0}+x_{1}^{\prime} \operatorname{rot}_{a}(p)$ and $g_{2}=x_{2}^{\prime}+x_{3}^{\prime} r o t_{a}(p)$ are holomorphic from $\left(\mathbb{H}, J_{\gamma(p)}\right)$ to $\left(\mathbb{H}, L_{r o t_{a}(p)}\right)$, since

$$
J_{\gamma(p)}\left(d x_{0}\right)=\left(p_{1} J_{1}+p_{2} J_{2}-p_{3} J_{3}\right)\left(d x_{0}\right)=-\sum_{\alpha} p_{\alpha} d x_{\alpha}=-d x_{1}^{\prime}
$$

and

$$
\begin{aligned}
& J_{\gamma(p)}\left(d x_{2}^{\prime}\right)=\sum_{\alpha} p_{\alpha}^{\prime}\left(p_{1} J_{1}+p_{2} J_{2}-p_{3} J_{3}\right)\left(d x_{\alpha}\right) \\
& \quad=\sum_{\alpha} p_{\alpha} p_{\alpha}^{\prime} d x_{0}-\left(p_{2} p_{3}^{\prime}-p_{3} p_{2}^{\prime}\right) d x_{1}-\left(p_{3} p_{1}^{\prime}-p_{1} p_{3}^{\prime}\right) d x_{2}-\left(p_{1} p_{2}^{\prime}-p_{2} p_{1}^{\prime}\right) d x_{3} \\
& \quad=-r_{1} d x_{1}-r_{2} d x_{2}-r_{3} d x_{3}=-d x_{3}^{\prime} .
\end{aligned}
$$

The lemma now follows from the equality

$$
\begin{aligned}
\operatorname{rot}_{a}(q) & =a\left(x_{0}+x_{1}^{\prime} p+x_{2}^{\prime} p^{\prime}+x_{3}^{\prime} r\right) a^{-1} \\
& =\left(x_{0}+x_{1}^{\prime} \operatorname{rot}_{a}(p)\right)+\left(x_{2}^{\prime}+x_{3}^{\prime} \operatorname{rot}_{a}(p)\right) \operatorname{rot}_{a}\left(p^{\prime}\right)=g_{1}+g_{2} \operatorname{rot}_{a}\left(p^{\prime}\right)
\end{aligned}
$$

If in the preceding lemma p is replaced by $\gamma(p)$, we get that the map $\operatorname{rot}_{a}(q)$ is holomorphic also from $\left(\mathbb{H}, J_{p}\right)$ to $\left(\mathbb{H}, L_{r o t_{a}(\gamma(p))}\right)=\left(\mathbb{H}, J_{p^{\prime}}\right)$, where $p^{\prime}=$ $\gamma\left(\operatorname{rot}_{a}(\gamma(p))\right)=\gamma(a)^{-1} p \gamma(a)=\operatorname{rot}_{\gamma(a)}^{-1}(p)$. Replacing a with $\gamma(a)$ we also get that $\operatorname{rot}_{\gamma(a)}$ is holomorphic from $\left(\mathbb{H}, L_{p^{\prime}}\right)=\left(\mathbb{H}, J_{r o t_{a}(\gamma(p))}\right)$ to $\left(\mathbb{H}, L_{r o t_{\gamma(a)}\left(p^{\prime}\right)}\right)=$ $\left(\mathbb{H}, L_{p}\right)$. Then we can draw a commutative diagram with holomorphic vertical maps

Proof of Theorem 7. Let J be the real Jacobian matrix of $f \circ \operatorname{rot}_{a}$. Then the real Jacobian matrix of f^{a} is the product $Q_{a} J$. It follows that $\mathcal{E}\left(f^{a}\right)=$ $\frac{1}{2} \operatorname{tr}\left(Q_{a} J J^{T} Q_{a}^{T}\right)=\frac{1}{2} \operatorname{tr}\left(J J^{T}\right)=\mathcal{E}\left(f \circ \operatorname{rot}_{a}\right)$. A similar computation gives $\mathcal{E}\left(f \circ \operatorname{rot}_{a}\right)=\mathcal{E}(f) \circ \operatorname{rot}_{a}$.

For the second statement of the theorem, it is sufficient to prove the equality

$$
\begin{equation*}
A\left(f^{a}\right)=Q_{a}\left(A(f) \circ \operatorname{rot}_{a}\right) Q_{a}^{T} \tag{3}
\end{equation*}
$$

for the matrix functions $A(f)$ and $A\left(f^{a}\right)$ defined in Section 3, since then the matrices $A\left(f^{a}\right)$ and $A(f) \circ \operatorname{rot}_{a}$ have the same trace and therefore

$$
\begin{aligned}
Q_{a}\left(M(f) \circ \operatorname{rot}_{a}\right) Q_{a}^{T} & =\frac{1}{2}\left(\operatorname{tr} A(f) \circ \operatorname{rot}_{a}\right) I_{3}-\frac{1}{2} A\left(f^{a}\right) \\
& =\frac{1}{2}\left(\operatorname{tr} A\left(f^{a}\right) I_{3}-A\left(f^{a}\right)\right)=M\left(f^{a}\right) .
\end{aligned}
$$

It remains to prove (3). Let $p=p_{1} i+p_{2} j+p_{3} k \in \mathbb{S}^{2}$ and $p^{\prime}=\operatorname{rot}_{\gamma(a)}^{-1}(p)$. Let us define the p-holomorphic energy of f

$$
\mathcal{I}_{p}(f)=\frac{1}{2}\left\|d f+L_{p} \circ d f \circ J_{p}\right\|^{2}=\frac{1}{2}\left\|d f+p d f \circ J_{p}\right\|^{2}=2\left\|\bar{\partial}_{p} f\right\|^{2} .
$$

Then we obtain, as in [3],

$$
\mathcal{E}(f)+\left\langle J_{p}, f^{*} L_{p}\right\rangle=\frac{1}{4} \mathcal{I}_{p}(f) .
$$

If $X=\left(p_{1}, p_{2}, p_{3}\right)$, then

$$
X A\left(f^{a}\right) X^{T}=\sum_{\alpha, \beta} p_{\alpha} p_{\beta} a_{\alpha \beta}=-\left\langle\sum_{\alpha} p_{\alpha} J_{\alpha},\left(f^{a}\right)^{*} \sum_{\beta} p_{\beta} L_{i_{\beta}}\right\rangle
$$

$$
=-\left\langle J_{p},\left(f^{a}\right)^{*} L_{p}\right\rangle=\mathcal{E}\left(f^{a}\right)-\frac{1}{4} \mathcal{I}_{p}\left(f^{a}\right) .
$$

Now let $X^{\prime}=\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}\right)=X Q_{a}$. A similar computation gives

$$
X Q_{a} A\left(f \circ \operatorname{rot}_{a}\right) Q_{a}^{T} X^{T}=X^{\prime} A\left(f \circ \operatorname{rot}_{a}\right) X^{\prime T}=\mathcal{E}(f) \circ \operatorname{rot}_{a}-\frac{1}{4} \mathcal{I}_{p^{\prime}}(f) \circ \operatorname{rot}_{a}
$$

From the first statement of the theorem and the arbitrariness of X, equation (3) is equivalent to the equality, for any $p \in \mathbb{S}^{2}$, of the holomorphic energies

$$
\begin{equation*}
\mathcal{I}_{p^{\prime}}(f) \circ \operatorname{rot}_{a}=\mathcal{I}_{p}\left(f^{a}\right) . \tag{4}
\end{equation*}
$$

From Lemma 8 (cf. diagram (2)) and rotational invariance of the norm we get

$$
\begin{aligned}
2 \mathcal{I}_{p}\left(f^{a}\right) & =\left\|d f^{a}+L_{p} \circ d f^{a} \circ J_{p}\right\|^{2} \\
& =\left\|\operatorname{rot}_{\gamma(a)} \circ d f \circ d \operatorname{rot}_{a}+L_{p} \circ \operatorname{rot}_{\gamma(a)} \circ d f \circ \operatorname{drot}_{a} \circ J_{p}\right\|^{2} \\
& =\left\|r o t_{\gamma(a)} \circ d f \circ d r o t_{a}+\operatorname{rot}_{\gamma(a)} \circ L_{p^{\prime}} \circ d f \circ J_{p^{\prime}} \circ d r o t_{a}\right\|^{2} \\
& =\left\|d f+L_{p^{\prime}} \circ d f \circ J_{p^{\prime}}\right\|^{2} \circ \operatorname{rot}_{a}=2 \mathcal{I}_{p^{\prime}}(f) \circ \operatorname{rot}_{a} .
\end{aligned}
$$

Then the equality (4) is true and the theorem is proved.
Corollary 9. Let $f \in C^{1}(\Omega)$ and let $a \in \mathbb{H}, a \neq 0$. Let $f^{a}=\operatorname{rot}_{\gamma(a)} \circ f \circ \operatorname{rot}_{a}$. Let $Q_{a} \in S O(3)$ be associated to the rotation $\operatorname{rot}_{\gamma(a)}$ of the space $\langle i, j, k\rangle$. Then

1. f is regular on Ω if and only if f^{a} is regular on $\Omega^{a}=\operatorname{rot}_{a}^{-1}(\Omega)=a^{-1} \Omega a$.
2. f^{a} is J_{p}-holomorphic if and only if f is $J_{p^{\prime}}$-holomorphic, with $p^{\prime}=$ $\operatorname{rot}_{\gamma(a)}^{-1}(p)$.
3. If $f \in C^{1}(\bar{\Omega})$, then (cf. Theorem 2)

$$
M_{\Omega^{a}}\left(f^{a}\right)=Q_{a} M_{\Omega}(f) Q_{a}^{T}
$$

Proof. 1) From Theorem 7 we get that $\operatorname{tr} M\left(f^{a}\right)=\operatorname{tr} M(f) \circ \operatorname{rot}_{a}$ and $\mathcal{E}\left(f^{a}\right)=$ $\mathcal{E}(f) \circ \operatorname{rot}_{a}$. The first statement follows from Theorem 3, which tells that f is regular iff $\mathcal{E}(f)=\operatorname{tr} M(f)$.
2) It is an immediate consequence of equality (4), since a function is $J_{p^{-}}$ holomorphic iff its p-holomorphic energy vanishes.
3) It follows easily by integration of $M\left(f^{a}\right)$ on Ω^{a}.

Corollary 10. For every $f \in \mathcal{R}(\Omega)$, there exists $a \in \mathbb{H}$, $a \neq 0$, such that the matrices $M\left(f^{a}\right)$ and $M_{\Omega^{a}}\left(f^{a}\right)$ are diagonal, with non-negative entries.

Proof. It follows immediately from Theorems 7 and 3 , since when f is regular $M(f)$ is symmetric and positive semidefinite.

Remark 6. For a general conformal transformation L_{A}, the energy and, a fortiori, the energy quadric of a regular function is not conserved. For example, the constant function 1 has zero energy, while $\mathcal{E}\left(2 \pi^{2} G\right) \neq 0$ and $1^{\text {inv }}=2 \pi^{2} G$ (cf. Example 10).

The same happens for J_{p}-holomorphicity. For example, the identity function is in the spaces $\operatorname{Hol}_{i}(\mathbb{H})$ and $\operatorname{Hol}_{j}(\mathbb{H})$, while

$$
i d^{i n v}(q)=\frac{\gamma(q)^{-1} q^{-1}}{|q|^{2}} \in \mathcal{R}(\mathbb{H} \backslash\{0\})
$$

is not holomorphic w.r.t. any structure J_{p}. This can be seen by computing the energy quadric $M\left(i d^{i n v}\right)$. Since $\operatorname{det} M\left(i d^{i n v}\right)=32 /|q|^{30}$ is always non-zero, it follows from Theorem 3 that $i d^{i n v}$ is not J_{p}-holomorphic, for any p (even non-constant). The rank of $i d^{i n v}$ is three, because its image is contained in the space $\langle 1, i, j\rangle$, and the function can not have rank less than three, otherwise its quadric energy would have zero determinant (cf. [15] Theorem 7).

A simpler example is given again by the function $1^{i n v}$, since the energy quadric of the kernel G is $M(G)=2 /|q|^{8} I_{3}$.

4.2 Biregular rotations

If in Theorem 7 and its corollaries we take as f the identity map we get the following:

Proposition 11. For every $a \in \mathbb{H}, a \neq 0$, the three-dimensional rotation $\operatorname{rot}_{\gamma(a) a}$ is a biregular function on \mathbb{H}, with energy quadric $M\left(\operatorname{rot}_{\gamma(a) a}\right)$ of rank 1. This means that $\operatorname{rot}_{\gamma(a) a}$ is holomorphic w.r.t. a circle of structures $p \in \mathbb{S}^{2}$. More precisely, $\operatorname{rot}_{\gamma(a) a} \in \operatorname{Hol}_{p}(\mathbb{H})$ for every $p \in\left\langle\operatorname{rot}_{\gamma(a)}(i), \operatorname{rot}_{\gamma(a)}(j)\right\rangle \cap \mathbb{S}^{2}$.
Proof. We have $\operatorname{rot}_{\gamma(a) a}=i d^{a}$ (cf. Theorem 7). Then

$$
M\left(\operatorname{rot}_{\gamma(a) a}\right)=Q_{a} M(i d) Q_{a}^{T}=Q_{a}\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right] Q_{a}^{T}
$$

has rank 1. Its kernel gives the structures with respect to which the rotation is holomorphic. From Corollary $9(2)$, these structures are generated by $\operatorname{rot}_{\gamma(a)}(i)$ and $\operatorname{rot}_{\gamma(a)}(j)$, since $i d \in \operatorname{Hol}_{i}(\mathbb{H}) \cap \operatorname{Hol}_{j}(\mathbb{H})$.

Biregularity follows from $(\gamma(a) a)^{-1}=a^{-1} \gamma\left(a^{-1}\right)$, which implies the equality $\left(i d^{a}\right)^{-1}=i d^{\gamma\left(a^{-1}\right)} \in \mathcal{R}(\mathbb{H})$.

Remark 7. Not every rotation is a regular function, since the quaternion $\gamma(a) a$ is a reduced quaternion, with fourth component zero. These quaternion numbers correspond to rotations of $\mathbb{R}^{3}=\langle i, j, k\rangle$ with axis orthogonal to the k axis. However, every quaternion is the product of two reduced quaternions and the map $a \mapsto \gamma(a) a$ is surjective from \mathbb{H} to the space \mathbb{H}_{r} of reduced quaternions.

The surjectivity of $a \mapsto \gamma(a) a$ can be seen explicitly, or can be deduced from a property of the regular function $i d^{i n v}$ (cf. Remark 6). Its restriction to the
unit sphere S^{3} is the map $q \mapsto \gamma(\bar{q}) \bar{q} \in S^{3} \cap \mathbb{H}_{r}$. It is surjective since $i d^{i n v}$ has rank three.

Corollary 12. 1. The left-multiplication map $l_{a^{\prime}}(q)=a^{\prime} q$ is biregular for every reduced quaternion $a^{\prime}=\gamma(a) a \neq 0$.
2. Every three-dimensional rotation is the composition of two three-dimensional biregular rotations.
3. Every four-dimensional rotation is the composition of two biregular rotations.

Proof. 1) $l_{a^{\prime}}(q)=\gamma(a) a q=\operatorname{rot}_{\gamma(a) a}(q)\left(a^{-1} \gamma(a)^{-1}\right)$ has the same regularity and holomorphicity properties of $\operatorname{rot}_{\gamma(a) a}$, since $\mathcal{R}(\Omega)$ is a right \mathbb{H}-module for every Ω and $\bar{\partial}_{p}(f b)=\left(\bar{\partial}_{p} f\right) b$ for every f and every $b \in \mathbb{H}$.
2) It follows from what has been said in the above remark: if $c=a^{\prime} b^{\prime}$, with $a^{\prime}=\gamma(a) a, b^{\prime}=\gamma(b) b \in \mathbb{H}_{r}$, then $\operatorname{rot}_{c}=\operatorname{rot}_{a^{\prime}} \circ \operatorname{rot}_{b^{\prime}}=\operatorname{rot}_{\gamma(a) a} \circ \operatorname{rot}_{\gamma(b) b}$.
3) A four-dimensional rotation $\operatorname{rot}_{c, d}(q)=c q d^{-1}$, with $\left|c d^{-1}\right|=1$, can be decomposed as

$$
\operatorname{rot}_{c, d}(q)=c q c^{-1}\left(c d^{-1}\right)=\operatorname{rot}_{c}(q)\left(c d^{-1}\right)=\left(\operatorname{rot}_{a^{\prime}} \circ \operatorname{rot}_{b^{\prime}}\right)(q)\left(c d^{-1}\right)
$$

where $c=a^{\prime} b^{\prime}$ as before. Let $f(q)=\operatorname{rot}_{a^{\prime}}(q)\left(c d^{-1}\right) \in \mathcal{B R}(\mathbb{H})$. Then $\operatorname{rot}_{c, d}=$ $f \circ \operatorname{rot}_{b^{\prime}}$.

The pair of biregular functions in the corollary can be chosen in the same space $\operatorname{Hol}_{p}(\mathbb{H})$. This comes from Proposition 11, because the two great circles of complex structures in \mathbb{S}^{2} coincide or intersect in two antipodal points defining a space $\operatorname{Hol}_{p}(\mathbb{H})$. Note that this space is not closed under composition, unless $J_{p}=L_{p}$, which happens only when $p=\gamma(p)$ is a reduced quaternion.

References

[1] R. Abreu-Blaya, J. Bory-Reyes, M. Shapiro, On the notion of the BochnerMartinelli integral for domains with rectifiable boundary. Complex Anal. Oper. Theory 1 (2007), no. 2, 143-168.
[2] C. Bisi, G. Gentili, Möbius transformations and the Poincaré distance in the quaternionic setting, 2008 (arXiv:0805.0357v2).
[3] J. Chen and J. Li, Quaternionic maps between hyperkhler manifolds, J. Differential Geom. 55 (2000), 355-384.
[4] K. Gürlebeck, K. Habetha and W. Sprössig, Holomorphic functions in the plane and n-dimensional space. Translated from the 2006 German original Funktionentheorie in Ebene und Raum, Birkhäuser Verlag, Basel, 2008.
[5] K. Gürlebeck and W. Sprössig, Quaternionic Analysis and Elliptic Boundary Value Problems. Birkhäuser, Basel, 1990.
[6] D. Joyce, Hypercomplex algebraic geometry, Quart. J. Math. Oxford 49 (1998), 129-162.
[7] V.V. Kravchenko and M.V. Shapiro, Integral representations for spatial models of mathematical physics, Harlow: Longman, 1996.
[8] W. Królikowski, On Fueter-Hurwitz regular mappings, Diss. Math. 353 (1996), 1-91.
[9] W. Królikowski and R.M. Porter, Regular and biregular functions in the sense of Fueter-some problems, Ann. Polon. Math. 59 (1994), 53-64.
[10] A. Lichnerowicz, Applications harmoniques et variétés kähleriennes. (French) 1968/1969 Symposia Mathematica, Vol. III (INDAM, Rome, 1968/69) pp. 341-402 Academic Press, London. Symp. Math. III, Bologna, 341-402, 1970.
[11] M. Naser, Hyperholomorphe Funktionen, Sib. Mat. Zh. 12, 1327-1340 (Russian). English transl. in Sib. Math. J. 12, (1971) 959-968.
[12] K. Nōno, α-hyperholomorphic function theory, Bull. Fukuoka Univ. Ed. III 35 (1985), 11-17.
[13] A. Perotti, Holomorphic functions and regular quaternionic functions on the hyperkähler space \mathbb{H}, Proceedings of the 5th ISAAC Congress, Catania 2005, World Scientific Publishing Co. (in press) (arXiv:0711.4440v1).
[14] A. Perotti, Quaternionic regular functions and the $\bar{\partial}$-Neumann problem in \mathbb{C}^{2}, Complex Variables and Elliptic Equations 52 No. 5 (2007), 439-453.
[15] A. Perotti, Every biregular function is biholomorphic, Advances in Applied Clifford Algebras, in press.
[16] J. Ryan, Clifford analysis, in Lectures on Clifford (geometric) algebras and applications. Edited by Ablamowicz and Sobczyk. Birkhäuser Boston, Inc., Boston, MA, 53-89, 2004.
[17] M.V. Shapiro and N.L. Vasilevski, Quaternionic ψ-hyperholomorphic functions, singular integral operators and boundary value problems. I. ψ hyperholomorphic function theory, Complex Variables Theory Appl. 27 no. 1 (1995), 17-46.
[18] M.V. Shapiro and N.L. Vasilevski, Quaternionic ψ-hyperholomorphic functions, singular integral operators and boundary value problems. II: Algebras of singular integral operators and Riemann type boundary value problems, Complex Variables Theory Appl. 27 no. 1 (1995), 67-96.
[19] A. Sudbery, Quaternionic analysis, Mat. Proc. Camb. Phil. Soc. 85 (1979), 199-225.

[^0]: *Work partially supported by MIUR (PRIN Project "Proprietà geometriche delle varietà reali e complesse") and GNSAGA of INdAM

