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Abstract

In this paper we develop a theory of slice regular functions on a real

alternative algebra A. Our approach is based on a well�known Fueter's

construction. Two recent function theories can be included in our general

theory: the one of slice regular functions of a quaternionic or octonionic

variable and the theory of slice monogenic functions of a Cli�ord variable.

Our approach permits to extend the range of these function theories and to

obtain new results. In particular, we get a strong form of the fundamental

theorem of algebra for an ample class of polynomials with coe�cients in

A and we prove a Cauchy integral formula for slice functions of class C1.
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1 Introduction

In [13], R. Fueter proposed a simple method, which is now known as Fueter's
Theorem, to generate quaternionic regular functions using complex holomorphic
functions (we refer the reader to [37] and [26] for the theory of Fueter regular
functions). Given a holomorphic function (the �stem function�)

F (z) = u(α, β) + i v(α, β) (z = α+ iβ complex, u, v real�valued)

∗Work partially supported by MIUR (PRIN Project �Proprietà geometriche delle varietà
reali e complesse") and GNSAGA of INdAM
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in the upper complex half�plane, real�valued on R, the formula

f(q) := u (q0, | Im(q)|) +
Im(q)

| Im(q)|
v (q0, | Im(q)|)

(q = q0 + q1i + q2j + q3k ∈ H, Im(q) = q1i + q2j + q3k) gives rise to a radially
holomorphic function on H, whose Laplacian ∆f is Fueter regular. Fueter's
construction was later extended to higher dimensions by Sce [33], Qian [31] and
Sommen [36] in the setting of octonionic and Cli�ord analysis.

By means of a slight modi�cation of Fueter's construction, it is possible
to obtain a more general class of functions. It is the class of slice regular (or
Cullen regular) functions of a quaternionic variable that was recently introduced
by Gentili and Struppa [19, 20]. This notion of regularity do not coincide with
the one of Fueter. In fact, the set of slice regular functions on a ball BR centered
in the origin of H coincides with that of all power series

∑
i q
iai that converges

in BR, which fail to be Fueter regular. If u and v are H�valued functions on the
upper complex half-plane, then the same formula given above de�nes a Cullen
regular function on H, whose Laplacian ∆f is still Fueter regular.

In the present paper, we extend Fueter's construction in order to develop a
theory of slice regular functions on a real alternative algebra A. These functions
will be obtained simply by taking A�valued components u, v of the stem function
F . As stated before, if A is the algebra of quaternions, we get the theory
of Cullen regular functions. If A is the algebra of octonions, we obtain the
corresponding theory of regular functions already considered in [18, 17] and [24].
If A is the Cli�ord algebra Rn with signature (0, n) (cf. e.g. [26] for properties of
these algebras), slice functions will be de�ned on a proper subset of Rn, what we
call the quadratic cone of the algebra. In particular, by restricting the Cli�ord
variables to the subspace of paravectors, which is contained in the quadratic
cone, we get the theory of slice monogenic functions introduced by Colombo,
Sabadini and Struppa in [9].

We describe in more detail the structure of the paper. In Section 2, we
introduce some basic de�nitions about real alternative algebras with an antiin-
volution. We de�ne the normal cone and the quadratic cone of an algebra A and
prove (Proposition 3) that the quadratic cone is a union of complex planes of A.
This property is the starting point for the extension of Fueter's construction.
In Section 3, we introduce complex intrinsic functions with values in the com-
plexi�ed algebra A⊗R C and use them as stem functions to generate A�valued
(left) slice functions. This approach, not being based upon power series, does
not require the holomorphy of the stem function. Moreover, slice functions can
be de�ned also on domains which do not intersect the real axis of A (i.e. the
subspace generated by the unity of A). In Propositions 5 and 6, we show that
the natural domains of de�nition for slice functions are �circular� domains of A,
those that are invariant for the action of the square roots of −1.

In Section 4, we restrict our attention to slice functions with holomorphic
stem function, what we call (left) slice regular functions on A. These functions
forms on every circular domain ΩD a right A�module SR(ΩD) that is not closed
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w.r.t. the pointwise product in A. However, the pointwise product for stem
functions in the complexi�ed algebra induces a natural product on slice functions
(cf. Section 5), that generalizes the usual product of polynomials and power
series.

In Sections 6 and 7, we study the zero set of slice and slice regular functions.
To this aim, a fundamental tool is the normal function of a slice function, which
is de�ned by means of the product and the antiinvolution. This concept leads
us to restrict our attention to admissible slice regular functions, which preserve
many relevant properties of classical holomorphic functions. We generalize to
our setting a structure theorem for the zero set proved by Pogorui and Shapiro
[30] for quaternionic polynomials and by Gentili and Stoppato [16] for quater-
nionic power series. A Remainder Theorem (Theorem 22) gives us the possibility
to de�ne a notion of multiplicity for zeros of an admissible slice regular function.

In Section 7.3, we prove a version of the fundamental theorem of algebra for
slice regular admissible polynomials. This theorem was proved for quaternionic
polynomials by Eilenberg and Niven [29, 11] and for octonionic polynomials
by Jou [27]. In [12, pp. 308�], Eilenberg and Steenrod gave a topological
proof of the theorem valid for a class of real algebras including C, H and O.
See also [38], [32] and [23] for other proofs. Gordon and Motzkin [25] proved,
for polynomials on a (associative) division ring, that the number of conjugacy
classes containing zeros of p cannot be greater than the degree m of p. This
estimate was improved on the quaternions by Pogorui and Shapiro [30]: if p
has s spherical zeros and l non�spherical zeros, then 2s + l ≤ m. Gentili and
Struppa [21] showed that, using the right de�nition of multiplicity, the number
of zeros of p equals the degree of the polynomial. In [24], this strong form was
generalized to the octonions. Recently, Colombo, Sabadini and Struppa [9, 7]
and Yang and Qian [40] proved some results on the structure of the set of zeros
of a polynomial with paravector coe�cients in a Cli�ord algebra.

We obtain a strong form of the fundamental theorem of algebra, which con-
tains and generalizes the above results. We prove (Theorem 26) that the sum
of the multiplicities of the zeros of a slice regular admissible polynomial is equal
to its degree.

Section 8 contains a Cauchy integral formula for slice functions of class C1.
We de�ne a Cauchy kernel, which in the quaternionic case was already intro-
duced in [3], and for slice monogenic functions in [5]. This kernel was applied in
[8] to get Cauchy formulas for C1 functions on a class of domains intersecting
the real axis.

2 The quadratic cone of a real alternative algebra

Let A be a �nite�dimensional alternative real algebra with a unity. We refer
to [10, 34] for the main properties of such algebras. We assume that A has
dimension d > 1 as a real vector space. We will identify the �eld of real numbers
with the subalgebra of A generated by the unity. Recall that an algebra is
alternative if the associator (x, y, z) := (xy)z − x(yz) of three elements of A is
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an alternating function of its arguments.
In a real algebra, we can consider the imaginary space consisting of all non�

real elements whose square is real (cf. [10, �8.1]).

De�nition 1. Let Im(A) := {x ∈ A | x2 ∈ R, x /∈ R \ {0}}. The elements of
Im(A) are called purely imaginary elements of A.

Remark 1. As we will see in the examples below, in general, the imaginary space
Im(A) is not a vector subspace of A. However, if A is a quadratic algebra, then
a Frobenius's Lemma tells that Im(A) is a subspace of A (cf. e.g. [10, �8.2.1]).

In what follows, we will assume that on A an involutory antiautomorphism
(also called an antiinvolution) is �xed. It is a linear map x 7→ xc of A into A
satisfying the following properties:

• (xc)c = x ∀x ∈ A

• (xy)c = ycxc ∀x, y ∈ A

• xc = x for every real x.

De�nition 2. For every element x of A, the trace of x is t(x) := x + xc ∈ A
and the (squared) norm of x is n(x) := xxc ∈ A. Note that we do not assume
that t(x) and n(x) are real for every x ∈ A.

Now we introduce the main objects of this section, two subsets of A that will
be called respectively the normal cone and the quadratic cone of the algebra.
The second name is justi�ed by two properties proved below: the quadratic cone
is a real cone whose elements satisfy a quadratic equation.

De�nition 3. We call normal cone of the algebra A the subset

NA := {0} ∪ {x ∈ A | n(x) = n(xc) is a real nonzero number }.

The quadratic cone of the algebra A is the set

QA := R ∪ {x ∈ A \ R | t(x) ∈ R, n(x) ∈ R, 4n(x) > t(x)2}.

We also set SA := {J ∈ QA | J2 = −1} ⊆ Im(A). Elements of SA will be called
square roots of −1 in the algebra A.

Examples 1. (1) Let A be the associative non�commutative algebra H of the
quaternions or the alternative non�associative algebra O of the octonions. Let
xc = x̄ be the usual conjugation mapping. Then Im(A) is a subspace, A =
R ⊕ Im(A) and QH = H, QO = O. In these cases, SH is a two-dimensional
sphere and SO is a six-dimensional sphere.

(2) Let A be the real Cli�ord algebra Cl0,n = Rn with the Cli�ord conjuga-
tion de�ned by

xc = ([x]0 + [x]1 + [x]2 + [x]3 + [x]4 + · · · )c

= [x]0 − [x]1 − [x]2 + [x]3 + [x]4 − · · · ,
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where [x]k denotes the k�vector component of x in Rn (cf. for example [26, �3.2]
for de�nitions and properties of Cli�ord numbers). If n ≥ 3, Im(A) is not a
subspace of A. For example, the basis elements e1, e23 belong to Im(A), but
their sum e1 + e23 is not purely imaginary.

For any n > 1, the subspace of paravectors,

Rn+1 := {x ∈ Rn | [x]k = 0 for every k > 1}

is a (proper) subset of the quadratic cone QRn . For x ∈ Rn+1, t(x) = 2x0 ∈ R
and n(x) = |x|2 ≥ 0 (the euclidean norm). The (n − 1)�dimensional sphere
S = {x = x1e1 + · · ·xnen ∈ Rn+1 | x2

1 + · · · + x2
n = 1} of unit 1�vectors is

(properly) contained in SRn
. The normal cone contains also the Cli�ord group

Γn and its subgroups Pin(n) and Spin(n).
(3) We consider in more detail the case of R3. An element x ∈ R3 can be

represented as a sum

x = x0 +

3∑
i=1

xiei +

3∑
j,k=1

j<k

xjkejk + x123e123

with real coe�cients x0, xi, xjk, x123. A computation similar to the one made
in the proof of Proposition 1 in [22] shows that

Im(R3) = {x ∈ R3 | x0 = 0, x1x23 − x2x13 + x3x12 = 0},

that the normal cone of R3 is

NR3
= {x ∈ R3 | x0x123 − x1x23 + x2x13 − x3x12 = 0}

and the quadratic cone is the six�dimensional real algebraic set

QR3
= {x ∈ R3 | x123 = 0, x1x23 − x2x13 + x3x12 = 0}.

Finally, SR3 is the intersection of a 5�sphere with the hypersurface of R3 with
equation x1x23 − x2x13 + x3x12 = 0:

SR3 = {x ∈ QR3 | x0 = 0,
∑
i x

2
i +

∑
j,k x

2
jk = 1} ⊂ Im(R3) ∩QR3

.

Remark 2. As seen in the examples, the quadratic cone QA needs not be a
subalgebra or a subspace of A.

Proposition 1. Let A be an alternative real algebra with a �xed antiinvolution
x 7→ xc. The following statements hold.

(1) R ⊆ QA and αx ∈ QA ∀α ∈ R, x ∈ QA.

(2) For every x ∈ QA, α ∈ R, the sum α+ x belongs to QA.

(3) Every x ∈ QA satis�es a real quadratic equation

x2 − x t(x) + n(x) = 0.
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(4) x ∈ QA is equivalent to xc ∈ QA. Moreover, QA ⊆ NA.

(5) Every nonzero x ∈ NA is invertible: x−1 =
xc

n(x)
.

(6) SA = {J ∈ A | t(J) = 0, n(J) = 1}. In particular Jc = −J for every
J ∈ SA.

(7) QA = A if and only if A is isomorphic to one of the division algebras C,H
or O with the usual conjugation.

Proof. The �rst two statements are immediate consequences of the linearity
of the antiinvolution. For every x ∈ QA, the equality n(x) = n(xc) holds,
since xc = t(x) − x commutes with x. From this fact comes the quadratic
equation and also the fourth and �fth statement. We recall Artin's Theorem
for alternative algebras (cf. [34]): the subalgebra generated by two elements is
always associative. If J ∈ SA, then 1 = n(J2) = (JJ)(JcJc) = J n(Jc)Jc =
n(J)2. Then n(J) = 1 and J(J + Jc) = −1 + n(J) = 0, from which it follows,
multiplying by J on the left, that J + Jc = 0.

The last property follows from properties (3), (4), (5) and a result proved
by Frobenius and Zorn (cf. [10, �8.2.4] and �9.3.2), which states that, if A is a
quadratic alternative real algebra without divisors of zero, then A is isomorphic
to one of the algebras C,H or O.

Proposition 2. Let A be an alternative real algebra with a �xed antiinvolution
x 7→ xc. For every x ∈ QA, there exist uniquely determined elements x0 ∈ R,
y ∈ Im(A) ∩QA, with t(y) = 0, such that

x = x0 + y.

Proof. If x ∈ R, then the result is evident. Let x ∈ QA \ R. De�ne x0 :=
(x+xc)/2 = t(x)/2 and y := (x−xc)/2. By de�nition of QA, x0 ∈ R and hence
y /∈ R. It remains to prove that y belongs to Im(A). Condition 4n(x) > t(x)2

given in the de�nition of the quadratic cone assures that y belongs to Im(A):

4y2 = −4n(y) = (x− xc)2 = x2 − 2n(x) + (xc)2 =

= t(x)x− n(x)− 2n(x) + t(xc)xc − n(xc) = t(x)2 − 4n(x) < 0.

Uniqueness follows from the equality t(x) = t(x0) = 2x0.

Using the notation of the above proposition, for every x ∈ QA, we set
Re(x) := x0 = x+xc

2 , Im(x) := y = x−xc

2 . Therefore x = Re(x) + Im(x) for
every x ∈ QA. The norm of x ∈ QA is given by the formula

n(x) = (x0 + y)(x0 + yc) = x2
0 − y2 = (Re(x))2 − (Im(x))2.

For every J ∈ SA square root of −1, we will denote by CJ := 〈1, J〉 ' C the
subalgebra of A generated by J .
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Proposition 3. Under the same assumptions of the preceding proposition, if
QA 6= R, the following statements hold:

(1) QA =
⋃
J∈SA CJ .

(2) If I, J ∈ SA, I 6= ±J , then CI ∩ CJ = R.

Proof. If x ∈ QA \ R and y = Im(x) 6= 0, set J := y/
√
n(y). Then J2 =

y2/n(y) = −1 and therefore J ∈ SA and x = Re(x)+
√
n(y)J ∈ CJ . Conversely,

from Proposition 1 (properties (1),(2)) every complex plane CJ is contained in
QA.

The second statement follows from the Independence Lemma for alternative
algebras (cf. [10, �8.1]): since two elements I, J ∈ SA, I 6= ±J , are linearly
independent, then also the triple {1, I, J} is linearly independent. This last
condition is equivalent to CI ∩ CJ = R.

Corollary 4. For every x ∈ QA, also the powers xk belong to QA.

3 Slice functions

3.1 A�stem functions

In this and the following sections, A will denote an alternative real algebra with
a �xed antiinvolution x 7→ xc. We will always assume that QA 6= R, i.e. that
SA 6= ∅.

Let AC = A⊗RC be the complexi�cation of A. We will use the representation

AC = {w = x+ iy | x, y ∈ A} (i2 = −1).

AC is an alternative complex algebra with a unity w.r.t. the product given by
the formula

(x+ iy)(x′ + iy′) = xx′ − yy′ + i(xy′ + yx′).

The algebra A can be identi�ed with the real subalgebra A′ := {w = x+iy | y =
0} of AC and the unity of AC then coincides with the one of A. In AC two
commuting operators are de�ned: the complex�linear antiinvolution w 7→ wc =
(x+iy)c = xc+iyc and the complex conjugation de�ned by w = x+ iy = x−iy.

De�nition 4. Let D ⊆ C be an open subset. If a function F : D → AC is
complex intrinsic, i.e. it satis�es the condition

F (z) = F (z) for every z ∈ D such that z ∈ D,

then F is called an A�stem function on D.

The notion of stem function was introduced by Fueter in [13] for complex�
valued functions in order to construct radially holomorphic functions on the
space of quaternions.
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In the preceding de�nition, there is no restriction to assume that D is sym-
metric w.r.t. the real axis, i.e. D = conj(D) := {z ∈ C | z̄ ∈ D}. In fact, if this
is not the case, the function F can be extended to D ∪ conj(D) by imposing
complex intrinsicity. It must be noted, however, that the extended set will be
non�connected if D ∩ R = ∅, even if D is connected.

Remarks 3. (1) A function F is an A�stem function if and only if the A�valued
components F1, F2 of F = F1 + iF2 form an even�odd pair w.r.t. the imaginary
part of z, i.e.

F1(z) = F1(z), F2(z) = −F2(z) for every z ∈ D.

(2) Let d be the dimension of A as a real vector space. By means of a basis
B = {uk}k=1,...,d of A, F can be identi�ed with a complex intrinsic curve in Cd.
Let F (z) = F1(z) + iF2(z) =

∑d
k=1 F

k
B(z)uk, with F

k
B(z) ∈ C. Then

F̃B = (F 1
B, . . . , F

d
B) : D → Cd

satis�es F̃B(z) = F̃B(z). Giving to A the unique manifold structure as a real
vector space, we get that a stem function F is of class Ck (k = 0, 1, . . . ,∞)

or real�analytic if and only if the same property holds for F̃B. This notion is
clearly independent of the choice of the basis of A.

3.2 A�valued slice functions

Given an open subset D of C, let ΩD be the subset of A obtained by the action
on D of the square roots of −1:

ΩD := {x = α+ βJ ∈ CJ | α, β ∈ R, α+ iβ ∈ D, J ∈ SA}.

Sets of this type will be called circular sets in A. It follows from Proposition 3
that ΩD is a relatively open subset of the quadratic cone QA.

De�nition 5. Any stem function F : D → AC induces a left slice function
f = I(F ) : ΩD → A. If x = α+ βJ ∈ DJ := ΩD ∩ CJ , we set

f(x) := F1(z) + JF2(z) (z = α+ iβ).

The slice function f is well�de�ned, since (F1, F2) is an even�odd pair w.r.t.
β and then f(α + (−β)(−J)) = F1(z) + (−J)F2(z) = F1(z) + JF2(z). There
is an analogous de�nition for right slice functions when the element J ∈ SA
is placed on the right of F2(z). In what follows, the term slice functions will
always mean left slice functions.

We will denote the set of (left) slice functions on ΩD by

S(ΩD) := {f : ΩD → A | f = I(F ), F : D → AC A�stem function}.

Remark 4. S(ΩD) is a right A�module, since I(F + G) = I(F ) + I(G) and
I(Fa) = I(F )a for every complex intrinsic functions F , G and every a ∈ A.
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Examples 2. Assume A = H or A = O, with the usual conjugation mapping.
(1) For any element a ∈ A, F (z) := zna = Re(zn)a + i (Im(zn)a) induces

the monomial f(x) = xna ∈ S(A).
(2) By linearity, we get all the standard polynomials p(x) =

∑n
j=0 x

jaj with
right quaternionic or octonionic coe�cients. More generally, every convergent
power series

∑
j x

jaj , with (possibly in�nite) convergence radius R (w.r.t. |x| =√
n(x)), belongs to the space S(BR), where BR is the open ball of A centered

in the origin with radius R.
(3) Also G(z) := Re(zn)a and H(z) := i (Im(zn)a) are complex intrinsic on

C. They induce respectively the slice functions g(x) = Re(xn)a and h(x) =
f(x)− g(x) = (xn −Re(xn))a on A. The di�erence G(z)−H(z) = z̄na induces
g(x)− h(x) = (2 Re(xn)− xn)a = x̄na ∈ S(A).

The above examples generalize to standard polynomials in x = I(z) and xc =
I(z̄) with coe�cients in A. The domain of slice polynomial functions or series
must be restricted to subsets of the quadratic cone. For example, when A = R3,
standard polynomials in x with right Cli�ord coe�cients can be considered as
slice functions for x ∈ R3 such that x123 = 0, x1x23 − x2x13 + x3x12 = 0 (cf.
Example 1(3) in Section 2). In particular, they are de�ned on the space of
paravectors R4 = {x ∈ R3 | x12 = x13 = x23 = x123 = 0}.

3.3 Representation formulas

For an element J ∈ SA, let C+
J denote the upper half plane

C+
J = {x = α+ βJ ∈ A | β ≥ 0}.

Proposition 5. Let J,K ∈ SA with J −K invertible. Every slice function f ∈
S(ΩD) is uniquely determined by its values on the two distinct half planes C+

J

and C+
K . In particular, taking K = −J , we have that f is uniquely determined

by its values on a complex plane CJ .

Proof. For f ∈ S(ΩD), let f+
J be the restriction

f+
J := f |C+

J ∩ΩD
: C+

J ∩ ΩD → A.

It is su�cient to show that the stem function F such that I(F ) = f can be
recovered from the restrictions f+

J , f
+
K . This follows from the formula

f+
J (α+ βJ)− f+

K(α+ βK) = (J −K)F2(α+ iβ)

which holds for every α + iβ ∈ D with β ≥ 0. In particular, it implies the
vanishing of F2 when β = 0. Then F2 is determined also for β < 0 by imposing
oddness w.r.t. β. Moreover, the formula

f+
J (α+ βJ)− JF2(α+ iβ) = F1(α+ iβ)

de�nes the �rst component F1 as an even function on D.
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We also obtain the following representation formulas for slice functions.

Proposition 6. Let f ∈ S(ΩD). Let J,K ∈ SA with J −K invertible. Then
the following formula holds:

f(x) = (I −K)
(
(J −K)−1f(α+ βJ)

)
− (I − J)

(
(J −K)−1f(α+ βK)

)
(1)

for every I ∈ SA and for every x = α+ βI ∈ DI = ΩD ∩ CI . In particular, for
K = −J , we get the formula

f(x) =
1

2
(f(α+ βJ) + f(α− βJ))− I

2
(J (f(α+ βJ)− f(α− βJ))) (2)

Proof. Let z = α+ iβ. From the proof of the preceding proposition, we get

F2(z) = (J −K)−1 (f(α+ βJ)− f(α+ βK)) and

F1(z) = f(α+βJ)−JF2(z) = f(α+βJ)−J((J−K)−1 (f(α+ βJ)− f(α+ βK)) .

Therefore

f(α+ βI) = f(α+ βJ) + (I − J)((J −K)−1 (f(α+ βJ)− f(α+ βK))) =

= ((J −K) + (I − J))((J −K)−1f(α+ βJ))− (I − J)((J −K)−1f(α+ βK)) =

= (I −K)
(
(J −K)−1f(α+ βJ)

)
− (I − J)

(
(J −K)−1f(α+ βK)

)
.

We used the fact that, in any alternative algebra A, the equality b = (aa−1)b =
a(a−1b) holds for every elements a, b in A, a invertible.

Representation formulas for quaternionic Cullen regular functions appeared
in [3] and [4]. For slice monogenic functions of a Cli�ord variable, they were
given in [5, 6].

In the particular case when I = J , formula (2) reduces to the trivial decom-
position

f(x) =
1

2
(f(x) + f(xc)) +

1

2
(f(x)− f(xc)) .

But 1
2 (f(x) + f(xc)) = F1(z) and 1

2 (f(x)− f(xc)) = JF2(z), where x = α+βJ ,
z = α+ iβ.

De�nition 6. Let f ∈ S(ΩD). We call spherical value of f in x ∈ ΩD the
element of A

vsf(x) :=
1

2
(f(x) + f(xc)) .

We call spherical derivative of f in x ∈ ΩD \ R the element of A

∂sf(x) :=
1

2
Im(x)−1(f(x)− f(xc)).
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In this way, we get two slice functions associated with f : vsf is induced on
ΩD by the stem function F1(z) and ∂sf is induced on ΩD \ R by F2(z)/Im(z).
Since these stem functions are A�valued, vsf and ∂sf are constant on every
�sphere�

Sx := {y ∈ QA | y = α+ βI, I ∈ SA}.

Therefore ∂s(∂sf) = 0 and ∂s(vsf) = 0 for every f . Moreover, ∂sf(x) = 0
if and only if f is constant on Sx. In this case, f has value vsf(x) on Sx. If
ΩD ∩ R 6= ∅, under mild regularity conditions on F , we get that ∂sf can be
continuously extended as a slice function on ΩD. For example, it is su�cient to
assume that F2(z) is of class C1. By de�nition, the following identity holds for
every x ∈ ΩD:

f(x) = vsf(x) + Im(x) ∂sf(x).

Example 3. Simple computations show that vsx
n = 1

2 t(x
n) for every n, while

∂sx = 1, ∂sx
2 = x+ xc = t(x), ∂sx

3 = x2 + (xc)2 + xxc = t(x2) + n(x).

In general, the spherical derivative of a polynomial
∑n
j=0 x

jaj of degree n is a
real�valued polynomial in x and xc of degree n − 1. If An and Bn denote the
real components of the complex power zn = (α+ iβ)n, i.e. zn = An + iBn, then
Bn(α, β) = βB′n(α, β2), for a polynomial B′n. Then

∂sx
n = B′n

(
x+ xc

2
,−
(
x− xc

2

)2
)
.

3.4 Smoothness of slice functions

Given a subset B of A, a function g : B → A and a positive integer s or
s ∈ {∞, ω}, we will say that g is of class Cs(B) if g can be extended to an open
set as a function of class Cs in the usual sense.

Proposition 7. Let f = I(F ) ∈ S(ΩD) be a slice function. Then the following
statements hold:

(1) If F ∈ C0(D), then f ∈ C0(ΩD). Moreover, vsf ∈ C0(ΩD) and ∂sf ∈
C0(ΩD \ R).

(2) If F ∈ C2s+1(D) for a positive integer s, then f, vsf and ∂sf are of class
Cs(ΩD). As a consequence, if F ∈ C∞(D), then the functions f, vsf, ∂sf
are of class C∞(ΩD).

(3) If F ∈ Cω(D), then f, vsf and ∂sf are of class Cω(ΩD).

Proof. Assume that F ∈ C0(D). For any x ∈ QA, let x = Re(x) + Im(x)
be the decomposition given in Proposition 2. Since Im(x) is purely imaginary,
Im(x)2 is a non�positive real number. The map that associates x ∈ QA with
z = Re(x)+ i

√
− Im(x)2 ∈ C is continuous on QA \R. The same property holds

for the map that sends x to J = Im(x)/
√
n(Im(x)). These two facts imply

11



that on ΩD \ R the slice function f = I(F ) has the same smoothness as the
restriction of the stem function F on D \ R. Continuity at real points of ΩD is
an immediate consequence of the even�odd character of the pair (F1(z), F2(z))
w.r.t. the imaginary part of z.

If F is C2s+1�smooth or Cω and z = α + iβ, it follows from a result of
Whitney [39] that there exist F ′1, F

′
2 of class Cs or Cω respectively, such that

F1(α, β) = F ′1(α, β2), F2(α, β) = βF ′2(α, β2) on D.

(Here Fj(α, β) means Fj(z) as a function of α and β, j = 1, 2.) Then, for x =
Re(x) + Im(x) ∈ QA ∩CJ , Re(x) = α, Im(x) = Jβ, β2 = − Im(x)2 = n(Im(x)),
it holds:

vsf(x) = F ′1(Re(x), n(Im(x))) = F ′1

(
x+ xc

2
, n

(
x− xc

2

))
,

∂sf(x) = F ′2(Re(x), n(Im(x))) = F ′2

(
x+ xc

2
, n

(
x− xc

2

))
and f(x) = vsf(x) + Im(x) ∂sf(x) = vsf(x) + 1

2 (x−xc) ∂sf(x). These formulas
imply the second and third statements.

We will denote by

S1(ΩD) := {f = I(F ) ∈ S(ΩD) | F ∈ C1(D)}

the right A�module of slice functions with stem function of class C1.
Let f = I(F ) ∈ S1(ΩD) and z = α + iβ ∈ D. Then the partial derivatives

∂F/∂α and i∂F/∂β are continuous A�stem functions on D. The same property
holds for their linear combinations

∂F

∂z
=

1

2

(
∂F

∂α
− i∂F

∂β

)
and

∂F

∂z̄
=

1

2

(
∂F

∂α
+ i

∂F

∂β

)
.

De�nition 7. Let f = I(F ) ∈ S1(ΩD). We set

∂f

∂x
:= I

(
∂F

∂z

)
,

∂f

∂xc
:= I

(
∂F

∂z̄

)
.

These functions are continuous slice functions on ΩD.

The notation ∂f/∂xc is justi�ed by the following properties: xc = I(z̄) and
therefore ∂xc/∂xc = 1, ∂x/∂xc = 0.

4 Slice regular functions

Left multiplication by i de�nes a complex structure on AC. With respect to this
structure, a C1 function F = F1 + iF2 : D → AC is holomorphic if and only if
its components F1, F2 satisfy the Cauchy�Riemann equations:

∂F1

∂α
=
∂F2

∂β
,

∂F1

∂β
= −∂F2

∂α
(z = α+ iβ ∈ D), i.e.

∂F

∂z̄
= 0.

12



This condition is equivalent to require that, for any basis B, the complex
curve F̃B (cf. Remark 3 in Subsection 3.1) is holomorphic.

De�nition 8. A (left) slice function f ∈ S1(ΩD) is (left) slice regular if its
stem function F is holomorphic. We will denote the right A�module of slice
regular functions on ΩD by

SR(ΩD) := {f ∈ S1(ΩD) | f = I(F ), F : D → AC holomorphic}.

Remarks 5. (1) A function f ∈ S1(ΩD) is slice regular if and only if the slice
function ∂f/∂xc (cf. De�nition 7) vanishes identically. Moreover, if f is slice
regular, then also ∂f/∂x = I (∂F/∂z) is slice regular on ΩD.

(2) Since vsf and ∂sf are A�valued, they are slice regular only when they
are locally constant functions.

As seen in the Examples 2 of Subsection 3.2, polynomials with right co-
e�cients belonging to A can be considered as slice regular functions on the
quadratic cone. If f(x) =

∑m
j=0 x

jaj , then f = I(F ), with F (z) =
∑m
j=0 z

jaj .
Assume that on A is de�ned a positive scalar product x · y whose associated

norm satis�es an inequality |xy| ≤ C|x||y| for a positive constant C and such
that |x|2 = n(x) for every x ∈ QA. Then we also have |xk| = |x|k for every k > 0,
x ∈ QA. In this case we can consider also convergent power series

∑
k x

kak as
slice regular functions on the intersection of the quadratic cone with a ball
(w.r.t. the norm |x|) centered in the origin. See for example [26, �4.2] for the
quaternionic and Cli�ord algebra cases, where we can take as product x · y the
euclidean product in R4 or R2n

, respectively.

Proposition 8. Let f = I(F ) ∈ S1(ΩD). Then f is slice regular on ΩD if and
only if the restriction

fJ := f |CJ∩ΩD
: DJ = CJ ∩ ΩD → A

is holomorphic for every J ∈ SA with respect to the complex structures on DJ

and A de�ned by left multiplication by J .

Proof. Since fJ(α+ βJ) = F1(α+ iβ) + JF2(α+ iβ), if F is holomorphic then

∂fJ
∂α

+ J
∂fJ
∂β

=
∂F1

∂α
+ J

∂F2

∂α
+ J

(
∂F1

∂β
+ J

∂F2

∂β

)
= 0

at every point x = α + βJ ∈ DJ . Conversely, assume that fJ is holomorphic
for every J ∈ SA. Then

0 =
∂fJ
∂α

+ J
∂fJ
∂β

=
∂F1

∂α
− ∂F2

∂β
+ J

(
∂F2

∂α
+
∂F1

∂β

)
at every point z = α+ iβ ∈ D. From the arbitrariness of J it follows that F1, F2

satisfy the Cauchy�Riemann equations.
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Remark 6. The even�odd character of the pair (F1, F2) and the proof of the
preceding proposition show that, in order to get slice regularity of f = I(F ),
F ∈ C1, it is su�cient to assume that two functions fJ , fK (J−K invertible) are
holomorphic on domains C+

J ∩ΩD and C+
K ∩ΩD, respectively (cf. Proposition 5

for notations). The possibility K = −J is not excluded: it means that the single
function fJ must be holomorphic on DJ .

Proposition 8 implies that if A is the algebra of quaternions or octonions,
and the domain D intersects the real axis, then f is slice regular on ΩD if and
only if it is Cullen regular in the sense introduced by Gentili and Struppa in
[19, 20] for quaternionic functions and in [18, 17] for octonionic functions.

If A is the real Cli�ord algebra Rn, slice regularity generalizes the concept
of slice monogenic functions introduced by Colombo, Sabadini and Struppa in
[9]. From Proposition 8 and from the inclusion of the set Rn+1 of paravectors
in the quadratic cone (cf. Example 1 of Section 2), we get the following result.

Corollary 9. Let A = Rn be the Cli�ord algebra. If f = I(F ) ∈ SR(ΩD),
F ∈ C1(D) and D intersects the real axis, then the restriction of f to the
subspace of paravectors is a slice monogenic function

f|ΩD∩Rn+1 : ΩD ∩ Rn+1 → Rn.

Note that every slice monogenic function is the restriction to the subspace
of paravectors of a unique slice regular function (cf. Propositions 5 and 6).

5 Product of slice functions

In general, the pointwise product of two slice functions is not a slice function.
However, pointwise product in the algebra AC of A�stem functions induces a
natural product on slice functions.

De�nition 9. Let f = I(F ), g = I(G) ∈ S(ΩD). The product of f and g is the
slice function

f · g := I(FG) ∈ S(ΩD).

The preceding de�nition is well�posed, since the pointwise product FG =
(F1 + iF2)(G1 + iG2) = F1G1 − F2G2 + i(F1G2 + F2G1) of complex intrinsic
functions is still complex intrinsic. It follows directly from the de�nition that
the product is distributive. It is also associative if A is an associative algebra.

The spherical derivative satis�es a Leibniz�type product rule, where evalu-
ation is replaced by spherical value:

∂s(f · g) = (∂sf)(vsg) + (vsf)(∂sg).

Remark 7. In general, (f · g)(x) 6= f(x)g(x). If x = α + βJ belongs to DJ =
ΩD ∩ CJ and z = α+ iβ, then

(f · g)(x) = F1(z)G1(z)− F2(z)G2(z) + J (F1(z)G2(z)) + J (F2(z)G1(z)) ,
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while

f(x)g(x) = F1(z)G1(z) + (JF2(z))(JG2(z)) + F1(z)(JG2(z)) + (JF2(z))G1(z).

If the components F1, F2 of the �rst stem function F are real�valued, or if F
and G are both A�valued, then (f · g)(x) = f(x)g(x) for every x ∈ ΩD. In this
case, we will use also the notation fg in place of f · g.

De�nition 10. A slice function f = I(F ) is called real if the A�valued compo-
nents F1, F2 of its stem function are real�valued. Equivalently, f is real if the
spherical value vsf and the spherical derivative ∂sf are real�valued.

A real slice function f has the following property: for every J ∈ SA, the
image f(CJ∩ΩD) is contained in CJ . More precisely, this condition characterizes
the reality of f .

Proposition 10. A slice function f ∈ S(ΩD) is real if and only if f(CJ∩ΩD) ⊆
CJ for every J ∈ SA.

Proof. Assume that f(CJ ∩ ΩD) ⊆ CJ for every J . Let f = I(F ). If x =
α+βJ ∈ ΩD and z = α+iβ, then f(x) = F1(z)+JF2(z) ∈ CJ and f(xc) = f(α−
βJ) = F1(z̄) + JF2(z̄) = F1(z)− JF2(z) ∈ CJ . This implies that F1(z), F2(z) ∈
∩JCJ = R (cf. Proposition 3).

Proposition 11. If f, g are slice regular on ΩD, then the product f · g is slice
regular on ΩD.

Proof. Let f = I(F ), g = I(G), H = FG. If F and G satisfy the Cauchy�
Riemann equations, the same holds for H. This follows from the validity of the
Leibniz product rule, that can be checked using a basis representation of F and
G.

Let f(x) =
∑
j x

jaj and g(x) =
∑
k x

kbk be polynomials or convergent
power series with coe�cients aj , bk ∈ A. The usual product of polynomials,
where x is considered to be a commuting variable (cf. for example [28] and
[15, 14]), can be extended to power series (cf. [16, 21] for the quaternionic case)
in the following way: the star product f ∗ g of f and g is the convergent power
series de�ned by setting

(f ∗ g)(x) :=
∑
n x

n
(∑

j+k=n ajbk
)
.

Proposition 12. Let f(x) =
∑
j x

jaj and g(x) =
∑
k x

kbk be polynomials or
convergent power series (aj , bk ∈ A). Then the product of f and g, viewed
as slice regular functions, coincides with the star product f ∗ g, i.e. I(FG) =
I(F ) ∗ I(G).

Proof. Let f = I(F ), g = I(G), H = FG. Denote by An(z) and Bn(z) the
real components of the complex power zn = (α + iβ)n. Since R ⊗R C ' C is
contained in the commutative and associative center of AC, we have

H(z) = F (z)G(z) =
(∑

j z
jaj
)(∑

k z
kbk
)

=
∑
j,k z

jzk(ajbk).
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Let cn =
∑
j+k=n ajbk for each n. Therefore, we have

H(z) =
∑
n

zncn =
∑
n

(An(z) + iBn(z))cn =
∑
n

An(z)cn + i
(∑

n

Bn(z)cn
)

=

=: H1(z) + iH2(z)

and then, if x = α+ βJ and z = α+ iβ,

I(H)(x) = H1(z) + JH2(z) =
∑
nAn(z)cn + J

(∑
nBn(z)cn

)
.

On the other hand, (f ∗ g)(x) =
∑
n(α+βJ)ncn =

∑
n(An(z) +JBn(z))cn and

the result follows.

Example 4. Let A = H, I, J ∈ SH. Let F (z) = z − I, G(z) = z − J . Then
f(x) = x − I, g(x) = x − J , (FG)(z) = z2 − z(I + J) + IJ and (f · g)(x) =
(x− I) · (x− J) = I(FG) = x2 − x(I + J) + IJ = I(F ) ∗ I(G).

Note that (f · g)(x) is di�erent from f(x)g(x) = (x− I)(x− J) = x2 − xJ −
Ix+ IJ for every x not lying in CI .

6 Normal function and admissibility

We now associate to every slice function a new slice function, the normal func-
tion, which will be useful in the following sections when dealing with zero sets.
Our de�nition is equivalent to the one given in [16] for (Cullen regular) quater-
nionic power series. There the normal function was named the symmetrization
of the power series.

De�nition 11. Let f = I(F ) ∈ S(ΩD). Then also F c(z) := F (z)c = F1(z)
c

+
iF2(z)

c
is an A�stem function. We set:

• f c := I(F c) ∈ S(ΩD).

• CN(F ) := FF c = F1F1
c − F2F2

c + i(F1F2
c + F2F1

c) = n(F1)− n(F2) +
i t(F1F2

c).

• N(f) := f · f c = I(CN(F )) ∈ S(ΩD).

The slice function N(f) will be called the normal function of f .

Remarks 8. (1) Partial derivatives commute with the antiinvolution x 7→ xc.
From this fact and from Proposition 11, it follows that, if f is slice regular, then
also f c and N(f) are slice regular.

(2) Since x 7→ xc is an antiinvolution, (FG)c = GcF c and then (f · g)c =
gc · f c. Moreover, N(f) = N(f)c, while N(f c) 6= N(f) in general.

(3) For every slice functions f, g, we have vs(f
c) = (vsf)c, ∂s(f

c) = (∂sf)c

and ∂sN(f) = (∂sf)(vsf
c) + (vsf)(∂sf

c).
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If A is the algebra of quaternions or octonions, then CN(F ) is complex�
valued and then the normal function N(f) is real. For a general algebra A,
this is not true for every slice function. This is the motivation for the following
de�nition.

De�nition 12. A slice function f = I(F ) ∈ S(ΩD) is called admissible if the
spherical value of f at x belongs to the normal cone NA for every x ∈ ΩD and
the real vector subspace 〈vsf(x), ∂sf(x)〉 of A, generated by the spherical value
and the spherical derivative at x, is contained in the normal cone NA for every
x ∈ ΩD \ R. Equivalently,

〈F1(z), F2(z)〉 ⊆ NA for every z ∈ D.

Remarks 9. (1) If A = H or O, then every slice function is admissible, since
NA = QA = A.

(2) If f is admissible, then CN(F ) is complex�valued and then N(f) is real.
Indeed, if F1(z), F2(z) and F1(z) + F2(z) belong to NA, n(F1(z)) and n(F2(z))
are real and t(F1(z)F2(z)c) = n(F1(z) + F2(z))− n(F1(z))− n(F2(z)) is real.

(3) If f is real, f c = f , N(f) = f2 and f is admissible.
(4) If f is real and g is admissible, also fg is admissible.

Proposition 13. If n(x) = n(xc) 6= 0 for every x ∈ A \ {0} such that n(x) is
real, then a slice function f is admissible if and only if N(f) and N(∂sf) are
real.

Proof. Let z ∈ D \ R. N(∂sf) is real if and only if n(F2(z)) ∈ R. Assume that
also N(f) is real. Then n(F1(z)) and n(F1(z) + F2(z)) are real, from which
it follows that n(αF1(z) + βF2(z)) is real for every α, β ∈ R. Since n(x) real
implies x ∈ NA, we get that 〈F1(z), F2(z)〉 ⊆ NA for every z ∈ D \ R. If z
is real, then N(f)(z) = n(F1(z)) is real and F2(z) = 0. This means that the
condition of admissibility is satis�ed for every z ∈ D.

Example 5. Consider the Cli�ord algebra R3 with the usual conjugation. Its
normal cone

NR3 = {x ∈ R3 | x0x123 − x1x23 + x2x13 − x3x12 = 0}

contains the subspace R4 of paravectors (cf. Examples 1 of Section 2). Every
polynomial p(x) =

∑
n x

nan with paravectors coe�cients an ∈ R4 is an admis-
sible slice regular function on QR3

, since P (z) =
∑
n z

nan =
∑
nAn(z)an +

i(
∑
nBn(z)an) belongs to R4 ⊗R C for every z ∈ C.
The polynomial p(x) = xe23 + e1 is an example of a non�admissible slice

regular function on R3, since ∂sp(x) = e23 ∈ NA for every x, but vsp(x) =
Re(x)e23 + e1 /∈ NA if Re(x) 6= 0.

Theorem 14. Let A be associative or A = O. Then

N(f · g) = N(f)N(g)

for every admissible f, g ∈ S(ΩD).
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Proof. Assume that A is associative. Let f = I(F ), g = I(G) be admissible
and z ∈ D. Denote the norm of w ∈ AC by cn(w) := wwc = n(x) − n(y) +
i t(xyc) ∈ AC. Then CN(FG)(z) = cn(F (z)G(z)) = (F (z)G(z))(F (z)G(z))c =
cn(F (z)) cn(G(z)), since cn(F (z)) and cn(G(z)) are in the center of AC. Then

N(f · g) = I(CN(FG)) = I(CN(F )CN(G)) = N(f)N(g).

If A = H or O, a di�erent proof can be given. AC is a complex alternative
algebra with an antiinvolution x 7→ xc such that x+ xc, xxc ∈ C ∀x. Then AC
is an algebra with composition (cf. [34, p.58]): the complex norm cn(x) = xxc is
multiplicative (for O⊗RC it follows from Artin's Theorem) and we can conclude
as before.

The multiplicativity of the normal function of octonionic power series was
already proved in [24] by a direct computation.

Corollary 15. Let A be associative or A = O. Assume that n(x) = n(xc) 6= 0
for every x ∈ A \ {0} such that n(x) is real. If f and g are admissible slice
functions, then also the product f · g is admissible.

Proof. We apply Proposition 13. If N(f) and N(g) are real, then N(f · g) =
N(f)N(g) is real. Now consider the spherical derivatives: N(∂s(f · g)) =
N((∂sf)(vsg)) +N((vsf)(∂sg)) = N(∂sf)N(vsg) +N(vsf)N(∂sg) is real, since
all the slice functions are real.

Example 6. Let A = R3. This algebra satis�es the condition of the preceding
corollary: if n(x) is real, then n(x) = n(xc) (cf. e.g. [26]). Consider the admis-
sible polynomials f(x) = xe2 + e1, g(x) = xe3 + e2. Then (f · g)(x) = x2e23 +
x(e13 − 1) + e12 is admissible, N(f) = N(g) = x2 + 1 and N(f · g) = (x2 + 1)2.

7 Zeros of slice functions

The zero set V (f) = {x ∈ QA | f(x) = 0} of an admissible slice function
f ∈ S(ΩD) has a particular structure. We will see in this section that, for every
�xed x = α+ βJ ∈ QA, the �sphere�

Sx = {y ∈ QA | y = α+ βI, I ∈ SA}

is entirely contained in V (f) or it contains at most one zero of f . Moreover, if f
is not real, there can be isolated, non�real zeros. These di�erent types of zeros
of a slice function correspond, at the level of the stem function, to the existence
of zero�divisors in the complexi�ed algebra AC.

Proposition 16. Let f ∈ S(ΩD). If the spherical derivative of f at x ∈
ΩD \ R belongs to NA, then the restriction of f to Sx is injective or constant.
In particular, either Sx ⊆ V (f) or Sx ∩ V (f) consists of a single point.
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Proof. If ∂sf(x) ∈ NA, then it is not a zero�divisor of A. Given x, x′ ∈ Sx, if
f(x) = f(x′), then (Im(x)−Im(x′)) ∂sf(x) = (x−x′) ∂sf(x) = 0. If ∂sf(x) 6= 0,
this implies x = x′.

Remark 10. The same conclusion of the preceding proposition holds for any slice
function when the function is restricted to a subset of Sx that does not contain
pairs of points x, x′ such that x− x′ is a left zero�divisor in A. This is the case
e.g. of the slice monogenic functions, which are de�ned on the paravector space
of a Cli�ord algebra (cf. Corollary 9 and [9]).

Theorem 17 (Structure of V (f)). Let f = I(F ) ∈ S(ΩD). Let x = α + βJ ∈
ΩD and z = α + iβ ∈ D. Assume that vsf(x) ∈ NA and that, if x /∈ R, then
∂sf(x) ∈ NA. Then one of the following mutually exclusive statements holds:

(1) Sx ∩ V (f) = ∅.

(2) Sx ⊆ V (f). In this case x is called a real (if x ∈ R) or spherical (if
x /∈ R) zero of f .

(3) Sx ∩ V (f) consists of a single, non�real point. In this case x is called an
SA�isolated non�real zero of f .

These three possibilities correspond, respectively, to the following properties of
F (z) ∈ AC:

(1′) CN(F )(z) = F (z)F (z)c 6= 0.

(2′) F (z) = 0.

(3′) F (z) 6= 0 and CN(F )(z) = 0 (i.e. F (z) is a zero�divisor of AC).

Before proving the theorem, we collect some algebraic results in the following
lemma.

Lemma 18. Let w = x + iy ∈ AC, with y ∈ NA. Let cn(w) := wwc =
n(x)− n(y) + i t(xyc) ∈ AC. Then the following statements hold:

(1) cn(w) = 0 if and only if w = 0 or there exists a unique K ∈ SA such that
x+Ky = 0.

(2) If 〈x, y〉 ⊆ NA, then cn(w) ∈ C. Moreover, cn(w) 6= 0 if and only if w is
invertible in AC.

Proof. In the proof we use that (u, v−1, v) = 0 for every u, v, with v invertible.
If cn(w) = 0, w 6= 0, then n(x) = n(y) 6= 0 and y is invertible, with

inverse yc/n(y). Moreover, (z, yc, y) = 0 for every z. Set K := −xy−1. Then
Ky = −(xy−1)y = −x(y−1y) = −x. Moreover, from t(xyc) = xyc + yxc = 0 it
follows that

Kc = − yxc

n(y)
=

xyc

n(y)
= −K and
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K2 =

(
− xyc

n(y)

)(
− xyc

n(y)

)
= − (xyc)(yxc)

n(x)n(y)
= −x(ycy)xc

n(x)n(y)
= −1.

Then K ∈ SA. Uniqueness of K ∈ SA such that x+Ky = 0 comes immediately
from the invertibility of y ∈ NA, y 6= 0. Conversely, if x + Ky = 0 for some
K ∈ SA, then n(x) = (−Ky)(ycK) = −K2n(y) = n(y) and xyc + yxc =
−(Ky)yc + y(ycK) = 0. Therefore cn(w) = 0.

If x, y and x+y belong to NA, n(x+y)−n(x)−n(y) = t(xyc) is real, which
implies that cn(w) is complex. Let cn(w) =: u + iv 6= 0, with u, v real. Then
w′ := (xc + iyc)(u − iv)/(u2 + v2) is the inverse of w. On the other hand, if
cn(w) = 0, w is a divisor of zero of AC.

Proof of Theorem 17. If x = α is real, then Sx = {x} and f(x) = F1(α) = 0 if
and only if F (α) = 0, since F2 vanishes on the real axis. Therefore f(x) = 0 is
equivalent to F (z) = 0.

Now assume that x /∈ R. If F (z) = 0, then f(α+ βI) = F1(z) + IF2(z) = 0
for every I ∈ SA. Then Sx ⊆ V (f) (a spherical zero). Since ∂sf(x) ∈ NA,
also F2(z) ∈ NA and Lemma 18 can be applied to w = F (z). If F (z) 6= 0 and
CN(F )(z) = 0, there exists a unique K ∈ SA such that F1(z) + KF2(z) = 0,
i.e. f(α+βK) = 0. Therefore Sx ∩V (f) = {α+βK}. The last case to consider
is CN(F )(z) 6= 0. From Lemma 18 we get that f(α+βI) = F1(z) + IF2(z) 6= 0
for every I ∈ SA, which means that Sx ∩ V (f) = ∅.

Remark 11. From the preceding proofs, we get that an SA�isolated non�real zero
x of f is given by the formula x = α+ βK, with K := −F1(z)F2(z)

c
/n(F2(z)),

CN(F )(z) = 0. This formula can be rewritten in a form that resembles Newton's
method for �nding roots:

x = Re(x)− vsf(x) (∂sf(x))−1.

Corollary 19. It holds:

(1) A real slice function has no SA�isolated non�real zeros.

(2) For every admissible slice function f , we have

V (N(f)) =
⋃

x∈V (f)

Sx.

Proof. If f = I(F ) is real, then CN(F ) = F 2. Therefore the third case of the
theorem is excluded. If f is admissible, then Theorem 17 can be applied. If
x ∈ V (f), x = α + βJ , the proposition gives CN(F )(z) = 0 (z = α + iβ) and
when applied to N(f) tells that Sx ⊆ V (N(f)). Conversely, since N(f) is real,
N(f)(x) = 0 implies 0 = CN(CN(F ))(z) = CN(F )(z)2, i.e. CN(F )(z) = 0.
From the proposition applied to f , we get at least one point y ∈ Sx ∩ V (f).
Then x ∈ Sy, y ∈ V (f).
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Theorem 20. Let ΩD be connected. If f is slice regular and admissible on
ΩD, and N(f) does not vanish identically, then CJ ∩

⋃
x∈V (f) Sx is closed and

discrete in DJ = CJ ∩ ΩD for every J ∈ SA. If ΩD ∩ R 6= ∅, then N(f) ≡ 0 if
and only if f ≡ 0.

Proof. The normal function N(f) is a real slice regular function on ΩD. For
every J ∈ SA, the restriction N(f)J : DJ → CJ is a holomorphic function, not
identically zero (otherwise it would be N(f) ≡ 0). Therefore its zero set

CJ ∩ V (N(f)) = CJ ∩
⋃

x∈V (f)

Sx

is closed and discrete in DJ . If there exists x ∈ ΩD ∩ R and N(f)(x) =
n(F1(x)) = 0, then F (x) = F1(x) = 0. Since F is holomorphic, it can van-
ish on ΩD ∩ R only if f ≡ 0 on D.

In the quaternionic case, the structure theorem for the zero set of slice regular
functions was proved by Pogorui and Shapiro [30] for polynomials and by Gentili
and Stoppato [16] for power series.

Remark 12. If ΩD does not intersect the real axis, a not identically zero slice
regular function f can have normal function N(f) ≡ 0. For example, let J ∈ SH
be �xed. The admissible slice regular function de�ned on H \ R by

f(x) = 1− IJ (x = α+ βI ∈ C+
I )

is induced by a locally constant stem function and has zero normal function. Its
zero set V (f) is the half plane C+

−J \R. The function f can be obtained by the

representation formula (2) by choosing the constant values 2 on C+
J \ R and 0

on C+
−J \ R.

If an admissible slice regular function f has N(f) 6≡ 0, then the SA�isolated
non�real zeros are genuine isolated points in ΩD. In this case, V (f) is a union
of isolated �spheres� Sx and isolated points.

7.1 The Remainder Theorem

In this section, we prove a division theorem, which generalizes a result proved
by Beck [1] for quaternionic polynomials and by Serôdio [35] for octonionic
polynomials.

De�nition 13. For any y ∈ QA, the characteristic polynomial of y is the slice
regular function on QA

∆y(x) := N(x− y) = (x− y) · (x− yc) = x2 − x t(y) + n(y).

Proposition 21. The characteristic polynomial ∆y of y ∈ QA is real. Two
characteristic polynomials ∆y and ∆y′ coincides if and only if Sy = Sy′ . More-
over, ∆y ≡ 0 on Sy.
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Proof. The �rst property comes from the de�nition of the quadratic cone. Since
n(x) = n(Re(x)) + n(Im(x)) for every x ∈ QA, two elements y, y′ ∈ QA have
equal trace and norm if and only if Re(y) = Re(y′) and n(Im(y)) = n(Im(y′)).
Since Sy is completely determined by its �center� α = Re(y) and its �squared
radius� β2 = n(Im(y)), ∆y = ∆y′ if and only if Sy = Sy′ . The last property
follows from ∆y(y) = 0 and the reality of ∆y.

Theorem 22 (Remainder Theorem). Let f ∈ SR(ΩD) be an admissible slice
regular function. Let y ∈ V (f) = {x ∈ QA | f(x) = 0}. Then the following
statements hold.

(1) If y is a real zero, then there exists g ∈ SR(ΩD) such that
f(x) = (x− y) g(x).

(2) If y ∈ ΩD \ R, then there exists h ∈ SR(ΩD) and a, b ∈ A such that
〈a, b〉 ⊆ NA and f(x) = ∆y(x)h(x) + xa+ b. Moreover,

• y is a spherical zero of f if and only if a = b = 0.

• y is an SA�isolated non�real zero of f if and only if a 6= 0 (in this
case y = −ba−1).

If there exists a real subspace V ⊆ NA such that F (z) ∈ V ⊗ C ∀z ∈ D, then g
and h are admissible. If f is real, then g, h are real and a = b = 0.

Proof. We can suppose that conj(D) = D. In the proof, we will use the fol-
lowing fact. For every holomorphic function F : D → AC, there is a unique
decomposition F = F+ +F−, with F± holomorphic, F+ complex intrinsic and
F− satisfying F−(z̄) = −F−(z). It is enough to set F±(z) := 1

2 (F (z)± F (z̄)).
Assume that y is a real zero of f = I(F ). Then F (y) = 0 and therefore, by

passing to a basis representation, we get F (z) = (z− y)G(z) for a holomorphic
mapping G : D → AC. G is complex intrinsic: F (z̄) = (z̄ − y)G(z̄) = F (z) =
(z̄−y)G(z), from which it follows that G(z) = G(z̄) for every z 6= y and then on
D by continuity. Let g = I(G) ∈ SR(ΩD). Then f(x) = (x− y) g(x). Assume
that F (z) ∈ V ⊗ C ∀z ∈ D. Since x − y is real, G1(z) and G2(z) belong to
V ⊆ NA for every z 6= y and then also for z = y. Therefore g is admissible.

Now assume that y = α+ βJ ∈ V (f) \R. Let ζ = α+ iβ ∈ D. If F (ζ) 6= 0,
there exists a unique K ∈ SA such that F1(ζ) + KF2(ζ) = 0 (cf. Theorem 17).
Otherwise, let K be any square root of −1. Let FK := (1− iK)F . Then FK is
a holomorphic mapping from D to AC, vanishing at ζ:

FK(ζ) = F1(ζ) + iF2(ζ)− iKF1(ζ) +KF2(ζ) = 0.

Then there exists a holomorphic mapping G : D → AC such that

FK(z) = (z − ζ)G(z).

Let G1(z) be the holomorphic mapping such that G(z)−G(ζ̄) = (z − ζ̄)G1(z)
on D. Then

FK(z) = (z − ζ)((z − ζ̄)G1(z) +G(ζ̄)) = ∆y(z)G1(z) + (z − ζ)G(ζ̄).
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Here ∆y(z) denotes the complex intrinsic polynomial z2 − z t(y) + n(y), which
induces the characteristic polynomial ∆y(x).

Let F+
K be the complex intrinsic part of FK It holds F+

K = F :

F+
K (z) =

1

2
(FK(z) + FK(z)) =

1− iK
2

F (z) +
1 + iK

2
F (z) = F (z).

Therefore

F (z) = ∆y(z)G+
1 (z) +

1

2
((z − ζ)G(ζ) + (z − ζ)G(ζ)) = ∆y(z)H(z) + za+ b,

where H = G+
1 is complex intrinsic and a, b ∈ A. Since F (ζ) = ζa + b, the

elements a = β−1F2(ζ) and b = F1(ζ) − αβ−1F2(ζ) belong to 〈F1(ζ), F2(ζ)〉 ⊆
NA. If there exists V ⊆ NA such that F (z) ∈ V ⊗ C ∀z ∈ D, then it follows
that F (z) − za − b = ∆y(z)H(z) belongs to V ⊗ C for all z ∈ D. From
this and from the reality of ∆y, it follows, by a continuity argument, that
H(z) ∈ V ⊗ C ∀z ∈ D, i.e. h is admissible.

If f is real, then 〈F1(z), F2(z)〉 ⊆ R for every z ∈ D and we get the last
assertion of the theorem.

Remark 13. A simple computation shows that

∂s∆y(x) = t(x)− t(y) and vs∆y(x) =
1

2
t(x)(t(x)− t(y))− n(x) + n(y).

It follows that, for every non�real y ∈ V (f), the element a ∈ NA which appears
in the statement of the preceding theorem is the spherical derivative of f at
x ∈ Sy.
Example 7. The function f(x) = 1−IJ (J �xed in SH, x = α+βI ∈ H\R, β > 0)
of Remark 12 of Section 7 vanishes at y = −J . The division procedure gives

f(x) = (x2 + 1)h(x)− xJ + 1

with h = I(H) induced on H \ R by the holomorphic function

H(z) =

{
J
z+i on C+ = {z ∈ C | Im(z) > 0}
J
z−i on C− = {z ∈ C | Im(z) < 0}

.

Remark 14. In [24], it was proved that when A = H or O, part (1) of the
preceding theorem holds for every y ∈ V (f): f(x) = (x − y) · g(x). This can
be seen in the following way (we refer to the notation used in the proof of the
Remainder Theorem). From

F (z) = (z − ζ)(z − ζ̄)H(z) + za+ b = (z − y)((z − yc)H(z) + a) + ya+ b,

we get f(x) = (x − y) · g(x) + ya + b, where g = I((z − yc)H(z) + a). But
ya+ b = 0 and then we get the result.
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Corollary 23. Let f ∈ SR(ΩD) be admissible. If Sy contains at least one zero
of f , of whatever type, then ∆y divides N(f).

Proof. If y ∈ R, then ∆y(x) = (x − y)2. From the Theorem, f = (x − y) g,
f c = (x− y) gc, and then N(f) = (x− y)2 g · gc = ∆y N(g). If y is a spherical
zero, then f = ∆y h and therefore f c = ∆y h

c, N(f) = f · f c = ∆2
y N(h). If

y1 ∈ V (f) ∩ Sy is an SA�isolated, non�real zero, then

f = ∆y h+ xa+ b, f c = ∆y h
c + xac + bc,

from which it follows that

N(f) = ∆y

[
∆y N(h) + h · (xac + bc) + hc · (xa+ b)

]
+

+ x2 n(a) + x t(abc) + n(b).

Since y1a+ b = 0 with 〈a, b〉 contained in NA, it follows that n(b) = n(y1)n(a),
the trace of abc is real, and

t(y1)n(a) = (y1 + yc1)(aac) = (y1a)ac + a(acyc1) = −bac − abc = −t(abc).

Then x2 n(a) + x t(abc) + n(b) = ∆y1n(a) = ∆yn(a) and ∆y | N(f).

Let f ∈ SR(ΩD) be admissible. Let y = α + βJ ∈ ΩD, ζ = α + iβ. Since
f is admissible, N(f) is real and therefore if N(f) = ∆s

y g, also the quotient
g is real. The relation N(f) = ∆s

y g is equivalent to the complex equality

CN(F )(z) = ∆ζ(z)
sG(z), where ∆ζ(z) = z2 − z t(y) + n(y) = (z − ζ)(z − ζ̄)

and I(G) = g. If N(f) 6≡ 0, then CN(F ) 6≡ 0 and therefore ζ has a multiplicity
as a (isolated) zero of the holomorphic function CN(F ) on D.

In this way, we can introduce, for any admissible slice regular function f
with N(f) 6≡ 0, the concept of multiplicity of its zeros.

De�nition 14. Let f ∈ SR(ΩD) be admissible, with N(f) 6≡ 0. Given a non�
negative integer s and an element y of V (f), we say that y is a zero of f of
multiplicity s if ∆s

y | N(f) and ∆s+1
y - N(f). We will denote the integer s,

called multiplicity of y, by mf (y).

In the case of y real, the preceding condition is equivalent to (x − y)s | f
and (x− y)s+1 - f . If y is a spherical zero, then ∆y divides f and f c. Therefore
mf (y) is at least 2. If mf (y) = 1, y is called a simple zero of f .

Remark 15. In the case of on quaternionic polynomials, the preceding de�nition
is equivalent to the one given in [2] and in [21].

7.2 Zeros of products

Proposition 24. Let A be associative. Let f, g ∈ S(ΩD). Then V (f) ⊆ V (f ·g).
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Proof. Assume that f(y) = 0. Let y = α + βJ , z = α + iβ (with β = 0 if y is
real). Then 0 = f(y) = F1(z) + JF2(z). Therefore

(f · g)(y) = (F1(z)G1(z)− F2(z)G2(z)) + J(F1(z)G2(z) + F2(z)G1(z)) =

= (−JF2(z)G1(z)− F2(z)G2(z)) + J(−JF2(z)G2(z) + F2(z)G1(z)) = 0.

As shown in [35] for octonionic polynomials and in [24] for octonionic power
series, if A is not associative the statement of the proposition is no more true.
However, we can still say something about the location of the zeros of f · g. For
quaternionic and octonionic power series, we refer to [24] for the precise relation
linking the zeros of f and g to those of f · g. For the associative case, see also
[28, �16].

Proposition 25. Let A be associative or A = O. Assume that n(x) = n(xc) 6= 0
for every x ∈ A \ {0} such that n(x) is real. If f and g are admissible slice
functions on ΩD, then it holds:⋃

x∈V (f ·g)

Sx =
⋃

x∈V (f)∪V (g)

Sx

or, equivalently, given any x ∈ ΩD, V (f · g) ∩ Sx is non�empty if and only if
(V (f) ∪ V (g))∩Sx is non�empty. In particular, the zero set of f ·g is contained
in the union

⋃
x∈V (f)∪V (g) Sx.

Proof. By combining Corollary 19, Theorem 14 and Corollary 15, we get:⋃
x∈V (f ·g) Sx = V (N(f · g)) = V (N(f)) ∪ V (N(g)) =

⋃
x∈V (f)∪V (g)

Sx.

Since V (f · g) ⊆ V (N(f · g)), the proof is complete.

Example 8. Let A = R3. Consider the polynomials f(x) = xe2 + e1, g(x) =
xe3 + e2 of Example 6 of Section 6. Then (f · g)(x) = x2e23 + x(e13 − 1) + e12.
The zero sets of f and g are V (f) = {e12}, V (g) = {e23}. The Remainder
Theorem gives f · g = ∆e12e23 + x(e13 − 1) + (e12 − e23), from which we get the
unique isolated zero e12 of f · g, of multiplicity 2.

7.3 The Fundamental Theorem of Algebra

In this section, we focus our attention on the zero set of slice regular admissible
polynomials. If p(x) =

∑m
j=0 x

jaj is an admissible polynomial of degree m with
coe�cients aj ∈ A, the normal polynomial

N(p)(x) = (p ∗ pc)(x) =
∑
n x

n
(∑

j+k=n aja
c
k

)
=:
∑
n x

ncn
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has degree 2m and real coe�cients. The last property is immediate when QA =
A (i.e. A = H or O), since

cn =
∑

j+k=n

aja
c
k =

[n−1
2 ]∑
j=0

t(aja
c
n−j) + n(an/2)

(if n is odd the last term is missing). In the general case, if p is admissible and

p = I(P ), N(p) is real, i.e. the polynomial CN(P )(z) =
∑2m
n=0 z

ncn is complex�
valued. From this, it follows easily that the coe�cients cn must be real. Indeed,
c0 = CN(P )(0) ∈ C ∩ A = R. Moreover, since CN(P )(z) − c0 is complex for
every z, also c1 + zc2 + · · ·+ z2m−1c2m ∈ C and then c1 ∈ R. By repeating this
argument, we get that every cn is real.

Theorem 26 (Fundamental Theorem of Algebra with multiplicities). Let p(x) =∑m
j=0 x

jaj be a polynomial of degree m > 0 with coe�cients in A. Assume
that f is admissible (for example, in the case in which the real vector subspace
〈a0, . . . , am〉 of A is contained in NA). Then V (p) = {y ∈ QA | p(y) = 0} is
non�empty. More precisely, there are distinct �spheres� Sx1

, . . . ,Sxt
such that

V (p) ⊆
t⋃

k=1

Sxk
= V (N(p)), V (p) ∩ Sxj

6= ∅ for every j,

and, for any choice of zeros y1 ∈ Sx1
, . . . , yt ∈ Sxt

of p, the following equality
holds:

t∑
k=1

mp(yk) = m.

Proof. Let p = I(P ). The polynomial p is an admissible slice regular function,
since the condition 〈a0, . . . , am〉 ⊆ NA implies that P (z) ∈ 〈a0, . . . , am〉 ⊗ C ⊆
NA⊗C for any z ∈ D. As seen before, N(p) is a polynomial with real coe�cients
and degree 2m. Let J ∈ SA. Then the set V (N(p)J) = {z ∈ CJ | N(p)(z) =
0} = CJ ∩

⋃
y∈V (p) Sy is non�empty and contains at most 2m elements. Corol-

lary 19 tells that V (p) ∩ Sy 6= ∅ for every y such that V (N(p)J) ∩ Sy 6= ∅.
Therefore, V (p) is non�empty.

Let y ∈ V (p). If there exists g ∈ SR(QA) such that N(p) = ∆s
y g and

∆y - g, the slice function g must necessarily be real, since N(p) and ∆y are
real. Then N(N(p)) = N(p)2 = ∆2s

y g2. Therefore mN(p)(y) ≥ 2mp(y). We
claim that mN(p)(y) = 2mp(y). If g2 = ∆y h, with h ∈ SR(QA) real, then
G(z)2 = ∆y(z)H(z) on D, with I(G) = g and I(H) = h. Let y = α + βJ ,
ζ = α+iβ. Then G(ζ)2 = ∆y(ζ)H(ζ) = 0 and therefore G(ζ) = 0. This implies
that g vanishes on Sy. From the Remainder Theorem, we get that ∆y | g, a
contradiction. Then ∆y - g2 and mN(p)(y) = 2mp(y).

Every real zero of N(p)J corresponds to a real zero of N(p) with the same
multiplicity (cf. the remark made after De�nition 14). The other zeros of N(p)J
appears in conjugate pairs and correspond to spherical zeros of N(p). Let y =
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α + βJ , yc = α − βJ . If N(p)J(y) = N(p)J(yc) = 0, then N(p) ≡ 0 on
Sy. Moreover, since ∆y(x) = (x − y) · (x − yc), the multiplicity mN(p)(y) is
the sum of the (equal) multiplicities of y and yc as zeros of N(p)J . Therefore
2m =

∑t
k=1mN(p)(yk) = 2

∑t
k=1mp(yk).

Remark 16. Since the multiplicity of a spherical zero is at least 2, if r denotes
the number of real zeros of an admissible polynomial p, i the number of SA�
isolated non�real zeros of p and s the number of �spheres� Sy (y /∈ R) containing
spherical zeros of p, we have that r + i+ 2s ≤ deg(p).

Examples 9. (1) Every polynomial
∑m
j=0 x

jaj , with paravector coe�cients aj
in the Cli�ord algebra Rn, has m roots counted with their multiplicities in the
quadratic cone QA. If the coe�cients are real, then the polynomial has at least
one root in the paravector space Rn+1, since every �sphere� Sy intersect Rn+1

(cf. [40, Theorem 3.1]).
(2) In R3, the polynomial p(x) = xe23 + e1 vanishes only at y = e123 /∈ QA.

Note that p is not admissible: e1, e23 ∈ NA, but e1 + e23 /∈ NA.
(3) An admissible polynomial of degree m, even in the case of non spherical

zeros, can have more than m roots in the whole algebra. For example, p(x) =
x2−1 has four roots in R3, two in the quadratic cone (x = ±1) and two outside
it (x = ±e123).

(4) In R3, the admissible polynomial p(x) = x2 + xe3 + e2 has two isolated
zeros

y1 =
1

2
(1− e2 − e3 + e23), y2 =

1

2
(−1 + e2 − e3 + e23)

in QA \R4. They can be computed by solving the complex equation CN(P ) =
z4 + z2 + 1 = 0 (I(P ) = p) to �nd the two �spheres� Sy1 , Sy2 and then using the
Remainder Theorem (Theorem 22) with ∆y1 = x2−x+ 1 and ∆y2 = x2 +x+ 1
(cf. [40, Example 3]).

(5) The reality of N(p) is not su�cient to get the admissibility of p (cf.
Proposition 13). For example, in R3, the polynomial p(x) = x2e123 + x(e1 +
e23) + 1 has real normal function N(p) = (x2 + 1)2, but the spherical derivative
∂sp = t(x)e123 +e1 +e23 has N(∂sp) not real. In particular, ∂sp(J) = e1 +e23 /∈
NA for every J ∈ SA. The non�admissibility of p is re�ected by the existence of
two distinct zeros on SA, where p does not vanish identically: p(e1) = p(e23) = 0.

8 Cauchy integral formula for C1 slice functions

Let S1(ΩD) := {f = I(F ) ∈ S(ΩD) | F ∈ C1(D)}, where D denotes the
topological closure of D. For a �xed element y = α′ + β′J ∈ QA, let ζ =
α′ + iβ′ ∈ C. The characteristic polynomial ∆y is a real slice regular function
on QA, with zero set Sy. For every x = α+ βI ∈ QA \ Sy, z = α+ iβ, de�ne

CA(x, y) := I
(
−∆y(z)−1(z − yc)

)
.

CA(x, y) is slice regular on QA \ Sy and has the following property:

CA(x, y) · (y − x) = I
(
−∆y(z)−1(z − yc)(y − z)

)
= I(1) = 1.
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This means that CA(x, y) is a slice regular inverse of y − x w.r.t. the product
introduced in Section 5. Moreover, when x ∈ CJ the product coincides with the
pointwise one, and therefore

CA(x, y) = (y − x)−1 for x, y ∈ CJ , x 6= y, yc.

For this reason, we will call CA(x, y) the Cauchy kernel for slice regular functions
on A. This kernel was introduced in [3] for the quaternionic case and in [5] for
slice monogenic functions on a Cli�ord algebra. In [8], the kernel was applied
to get Cauchy formulas for C1 functions (also called Pompeiu formulas) on a
class of domains intersecting the real axis. Here we generalize these results to
A�valued slice functions of class S1(ΩD).

Theorem 27 (Cauchy integral formula). Let f ∈ S1(ΩD). Let J ∈ SA be
any square root of −1. Assume that DJ = ΩD ∩CJ is a relatively compact open
subset of CJ , with boundary ∂DJ piecewise of class C1. Then, for every x ∈ ΩD
(in the case where A is associative) or every x ∈ DJ (in the case where A is not
associative), the following formula holds:

f(x) =
1

2π

∫
∂DJ

CA(x, y)J−1dy f(y)− 1

2π

∫
DJ

CA(x, y)J−1dyc ∧ dy ∂f

∂yc
(y).

Proof. Let x = α + βJ belong to DJ . Let z = α + iβ and f = I(F ). Let

F = F1 + iF2 =
∑d
k=1 F

kuk, with F
k ∈ C1(D,C), be the representation of the

stem function F w.r.t. a basis B = {uk}k=1,...,d of A. Denote by φJ : C → CJ
the isomorphism sending i to J . De�ne F kJ := φJ ◦ F k ◦ φ−1

J ∈ C1(DJ ,CJ). If
F k1 , F

k
2 are the real components of F k, then F1 =

∑
k F

k
1 uk, F2 =

∑
k F

k
2 uk.

Moreover, F kJ (x) = (φJ ◦ F k)(z) = F k1 (z) + JF k2 (z), from which it follows that
f(x) = F1(z) + JF2(z) =

∑
k F

k
J (x)uk.

The (classical) Cauchy formula applied to the C1 functions F kJ (k = 1, . . . , d)
on the domain DJ in CJ , gives:

F kJ (x) =
1

2πJ

∫
∂DJ

(y − x)−1F kJ (y) dy − 1

2πJ

∫
DJ

(y − x)−1 ∂F
k
J (y)

∂ȳ
dȳ ∧ dy.

On CJ the conjugate ȳ = α−βJ coincides with yc and the slice regular Cauchy
kernel CA(x, y) is equal to the classical Cauchy kernel (y − x)−1. Then we can
rewrite the preceding formula as

F kJ (x) =
1

2π

∫
∂DJ

CA(x, y) J−1dy F kJ (y)− 1

2π

∫
DJ

CA(x, y) J−1dyc∧dy ∂F
k
J (y)

∂yc
.

We use Artin's Theorem for alternative algebras. For any k, the coe�cients
of the forms in the integrals above and the element uk belong to the subalgebra
generated by J and uk. Using this fact and the equality∑

k

∂F kJ
∂yc

uk =
∑
k

∂F kJ
∂ȳ

uk = I
(
∂F

∂ζ̄

)
=

∂f

∂yc
,
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after summation over k we can write

f(x) =
∑
k

F kJ (x)uk = (3)

=
1

2π

∫
∂DJ

CA(x, y)J−1dy f(y)− 1

2π

∫
DJ

CA(x, y)J−1dyc ∧ dy ∂f

∂yc
(y).

Now assume that A is associative and that x = α + βI ∈ ΩD \ CJ . Let
x′ = α + βJ , x′′ = α − βJ ∈ DJ . Since f and CA( · , y) are slice functions on
ΩD, their values at x can be expressed by means of the values at x′ and x′′ (cf.
the representation formula (2)):

f(x) =
1

2
(f(x′) + f(x′′))− I

2
(J (f(x′)− f(x′′)))

and similarly for CA(x, y). By applying the Cauchy formula (3) for f(x′) and
f(x′′) and the representation formulas, we get that formula (3) is valid also at
x. The associativity of A allows to pass from the representation formula for
f(x) to the same formula for CA(x, y) inside the integrals.

Corollary 28 (Cauchy representation formula). If f ∈ S1(ΩD) is slice regular
on ΩD, then, for every x ∈ ΩD (in the case where A is associative) or every
x ∈ DJ (in the case where A is not associative),

f(x) =
1

2π

∫
∂DJ

CA(x, y)J−1dy f(y).

If f is real, the formula is valid for every x ∈ ΩD also when A is not associative.

Proof. The �rst statement is immediate from the Cauchy integral formula. If f
is real and A is not associative, for every x ∈ CI ∩ΩD we have, using the same
notation of the proof of the theorem,

f(x) =
1

2
(f(x′) + f(x′′))− I

2
(J (f(x′)− f(x′′))) =

=
1

2π

∫
∂DJ

CA(x′, y) + CA(x′′, y)

2
J−1dy f(y)−

− I
(
J

2π

∫
∂DJ

CA(x′, y)− CA(x′′, y)

2
J−1dy f(y)

)
=

=
1

2π

∫
∂DJ

(
CA(x′, y) + CA(x′′, y)

2
− I

(
J
CA(x′, y)− CA(x′′, y)

2

))
J−1dy f(y).

The last equality is a consequence of the reality of f . If y ∈ CJ , then f(y) ∈ CJ
and I(Jf(y)) = (IJ)f(y) from Artin's Theorem. The representation formula
applied to CA(x, y) gives the result.

A version of the Cauchy representation formula for quaternionic power series
was proved in [20] and extended in [3]. For slice monogenic functions on a
Cli�ord algebra, it was given in [5].
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