Tangential form of the trace condition for
pluriharmonic functions in \(\mathbb{C}^n \)

Alessandro Perotti*
Dipartimento di Matematica, Università degli Studi di Trento,
Via Sommarive 14, 38050 Povo-Trento, Italy
perotti@science.unitn.it

May 13, 2003

Keywords: Pluriharmonic functions, quaternionic regular functions.
2000 Mathematics Subject Classification: Primary 32U05; Secondary 31C10,
32D15, 30G35.

Abstract

In this paper we introduce a tangential form of the trace condition
for pluriharmonic functions on a smooth bounded domain in \(\mathbb{C}^n \) that has
some convexity. The condition obtained, in the bidimensional case, is
related to the complex components of quaternionic regular functions. In
the case of the unit ball of \(\mathbb{C}^n \), we rewrite the trace condition in terms of
spherical harmonics.

1 Introduction

Let \(D \) be a smooth bounded domain in \(\mathbb{C}^n \). Pluriharmonic functions
on \(D \) with some regularity on \(\partial D \) are characterized by a trace condition
introduced by Fichera in the papers [4],[5],[6] and investigated in [11], [12]
and [1]. This condition has a global character: a real function on \(\partial D \) is the
trace of a pluriharmonic function on \(D \) if it is orthogonal, in the \(L^2(\partial D) \)-
norm, with respect to a suitably chosen space of functions. This approach
is alternative to the local study of tangential differential conditions (see
for example [13]§18.3, [2] and [6] and the references given there). This
second approach requires some geometrical conditions on the boundary
\(\partial D \), essentially the non-vanishing of the Levi-form at every point of \(\partial D \).

In this paper we search for a characterization in tangential terms of
the space of functions orthogonal to pluriharmonic functions. We show
that this interpretation is possible on domains having some global convex-
ity. In the bidimensional case, the convexity conditions can be weakened.

*Partially supported by MIUR (Project “Proprietà geometriche delle varietà reali e com-
plesse”) and GNSAGA of INdAM.
Moreover, in \mathbb{C}^2 we obtain an interesting relation between the two characterizations of the orthogonal space and the complex components of a quaternionic regular function on D.

The main results of this paper are the following: there exist tangential Cauchy-Riemann operators L_{jk} and a real, tangential, first-order differential operator T on ∂D, which allow to rewrite the trace condition in the form described by Theorem 1 and Theorem 2.

Theorem 1. (a) Let $H^1(D, \mathbb{R}) = 0$ and ∂D of class C^1. If $u \in Ph^\alpha_{\partial D}(D)$, $\alpha > 0$, then u satisfies the condition
\[
\int_{\partial D} u \left(\mathbf{T} \cdot \omega \right) d\sigma = 0
\]
for every form $\omega \in C^1_{n-2,n}(\overline{D})$ such that $T(\omega) = 0$ on ∂D.

Here $\mathbf{T} \cdot \omega$ denotes the function $\sum_{j<k} (-1)^{j+k-1} T_{jk}(K_{jk})$, where K_{jk} are the coefficients of the form ω.

(b) Let $H^1(D, \mathbb{R}) = 0$ and ∂D of class C^2. If $u \in Ph^0_{\partial D}(D)$, then u satisfies $\mathbf{T} \cdot \omega$.

The same result holds if $\omega \in C^1_{n-2,n}(D)$ and $\partial \omega \in C^0_{n-1,n}(\overline{D})$.

Theorem 2. Let D be a smooth bounded pseudoconvex domain or a domain that satisfies the Hörmander condition $Z(n-1)$, i.e., at every point $\zeta \in \partial D$ the Levi form of ∂D has at least 1 positive eigenvalue.

If $u \in C^0(\partial D)$ is a real function that satisfies condition $\mathbf{T} \cdot \omega$, then $u \in Ph^0_{\partial D}(D)$.

We refer to §§2 and 3 for notations and for the exact formulation of the results. In §4 we consider in more detail the situation in C^n, where the assumption on the domain can be relaxed. In §5 we write the trace condition for the unit sphere of \mathbb{C}^n in terms of spherical harmonics.

2 Notations and preliminaries

2.1

Let $D = \{ z \in \mathbb{C}^n : \rho(z) < 0 \}$ be a bounded domain in \mathbb{C}^n with boundary of class C^m, $m \geq 1$. We assume $\rho \in C^m$ on \mathbb{C}^n and $d\rho \neq 0$ on ∂D.

For every $\alpha, 0 \leq \alpha \leq m$, we denote by $Ph^\alpha(D)$ the space of real pluriharmonic functions of class $C^\alpha(D)$ and similarly for holomorphic functions $A^\alpha(D)$ and complex harmonic functions $Harm^\alpha(D)$. We denote by $Ph^0_{\partial D}(D)$ the space of restrictions to ∂D of pluriharmonic functions in $Ph^0(D)$ and by $Re A^\alpha(D)$ the space of real parts of element of $A^\alpha(D)$.

2.2

Let ν denotes the outer unit normal to ∂D and $\tau = i \nu$. For every $F \in C^1(\overline{D})$, we set $\overline{\partial}_\nu F = \frac{1}{2} \left(\frac{\partial F}{\partial \nu} + i \frac{\partial F}{\partial \tau} \right)$ (see [7]§§3.3 and 14.2).

Then in a neighbourhood of ∂D we have the decomposition of $\overline{\partial} F$ in the tangential and the normal parts
\[
\overline{\partial} F = \overline{\partial}_t F + \overline{\partial}_n F \frac{\overline{\partial} \rho}{|\overline{\partial} \rho|}.
\]
The normal part of $\overline{\partial} F$ on ∂D can also be expressed in the form $\overline{\partial}_n F = \sum_k \frac{\partial F}{\partial \overline{\zeta}_k} \frac{1}{|\partial \rho|} \partial \rho / \partial \zeta_k$ or by means of the Hodge $*$-operator and the Lebesgue surface measure $d\sigma$: $\overline{\partial}_n F d\sigma = * \overline{\partial} F_{\partial D}$.

2.3

We shall denote by $\text{Harm}_1^0(D)$ the real subspace of $\text{Harm}^1(D)$

$$\text{Harm}_1^0(D) = \{ H \in \text{Harm}^1(D) : \overline{\partial}_n H \text{ is real on } \partial D \}.$$

The space of $C^1(D)$-holomorphic functions on D is the maximal complex subspace in $\text{Harm}_1^0(D)$ contained in $\text{Harm}_1^0(D)$. This follows from a theorem of Kytmanov and Aizenberg [8] (cf. also [7] §§14 and 15): a $C^1(D)$-harmonic function F is holomorphic on D if and only if $\overline{\partial}_n F = 0$ on ∂D.

We recall the integral orthogonality condition that characterizes the traces on ∂D of pluriharmonic functions on D. It was introduced by Fichera in [4] (see also [5],[6]) in a form not involving explicitly the normal component of $\overline{\partial}$. It was investigated in [11] and in [1]:

$$\int_{\partial D} U \overline{\partial}_n H d\sigma = 0 \quad (*)$$

for every $H \in \text{Harm}_1^0(D)$.

It was shown in [11] that this condition is necessary for pluriharmonicity when ∂D is of class C^1 and $U \in C^\alpha(D)$, $\alpha > 0$, or when ∂D is of class C^2 and $U \in C^0(D)$. The trace condition is sufficient in the case when $U \in C^{1+\lambda} \cap C^\infty(D)$. If the boundary value $u = U_{\partial D}$ is only continuous, the same result holds on bounded strongly pseudoconvex domains and on bounded weakly pseudoconvex domains with real analytic boundaries.

Recently, A. Cialdea improved these results in [1], using some facts from potential theory. He gave a more general theorem allowing data to be in $L^p(\partial D)$. Note that the proof of this result given in [1] (cf. §23) shows that in condition $(*)$ it is sufficient to consider functions $H \in \text{Harm}_1^0(D) \cap C^\infty(D)$ to obtain the pluriharmonicity of the harmonic extension U of $u \in L^p(\partial D)$.

We shall denote by $\text{Harm}_1^\infty(D)$ the space $\text{Harm}_1^0(D) \cap C^\infty(D)$.

Remark 1. When $n = 1$ and $H^1(D, \mathbb{R}) = 0$ condition $(*)$ is void, since H belongs to $\text{Harm}_1^0(D)$ if and only if H is holomorphic on D (cf. [11]).

2.4

The space $\text{Harm}_1^0(D)$ can be characterized in terms of Bochner-Martinelli operator M. In [11]§4 it was shown that $F \in \text{Harm}_1^0(D)$ if and only if $\text{Im } M(F) = \text{Im } F$ in D.

Let B be the unit ball of \mathbb{C}^n and let $S = \partial B$. The space $L^2(S)$ is the direct sum of pairwise orthogonal spaces $H(s,t), s \geq 0, t \geq 0$, where $H(s,t)$ is the space of harmonic homogeneous polynomials of total degree s in z and total degree t in \overline{z} (see [13] §12). These spaces are the eigenspaces of the Bochner-Martinelli operator.
As it was shown in [11]§5, in this case the trace condition for pluriharmonic functions reduces to the orthogonality to the spaces \(H(s, t) \), \(s, t > 0 \), a theorem proved by Nagel and Rudin in [10]. Other results on this line have been given by Dzhuraev [3].

2.5

We recall the definition of tangential Cauchy-Riemann operators (see for example [13] §18). A linear first-order differential operator \(L \) is tangential to \(\partial D \) if \((L\rho)(\zeta) = 0 \) for each point \(\zeta \in \partial D \). A tangential operator of the form

\[
L = \sum_{j=1}^{n} a_j \frac{\partial}{\partial \bar{z}_j}
\]

is called a tangential Cauchy-Riemann operator. The operators

\[
L_{jk} = \frac{1}{|\partial \rho|} \left(\frac{\partial \rho}{\partial \bar{z}_k} \frac{\partial}{\partial \bar{z}_j} - \frac{\partial \rho}{\partial \bar{z}_j} \frac{\partial}{\partial \bar{z}_k} \right), \quad 1 \leq j < k \leq n,
\]

are tangential and the corresponding vectors at \(\zeta \in \partial D \) span (not independently when \(n > 2 \)) the (conjugate) complex tangent space to \(\partial D \) at \(\zeta \). Then a function \(f \in C^1(\partial D) \) is a CR function if and only if \(L_{jk}(f) = 0 \) on \(\partial D \) for every \(j, k \), or, equivalently, if \(L(f) = 0 \) for each tangential Cauchy-Riemann operator \(L \).

3 The trace condition in tangential form

3.1

Let \(n > 1 \) and let \(H \) be a harmonic function on \(D \). The form \(\overline{\partial} H \) is a \(\partial \)-closed \((n-1, n)\)-form on \(D \), since \(\overline{\partial}(\overline{\partial} H) = -\overline{\partial} H = -\Box H = 2\Delta H = 0 \), where \(\overline{\partial} \) is the formal \(L^2(D) \)-adjoint operator to \(\partial \).

Let \(c_n \) be the constant such that \(\overline{\partial} H = c_n \sum_{k=1}^{n-1} (-1)^{k-1} \frac{\partial H}{\partial \bar{z}_k} dz[k] \wedge d\bar{z} \). Let \(\omega \) be a \((n-2, n)\)-form with \(C^1(\overline{\partial}D) \)-coefficients. We set \(\omega = c_n \sum_{j<k} K_{jk} dz[j][k] \wedge d\bar{z} \), where \(dz[j][k] \) denotes the product of the forms \(dz_1, \ldots, dz_n \) with \(dz[j] \) and \(dz[k] \) deleted, and \(d\bar{z} = d\bar{z}_1 \wedge \cdots \wedge d\bar{z}_n \).

An easy computation shows that

\[
\partial \omega = c_n \sum_{k=1}^{n} \sum_{i=1}^{n} (-1)^{i-1} \frac{\partial K_{ih}}{\partial \bar{z}_i} dz[h] \wedge d\bar{z}.
\]

Here we extend by antisymmetry: \(K_{ih} = -K_{hi} \) when \(i > h \), \(K_{ii} = 0 \).

Proposition 1. Let \(H \in \text{Harm}^1(D) \) and the form \(\omega \in C^{1}_{n-2, n}(\overline{\partial}D) \) be as above. Let \(L \) be the tangential Cauchy-Riemann operator defined by \(L = \sum_{j<k} (-1)^{j+k} L_{jk} \). We shall denote by \(\overline{\partial} \circ \omega \) the operation of contraction

\[
\overline{\partial} \circ \omega = \sum_{j<k} (-1)^{j+k} \overline{\partial} L_{jk}(K_{jk}).
\]
Then \(\partial \omega|_{\partial D} = (\bar{T} \ast \omega) d\sigma \) on \(\partial D \). Moreover, if \(\partial \omega = \ast \bar{\partial} H \) on \(D \), then, for every \(\epsilon < 0 \) sufficiently small, the equality

\[
\bar{\partial}_\epsilon H = \bar{T} \ast \omega
\]

holds on \(\partial D_\epsilon = \{ z \in D : \rho(z) = \epsilon \} \).

Proof. On \(\partial D \) we have

\[
(\bar{T} \ast \omega) d\sigma = \sum_{j<k} (-1)^{j+k} \frac{1}{|\partial \rho|} \left(\frac{\partial \rho}{\partial z_k} \frac{\partial K_{jk}}{\partial z_j} - \frac{\partial \rho}{\partial z_j} \frac{\partial K_{jk}}{\partial z_k} \right) d\sigma
\]

\[
= \sum_{k=1}^n \frac{\partial \rho}{\partial z_k} \frac{1}{|\partial \rho|} (-1)^k \sum_{j=1}^n (-1)^j \frac{\partial K_{jk}}{\partial z_j} d\sigma
\]

\[
= c_n \sum_{k=1}^n \sum_{j=1}^n (-1)^{j-1} \frac{\partial K_{jk}}{\partial z_j} d\bar{z} \wedge dz_k,
\]

since \(\frac{\partial \rho}{\partial z_k} (-1)^k d\sigma \) equals the restriction of the form \(-c_n d\bar{z} \wedge dz_k\) on \(\partial D \) (see for example Lemma 3.5 in [7]). Then \((\bar{T} \ast \omega) d\sigma = \partial \omega|_{\partial D} \).

If \(\partial \omega = \ast \bar{\partial} H \) on \(D \), the last assertion of the lemma follows from the first part applied on \(\partial D_\epsilon \), since \(\bar{\partial}_\epsilon H d\sigma = \ast \bar{\partial} H|_{\partial D_\epsilon} \).

Remark 2. (i) In the formula defining \(\bar{T} \ast \omega \) we used the generators \(L_{jk} \), even if they are not independent for \(n > 2 \) (since \(\frac{\partial \rho}{\partial z_k} L_{kj} + \frac{\partial \rho}{\partial z_j} L_{kj} + \frac{\partial \rho}{\partial z_i} L_{ij} = 0 \) on \(\partial D \)). This choice allows to obtain expressions that are more symmetric with respect to the coordinates.

(ii) If \(\ast \bar{\partial} H = \partial \omega \) on \(D \), the \((n-2,n)\)-form \(\omega \) satisfies the condition \(\partial^* \partial \omega = 0 \) on \(D \), since \(\bar{\partial} (\ast \partial \omega) = -\bar{\partial} \partial H = 0 \). When \(n = 2 \), the preceding condition is equivalent to \(\Delta \omega = 0 \). If \(n > 2 \), \(\omega \) is harmonic exactly when also the form \(\partial \partial^* \omega \) vanishes.

(iii) The equality \(\ast \bar{\partial} H = \partial \omega \) is equivalent to the following system of differential equations on \(D \):

\[
\frac{\partial H}{\partial z_k} = (-1)^k \sum_{j=1}^n (-1)^j \frac{\partial K_{jk}}{\partial z_j} \quad \text{for every } k = 1, \ldots, n.
\]

3.2

Let \(T \) be the real, tangential, first-order differential operator defined on forms \(\omega \in C^1_{n-2,n}(D) \) by

\[
T(\omega) = \text{Im}(\bar{T} \ast \omega) = (2i)^{-1} \sum_{j<k} (-1)^{j+k} (\bar{T}_{jk}(K_{jk}) - L_{jk}(K_{jk})) \quad \text{on } \partial D.
\]

Note that \(T(\omega) \) depends only on the restriction of the coefficients of \(\omega \) on \(\partial D \). We can now show that the trace condition for pluriharmonic functions can be reformulated in tangential terms.
Theorem 1. (a) Let $H^1(D, \mathbb{R}) = 0$ and ∂D of class C^1. If $u \in Ph^\alpha_{\partial D}(D)$, $\alpha > 0$, then u satisfies the condition

$$\int_{\partial D} u \left(\mathcal{T} \ast \omega \right) d\sigma = 0 \quad (\sharp)$$

for every form $\omega \in C^1_{n-2,n}(\overline{D})$ such that $T(\omega) = 0$ on ∂D.

(b) Let $H^1(D, \mathbb{R}) = 0$ and ∂D of class C^2. If $u \in Ph^0_{\partial D}(D)$, then u satisfies (\sharp).

The same result holds if $\omega \in C^1_{n-2,n}(D)$ and $\partial \omega \in C^0_{n-1,n}(\overline{D})$.

Proof. (a) Let $U \in Ph^\alpha(D)$ be the extension of u and $F = U + iV \in A^n(D)$. Then from Proposition 1 we get

$$\int_{\partial D} F \left(\mathcal{T} \ast \omega \right) d\sigma = \int_{\partial D} F \partial \omega,$$

which vanishes since F is a CR function on ∂D. The real part of the first integral is the left hand side of (\sharp).

(b) Let $F = U + iV$ be as above. We can proceed exactly as in the proof of the second part of Theorem 1 in [11], using Stout’s estimate (see [14]) to get that F belongs to the Hardy space $H^2(D)$.

Remark 3. The hypothesis of regularity of the domain D can be weakened using the techniques introduced in [1].

3.3 Here we show that condition (\sharp) characterizes the traces of pluriharmonic functions if the domain D satisfies a global convexity condition.

Let the boundary ∂D be at least of class $C^{1+\lambda}$, $\lambda > 0$. Assume that for every function $H \in Harm^\infty_0(D)$, the ∂-closed $(n-1,n)$-form $\ast \partial H$ is ∂-exact with regularity at the boundary: there exists a $(n-2,n)$-form ω, with at least C^1 coefficients on \overline{D}, such that $\ast \partial H = \partial \omega$. This condition is satisfied for example in the following cases:

(i) D is a smooth bounded pseudoconvex domain.

(ii) D is a smooth bounded domain that satisfies the Hörmander condition $Z(n-1)$, i.e., at every point $\zeta \in \partial D$ the Levi form of ∂D has at least 1 positive eigenvalue (see [9]).

Theorem 2. Let D be a domain that satisfies the condition above. If $u \in C^0(\partial D)$ is a real function that satisfies condition (\sharp), then $u \in Ph^0_{\partial D}(D)$.

Proof. Let $H \in Harm^\infty_0(D)$ and let ω be a $C^1(\overline{D})$-form such that $\partial \omega = \ast \partial H$. From Proposition 1, we get that the equality $\square_n H = \mathcal{T} \ast \omega$ is valid on ∂D, for any small $\epsilon < 0$ and then, by continuity, also on ∂D. Moreover, H belongs to the space $Harm^\infty_0(D)$ exactly when $T(\omega) = 0$. Then condition (\sharp) is equivalent to

$$\int_{\partial D} u \square_n H d\sigma = 0$$

for every $H \in Harm^\infty_0(D)$.

If $u \in C^{1+\lambda}(\partial D)$, then the assertion of the theorem follows from Theorem 2 in [11]. If u is only continuous on ∂D, then it follows from the results obtained in [1].

Remark 4. In view of what has been said in §3.1, the condition (♯) needs to be satisfied only for every $(n-2,n)$-form ω such that $\partial^* \partial \omega = 0$ on D, $T(\omega) = 0$ on ∂D.

4 The bidimensional case

When $n = 2$, the system (1) of differential equations of §3.1 arising from the equality $\partial \omega = \ast \partial H$ reduces to the equations

\[
\begin{cases}
\frac{\partial H}{\partial z_1} = \frac{\partial K}{\partial z_2} \\
\frac{\partial H}{\partial z_2} = -\frac{\partial K}{\partial z_1}
\end{cases}
\]

where $K = K_{12}$ is the unique coefficient of the $(0,2)$-form $\omega = c_2 K d\bar{z}$.

The preceding equations imply that when $H \in\text{Harm}^1(D)$, also K is harmonic on D and the derivatives $\frac{\partial K}{\partial z_j}$ are continuous on \overline{D} for $j = 1, 2$.

From this property it follows that the function

\[
L \ast \omega = -L_{12}(K) = 1 \left| \frac{\partial \rho}{\partial \rho} \right| \left(\frac{\partial \rho}{\partial z_1} \frac{\partial K}{\partial z_2} - \frac{\partial \rho}{\partial z_2} \frac{\partial K}{\partial z_1} \right)
\]

is continuous on the intersection of \overline{D} with a neighborhood of ∂D. The tangent vector obtained from L_{12} at $\zeta \in \partial D$ is a basis of the complex tangent space to ∂D at ζ.

We now show that, in the bidimensional case, we can obtain the result stated in Theorem 2 under a weaker convexity assumption on D.

Theorem 3. Let $n = 2$. Let ∂D be of class $C^{1+\lambda}$. Assume that the Dolbeault cohomology group $H^1_{\lambda,0}(D)$ vanishes. If $u \in C^0(\partial D)$ is a real function that satisfies the condition

\[
\int_{\partial D} u \, L_{12}(K) d\sigma = 0
\]

for every complex harmonic function K on D, such that $\frac{\partial K}{\partial z_j} \in C^0(\overline{D})$ ($j = 1, 2$) and with $L_{12}(K)$ real on ∂D, then $u \in Ph^0_{\partial D}(D)$. If $H^1(D, \mathbb{R}) = 0$ and ∂D is of class C^2, the condition stated above is also necessary in order to have $u \in Ph^0_{\partial D}(D)$.

Proof. Let $H \in\text{Harm}^0(D)$. Since $H^1_{\lambda,0}(D) = 0$, we can find $\omega = c_2 K d\bar{z} \in C^\infty_{0,2}(D)$ such that $\partial^* \partial \omega = \ast \partial H$ (the form $d\bar{z}$ can always be factored out). The discussion above says that $L_{12}(K)$ is continuous on a domain $\{z \in D : \epsilon_0 < \rho(z)\}$, and then the equality $\overline{\partial}_u H = -L_{12}(K)$ is valid on ∂D, also for $\epsilon = 0$. Then

\[
\int_{\partial D} u \, \overline{\partial}_u H d\sigma = -\int_{\partial D} u \, L_{12}(K) d\sigma = 0
\]
since \(T_{12}(K) \) is real on \(\partial D \). Then condition (*) is satisfied by \(u \), and \(u \in \text{Ph}^0_0(D) \).

Conversely, let \(U \in \text{Ph}^0(D) \) be the extension of \(u \). Then \(U = \text{Re} F \), with \(F = U + iV \in \mathcal{H}^2(D) \). The integral \(\int_{\partial D_\epsilon} \overline{T_{12}(K)} d\sigma = - \int_{\partial D_\epsilon} T \partial \omega \) vanishes for every \(\epsilon < 0 \) sufficiently small. Then \(\int_{\partial D_\epsilon} \text{Re}(T_{12}(K)) d\sigma + \int_{\partial D_\epsilon} \text{Im}(T_{12}(K)) d\sigma = 0 \). The first integral tends to \(\int_{\partial D} u \overline{T_{12}(K)} d\sigma \) as \(\epsilon \) tends to 0, while the second has limit \(\int_{\partial D} \text{Im}(T_{12}(K)) d\sigma = 0 \).

\[\text{Remark 5.} \] The functions \(H \) and \(K \) related by the system (2), can be considered as the two complex components of a (left-)regular function of one quaternionic variable. We refer to [15] for the basic facts of quaternionic analysis. We identify the algebra \(\mathbb{H} \) of quaternions with the space \(\mathbb{C}^2 \) by means of the map that associates to the pair \((z_1, z_2) = (x_1 + iy_1, x_2 + iy_2)\) the quaternion \(q = z_1 + jz_2 = x_1 + iy_1 + jx_2 - ky_2 \), where \(i, j, k \) denote the basic quaternions. The equations (2) then become the Cauchy-Riemann-Fueter system for the quaternionic-valued function \(H + jK \) of one quaternionic variable \(q \).

\section{5 The case of the unit ball of \(\mathbb{C}^n \)}

\subsection{5.1}

If the domain is the unit ball \(B \) of \(\mathbb{C}^n \), the trace condition (2) has a more explicit form in terms of spherical harmonics. Let \(N_0 \) be the real linear projection in \(L^2(S) \) introduced in [11]. It is defined for \(P_{s,t} \in H(s, t) \) by

\[
N_0(P_{s,t}) = \begin{cases} \frac{s}{s+t} P_{s,t} + \frac{t}{s+t} \overline{P_{s,t}}, & \text{for } t > 0 \\ P_{s,t}, & \text{for } t = 0. \end{cases}
\]

The space \(\text{Harm}^0_0(B) \) coincides with \(\text{Fix}(N_0) = \{ H \in \text{Harm}^1(B) : N_0(H) = H \} \).

\subsection{5.2}

We first consider the bidimensional case. Let \(H, K \in \text{Harm}^1(B) \) be a pair of functions that solve the system (2). Then the equality \(\partial_n H = -T_{12}(K) \) holds on the unit sphere \(S \). The system is satisfied also by the pair \(-R, \overline{R} \). Then also the equality \(\partial_n K = L_{12}(H) \) is valid on \(S \). This fact allows to obtain the projection \(N_1 \) on the space of the functions \(K \in \text{Harm}^1(B) \) such that \(T_{12}(K) \) is real on \(S \). From the equation \(\partial_n K = L_{12}(N_0(P_{s,t})) \) for \(P_{s,t} \in H(s, t) \), we get that \(N_1 \) can be defined as follows:

\[
N_1(P_{s,t}) = \frac{s}{(s+1)(s+t)} L_{12}(P_{s,t}) + \frac{t}{(t+1)(s+t)} L_{12}(\overline{P_{s,t}}),
\]

where \(L_{12}(F) = z_1^2 \frac{\partial F}{\partial z_1} - z_1 \frac{\partial F}{\partial z_2} \) on \(S \). Note that \(N_1(P_{s,t}) = 0 \) when \(s = 0 \) or \(t = 0 \).
Remark 6. Let U_{s+t} be the space of polynomials in the quaternionic variable q that are regular and homogeneous of order $s + t$ over \mathbb{R}. In view of what has been said in §4, for every $P_{s,t} \in H(s, t)$, the function $R(P_{s,t}) = N_0(P_{s,t}) + jN_1(P_{s,t})$ belongs to U_{s+t}.

As a consequence of Theorems 1,2 and 3, we get the following result.

Corollary 1. Let B be the unit ball of \mathbb{C}^2 and let S be the unit sphere. A function $u \in C^0(S)$ has a pluriharmonic extension to B if and only if

$$
\int_S u \, T_{12}(N_1(P_{s,t})) \, d\sigma = 0
$$

for every $s,t > 0$ and for every $P_{s,t} \in H(s,t)$.

5.3

Now we come to the general case $n \geq 2$, using the bidimensional case as a guide. An easy computation shows that the $(n-2, n)$-form

$$
\omega = -c_n \frac{1}{n+s-1} \sum_{j<k} (-1)^{j+k} L_{jk}(P_{s,t}) \, dz[j,k] \wedge d\bar{z}
$$

satisfies the equation $\partial \omega = \ast \partial P_{s,t}$. Then we can define, for any $s,t \geq 0$,

$$
\omega_{s,t} = -c_n \sum_{j<k} (-1)^{j+k} \left(\frac{sL_{jk}(P_{s,t})}{(n+s-1)(s+t)} + \frac{tL_{jk}(P_{s,t})}{(n+t-1)(s+t)} \right) \, dz[j,k] \wedge d\bar{z}.
$$

The form $\omega_{s,t}$ vanishes when $s = 0$ or $t = 0$, and the equality $\partial \omega_{s,t} = \ast \partial N_0(P_{s,t})$ holds on \mathbb{C}^n. From Proposition 1, we get that $\nabla^{\sharp} \omega_{s,t} = \nabla N_0(P_{s,t})$ and $T(\omega_{s,t}) = 0$ on S.

As a consequence of Theorems 1 and 2, we get the following result, that reduces to Corollary 1 in the case $n = 2$.

Corollary 2. Let B be the unit ball of \mathbb{C}^n and let S be the unit sphere. A function $u \in C^0(S)$ has a pluriharmonic extension to B if and only if

$$
\int_S u \, (\nabla^{\sharp} \omega_{s,t}) \, d\sigma = 0
$$

for every $\omega_{s,t}$ ($s,t > 0$).
References

