DIRICHLET PROBLEM FOR PLURIHARMONIC
FUNCTIONS OF SEVERAL COMPLEX VARIABLES

Alessandro Perotti

Abstract. In this paper we consider the Dirichlet problem for real pluriharmonic functions on a smooth, bounded domain in \mathbb{C}^n. We start from a result announced by Fichera some years ago, and relate it to the properties of the normal component on ∂D of the $\overline{\partial}$-operator. We prove, for some classes of domains, that an orthogonality condition, in the $L^2(\partial D)$-norm, with respect to a suitably chosen space of functions is necessary and sufficient for pluriharmonicity of the harmonic extension of the boundary value.

1. Introduction

Let D be a smoothly bounded domain in \mathbb{C}^n. In this paper we investigate the Dirichlet problem for real valued pluriharmonic functions on D. Given a real, continuous function u on ∂D, we examine necessary and sufficient conditions for the pluriharmonicity of the harmonic extension U in D of the boundary value u. There are two different approaches to this problem. The local approach, in which tangential differential conditions on u are searched, has been pursued by many authors on domains whose Levi form has at least one positive eigenvalue at every boundary point (see for example [R]§18.3 and [F3] and the references given there). The global approach consists in giving integral conditions, which impose orthogonality of u, in the $L^2(\partial D)$-norm, with respect to a suitably chosen space of functions. When D is the unit ball of \mathbb{C}^n, a solution to the Dirichlet problem for pluriharmonic functions is contained in the results of Nagel and Rudin [NR] (see also §13 in the book by Rudin [R]). Other results on this line have been given by Dzhuraev [D].

Our starting point is the following result announced by Fichera in the papers [F1],[F2],[F3]. Let D be a simply connected domain, with boundary of class $C^{1+\lambda}$, $\lambda > 0$. Let ν be the outer unit normal to ∂D and $\tau = i\nu$.

Let A, B be a pair of real $C^1(\overline{D})$ functions, harmonic on D, such that

$$\frac{\partial A}{\partial \tau} + \frac{\partial B}{\partial \nu} = 0$$

1991 Mathematics Subject Classification. Primary 32F05; Secondary 35N15, 31C10, 32D15.

Key words and phrases. Pluriharmonic functions, Dirichlet problem.

The author is a member of the G.N.S.A.G.A. of C.N.R.

Typeset by AMSTeX
on ∂D. Given $u \in C^0(\partial D)$, there exists one (and only one) pluriharmonic function $U \in C^0(D)$ such that $U|_{\partial D} = u$ if and only if

$$\int_{\partial D} u \left(\frac{\partial A}{\partial \nu} - \frac{\partial B}{\partial \tau} \right) \, d\sigma = 0$$

for any pair A, B.

In this paper, after rewriting the above integral condition in terms of the complex normal component of the $\bar{\partial}$-operator, we show (Theorem 1) that this condition is necessary for pluriharmonicity when ∂D is of class C^1 and $u \in C^\alpha(\partial D)$, $\alpha > 0$, or when ∂D is of class C^2 and $u \in C^0(\partial D)$. We then prove (Theorem 2) sufficiency of the condition in the case when $u \in C^{1+\lambda}, \lambda > 0$. If the boundary value u is only continuous, we are able to get the result on strongly pseudoconvex domains and on weakly pseudoconvex domains with real analytic boundary (Theorem 3). We give then in §4 a characterization of the pairs A, B appearing in the orthogonality condition in terms of the Bochner-Martinelli integral operator. In the case of the ball, this result can be further precised and allows to obtain another proof of Nagel-Rudin theorem.

2. Notations and preliminaries

2.1. Let $D = \{ z \in \mathbb{C}^n : \rho(z) < 0 \}$ be a bounded domain in \mathbb{C}^n with boundary of class $C^m, m \geq 1$. We assume $\rho \in C^m$ on \mathbb{C}^n and $d\rho \neq 0$ on ∂D.

We denote by $Ph(D), A(D)$ and $Harm(D)$ respectively the spaces of real pluriharmonic, holomorphic and complex harmonic functions on D. For every $\alpha, 0 \leq \alpha \leq m$, $Ph^\alpha(D)$ is the space $Ph(D) \cap C^\alpha(\overline{D})$ and similarly for $A^\alpha(D)$ and $Harm^\alpha(D)$. We denote by $Ph^\alpha_{\partial D}(D)$ the space of restrictions to ∂D of pluriharmonic functions in $Ph^\alpha(D)$ and by $ReA^\alpha_{\partial D}(D)$ the restrictions of real parts of functions in $A^\alpha(D)$. Finally, $ReA^\alpha(D)$ is the space of real parts of element of $A^\alpha(D)$.

Remark. If D is a simply connected domain or, more precisely, $H^1(D, \mathbb{R}) = 0$, then $Ph^\alpha(D) = ReA^\alpha(D)$ for every $\alpha \geq 1$, since Cauchy-Riemann equations imply that the harmonic conjugate of a function $U \in Ph^\alpha(D)$ belongs to $C^\alpha(\overline{D})$. In general, this fact is no longer true when $\alpha = 0$, but it remains valid for $0 < \alpha < 1$. In fact, the first derivatives of $U \in Ph^\alpha(D)$ satisfy a Hardy-Littlewood estimate (see [L] §2 for example) and then the same holds for the harmonic conjugate.

2.2. For every $F \in C^1(\overline{D})$, in a neighbourhood of ∂D we have the decomposition of ∂F in the tangential and the normal parts

$$\partial F = \partial_b F + \partial_n F \frac{\partial \rho}{|\partial \rho|}$$

where $|\partial \rho| = \left(\sum_k \left| \frac{\partial \rho}{\partial \zeta_k} \right| \right)^{1/2}$ and $\partial_n F = \sum_k \frac{\partial F}{\partial \zeta_k} \frac{\partial \rho}{\partial \zeta_k} \frac{1}{|\partial \rho|}$.

If \(\nu \) denotes the outer unit normal to \(\partial D \) and \(\tau = i\nu \), then we can also write \(\overline{\partial}_n F = \frac{1}{2} \left(\frac{\partial F}{\partial \nu} + i \frac{\partial F}{\partial \tau} \right) \). The normal part of \(\overline{\partial} F \) on \(\partial D \) can also be expressed by means of the Hodge *-operator and the Lebesgue surface measure \(d\sigma \): \(\overline{\partial}_n F d\sigma = \star \overline{\partial} F|_{\partial D} \) (see [K]§§3.3 and 14.2). Note that \(\overline{\partial} \)-Neumann problem for functions \(\square F = \psi \) in \(D \), \(\overline{\partial}_n F = 0 \) on \(\partial D \)
is equivalent, at least in the smooth case, to the problem \(\overline{\partial}_n F = \phi \) on \(\partial D \) (see [K]§14). The compatibility condition for this problem becomes

\[\int_{\partial D} \phi d\sigma = 0 \]

for every \(f \) holomorphic in a neighbourhood of \(D \).

2.3. Now assume that \(A \) and \(B \) are real harmonic functions on \(D \), of class \(C^1 \) on \(\overline{D} \). Let \(H = A + iB \). Then \(\overline{\partial}_n H \) is real on \(\partial D \) if and only if \(\frac{\partial A}{\partial \tau} + \frac{\partial B}{\partial \nu} = 0 \) on \(\partial D \). If this is the case, \(\overline{\partial}_n H = \frac{1}{2} \left(\frac{\partial A}{\partial \nu} - \frac{\partial B}{\partial \tau} \right) \) on \(\partial D \) and Fichera’s condition on \(u \in C^0(\partial D) \) becomes the following condition

\[
(*) \quad \int_{\partial D} u \overline{\partial}_n H d\sigma = 0
\]

for every complex harmonic function \(H \in C^1(\overline{D}) \) such that \(\overline{\partial}_n H \) is real on \(\partial D \).

Note that the integral above can be rewritten as \(\int_{\partial D} u \star \overline{\partial} H \), with \(\star \overline{\partial} H \) a closed \((n-1,n)\)-form on \(D \), since \(\star \overline{\partial} \star \overline{\partial} H = -\overline{\partial} \overline{\partial} H = -\Box H = 2\Delta H = 0 \).

We shall denote by \(\text{Harm}^1(D) \) the real subspace of \(\text{Harm}^1(D) \)

\[\text{Harm}^1_0(D) = \{ H \in \text{Harm}^1(D) : \overline{\partial}_n H \text{ is real on } \partial D \} \]

Remark. When \(n = 1 \) and \(H^1(D,\mathbb{R}) = 0 \) condition (*) is void: if \(H = A + iB \) as above, let \(B' \) be a harmonic conjugate of \(A \). Then \(B' \in C^1(\overline{D}) \) from Cauchy-Riemann equations and \(F = A + iB' \) is holomorphic on \(D \). This implies that \(\frac{\partial A}{\partial \tau} + \frac{\partial B'}{\partial \nu} = 0 \) on \(\partial D \) and so \(\frac{\partial B}{\partial \nu} = \frac{\partial B'}{\partial \nu} \) on \(\partial D \). Then \(B - B' \) is a constant and so \(\overline{\partial}_n H = \overline{\partial}_n F = 0 \) on \(\partial D \).

3. Condition (*) and pluriharmonic functions

3.1. In this section we examine the validity of condition (*) for boundary values of pluriharmonic functions.

Theorem 1. (a) Let \(H^1(D,\mathbb{R}) = 0 \) and \(\partial D \) of class \(C^1 \). If \(u \in \text{Ph}^\alpha_{\overline{\partial}D}(D) \), \(\alpha > 0 \), then \(u \) satisfies condition (*);

(b) Let \(H^1(D,\mathbb{R}) = 0 \) and \(\partial D \) of class \(C^2 \). If \(u \in \text{Ph}^0_{\overline{\partial}D}(D) \), then \(u \) satisfies condition (*).
Theorem 1 when the boundary value $u \star (b)$ shows that (\ast) implies pluriharmonicity without any topological assumption on D.

Proof. (a) Let $U \in Ph^0(D)$ be the extension of u and $F = U + iV \in A^0(D)$. Then

$$\int_{\partial D} F \bar{\partial}_n H d\sigma = \int_{\partial D} F \ast \bar{\partial} H = \int_D \partial (F \ast \bar{\partial} H) = \int_D F \partial (\ast \bar{\partial} H) = 0$$

The real part of the first integral is $\int_{\partial D} u \bar{\partial}_n H d\sigma$.

(b) Let $U \in Ph^0(D)$ be the extension of u. Then $U = \text{Re} F$, with $F = U + iV$ holomorphic on D. From Stout’s estimate (see [S]) it follows that F belongs to the Hardy space $\mathcal{H}^2(D)$. Then F has boundary value $f \in L^2(\partial D)$. Let $D_\epsilon = \{ z : \rho(z) < \epsilon \}$ for small $\epsilon < 0$. We get as before that the integral $\int_{\partial D_\epsilon} F \bar{\partial}_n H d\sigma$ vanishes. Then $\int_{\partial D_\epsilon} U \text{Re}(\bar{\partial}_n H) d\sigma + \int_{\partial D_\epsilon} V \text{Im}(\bar{\partial}_n H) d\sigma = 0$. The first integral tends to $\int_{\partial D} u \bar{\partial}_n H d\sigma$ as ϵ tends to 0, while the second has limit $\int_{\partial D} V \text{Im}(\bar{\partial}_n H) d\sigma = 0$.

Remarks. (i) The proof of (a) shows that condition (\ast) is satisfied by any $u \in \text{Re} A^0_{\partial D}(D)$ even without the topological restriction on D;
(ii) If $\text{Re} A^0_{\partial D}(D)$ is dense in $Ph^0_{\partial D}(D)$ then condition (\ast) is satisfied by every $u \in Ph^0_{\partial D}(D)$. This happens for example when D is a n-circular domain;
(iii) If $u \in L^2(\partial D)$ extends to a pluriharmonic function on D, then the proof of (b) shows that (\ast) still holds.

3.2. Now we show that if the boundary value is sufficiently regular, condition (\ast) implies pluriharmonicity without any topological assumption on D.

Theorem 2. Let ∂D be of class $C^{1+\lambda}$, $\lambda > 0$. If $u \in C^{1+\lambda}(\partial D)$ is a real function which satisfies condition (\ast), then $u \in \text{Re} A^{1+\lambda}_{\partial D}(D)$. In particular, $u \in Ph^{1+\lambda}_{\partial D}(D)$.

Proof. Let $U \in C^{1+\lambda}(\overline{D})$ be the harmonic extension of u. Let $V \in C^1(\overline{D})$ be a solution of the (classical) Neumann problem with boundary condition $\frac{\partial V}{\partial \nu} = -\frac{\partial u}{\partial \tau}$ on ∂D. We show that the function $F = U + iV$ is holomorphic on D.

Since $\bar{\partial}_n F$ is real on ∂D, condition (\ast) implies that $\int_{\partial D} u \bar{\partial}_n F d\sigma = 0$. The integral

$$\int_{\partial D} F \ast \bar{\partial} F = \int_D \frac{\partial F}{\partial \bar{\zeta}} \frac{\partial F}{\partial \zeta} = 2^{1-n} i^n \int_D \sum_k \left| \frac{\partial F}{\partial \zeta_k} \right|^2 dv \int_D \sum_k \left| \frac{\partial F}{\partial \zeta_k} \right|^2 dv$$

is real. It vanishes because $\text{Re} \int_{\partial D} (U - iV) \bar{\partial}_n F d\sigma = \int_{\partial D} u \bar{\partial}_n F d\sigma$. Then $\bar{\partial} F = 0$ on D. The regularity of F follows from that of U and Cauchy-Riemann equations.

Corollary 1. Let ∂D be connected, of class $C^{1+\lambda}$, $\lambda > 0$. If $u \in C^{1+\lambda}(\partial D)$, then condition (\ast) holds if and only if u is the real part of a CR function on ∂D.

Remark. Theorem 2 shows that the condition $H^1(D, \mathbb{R}) = 0$ can not be omitted in Theorem 1 when the boundary value u is of class $C^{1+\lambda}$.

3.3. In the case when D is strongly pseudoconvex, condition (\ast) implies that the harmonic extension is pluriharmonic even for continuous functions.
Theorem 3. Let D be a smoothly bounded strongly pseudoconvex domain. If $u \in C^0(\partial D)$ is a real function which satisfies condition (\ast), then $u \in Ph^0_{\partial D}(D)$.

Proof. Let D' be any simply connected, smoothly bounded domain contained in the interior of D. Let U be the harmonic extension of u on D and let $H \in Harm^1(D')$ have real normal part $\overline{\partial}_n'H$ of $\overline{\partial}H$ on $\partial D'$. Then

$$\int_{\partial D'} U \overline{\partial}_n'H \, d\sigma' = \int_{\partial D} u(\eta) P_D(\zeta, \eta) \overline{\partial}_n'H(\zeta) d\sigma(\eta) d\sigma'(\zeta) = \int_{\partial D} u(\phi) d\sigma$$

where $P_D(\zeta, \eta)$ denotes the Poisson kernel for D and $\phi(\eta)$ is the C^∞ real valued function on ∂D given by the integral $\int_{\partial D'} P_D(\zeta, \eta) \overline{\partial}_n'H(\zeta) d\sigma'(\zeta)$.

On D the $\overline{\partial}$-Neumann problem $\overline{\partial}_n F = \phi$ can be solved if ϕ is orthogonal to antiholomorphic functions with respect to integration on ∂D. Let f be holomorphic in a neighbourhood of D'. Then

$$\int_{\partial D} f(\phi) d\sigma = \int_{\partial D} f(\eta) \int_{\partial D'} P_D(\zeta, \eta) \overline{\partial}_n'H(\zeta) d\sigma(\eta) d\sigma'(\zeta)$$

$$= \int_{\partial D'} \overline{\partial}_n'H(\zeta) \int_{\partial D} f(\eta) P_D(\zeta, \eta) d\sigma(\eta) d\sigma'(\zeta)$$

$$= \int_{\partial D'} f(\zeta) \overline{\partial}_n'H(\zeta) d\sigma(\zeta) = 0$$

since f is pluriharmonic on a neighbourhood of D'.

Then there exists $F \in Harm(D) \cap C^\infty(\overline{D})$ such that $\overline{\partial}_n F = \phi$ on ∂D. It follows that

$$\int_{\partial D'} U \overline{\partial}_n'H \, d\sigma' = \int_{\partial D} u \overline{\partial}_n F \, d\sigma = 0$$

From Theorem 2 we get that U is pluriharmonic on D', and so on the whole domain D.

Remark. The proof shows that the same result holds on any weakly pseudoconvex domain D for which $\overline{\partial}$-Neumann problem can be solved for C^∞ forms (see [K] §18). For example, on weakly pseudoconvex domains with real analytic boundary.

4. Characterization of $Harm^1_0(D)$

Let M denote the Bochner-Martinelli operator on $D \subset \mathbb{C}^n$, $n > 1$:

$$M(F)(z) = \int_{\partial D} F(\zeta) U(\zeta, z), \quad \text{for } z \notin \partial D$$

where $U(\zeta, z)$ is the Bochner-Martinelli kernel.
Proposition 1. Let ∂D be of class C^1. Then a function $F \in \text{Harm}^1(D)$ is in $\text{Harm}^1_0(D)$ if and only if $\text{Im}(M(F)) = \text{Im}(F)$ in D.

Proof. We adapt the proof of a theorem of Aronov ([A]) given in [K] (Theorem 14.1). From the Bochner-Martinelli formula for harmonic functions

$$
\int_{\partial D} F(\zeta)U(\zeta,z) + \int_{\partial D} g_0(\zeta,z)\overline{\partial}_n F(\zeta) d\sigma = \begin{cases} F(z), & \text{for } z \in D \\ 0, & \text{for } z \in \mathbb{C}^n \setminus \overline{D} \end{cases}
$$

where $g_0(\zeta,z) = \frac{(n-2)!}{2\pi^n} |\zeta - z|^{2-2n}$.

If $\overline{\partial}_n F$ is real on ∂D, then $\text{Im}(M(F)) = \text{Im}(F)$ in D. Conversely, assume that $\text{Im}(M(F)) = \text{Im}(F)$ in D. From the formula we get

$$
\int_{\partial D} \text{Im}(\overline{\partial}_n F(\zeta)) \frac{|z - \zeta|^{2n-2}}{|\zeta - z|^{2n-2}} d\sigma = 0
$$

when $z \in D$. These integrals vanish also for $z \notin \overline{D}$, because from the jump formula for $M(F)$ on ∂D we get that $\text{Im}(M(F)) = 0$ on $\mathbb{C}^n \setminus \overline{D}$. A density argument gives $\text{Im}(\overline{\partial}_n F) = 0$ on ∂D.

Let N be the real linear operator defined for $F \in \text{Harm}^1(D)$ by

$$
N(F) = \text{Re}(F) + i \text{Im}(M(F))
$$

Proposition 1 says that $\text{Harm}^1_0(D)$ is the set $\text{Fix}(N) = \{ F \in \text{Harm}^1(D) : N(F) = F \}$. Note that $N(F)$ is of class C^α for every α, $0 < \alpha < 1$, and that N can be extended as a real operator from the space $L^2(\partial D)$ to the Hardy space of harmonic functions $h^2(D)$.

5. The case of the ball

5.1. Let B be the unit ball of \mathbb{C}^n and let $S = \partial B$ be the unit sphere. We consider the space $L^2(S)$ identified with the space of harmonic extensions of L^2 functions from S into B. $L^2(S)$ is the direct sum of pairwise orthogonal spaces $H(s,t)$, $s \geq 0$, $t \geq 0$, where $H(s,t)$ is the space of harmonic homogeneous polynomials of total degree s in z and total degree t in \overline{z} (see [R] §12). Romanov [R1] proved that the Bochner-Martinelli operator M is a bounded self-adjoint operator in the space $L^2(S)$, since

$$
M(P_{s,t}) = \frac{n+s-1}{n+s+t-1} P_{s,t}
$$

for any $P_{s,t} \in H(s,t)$.

This spectral decomposition allows to compute the limit of the iterates of the operator N given in §4. Let N_0 be the real linear projection in $L^2(S)$ defined for $P_{s,t} \in H(s,t)$ by

$$
N_0(P_{s,t}) = \begin{cases} \frac{s}{s+t} P_{s,t} + \frac{t}{s+t} \overline{P_{s,t}}, & \text{for } t > 0 \\ P_{s,t}, & \text{for } t = 0 \end{cases}
$$
Proposition 2. \(\lim_{k \to \infty} N^k = N_0 \) in the strong operator topology of \(L^2(S) \).

Proof. Assume that \(M(F) = \lambda F \), \(M(\overline{F}) = \mu F \). Let \(\alpha = (\lambda + \mu)/2 \), \(\beta = (\lambda - \mu)/2 \). An easy computation shows that \(N^k(F) = \text{Re}(F) + i\lambda^{(k)} \text{Im}(F) \), where \(\lambda^{(0)} = 1 \), and \(\lambda^{(k)} = \alpha \lambda^{(k-1)} + \beta \). If \(|\alpha| < 1 \), \(\lambda^{(k)} \) tends to \(\frac{\beta}{1-\alpha} \) as \(k \to \infty \). Setting \(F = P_{s,t} \), we get \(\frac{\beta}{1-\alpha} = \frac{s-t}{s+t} \), from which it follows that \(N^k(P_{s,t}) \to N_0(P_{s,t}) \) for every \(s, t \).

5.2. Taking \(\rho(\zeta) = |\zeta|^2 - 1 \) as a defining function for \(B \), we see that \(\overline{\partial}_n P_{s,t} = \sum_k \frac{\partial P_{s,t}}{\partial \zeta_k} \frac{s-t}{|\zeta|} = tP_{s,t}/|\zeta| \). Then \(\overline{\partial}_n N_0(P_{s,t})|_S = \frac{st}{s+t} (P_{s,t} + \overline{P_{s,t}}) \) for every \(s, t \).

Proposition 3. Let \(\text{Fix}(N_0) = \{ F \in \text{Harm}^1(B) : N_0(F) = F \} \). Then \(\text{Fix}(N_0) = \text{Harm}^0(B) \).

Proof. If \(N(F) = F \), then \(N_0(F) = F \). Conversely, if \(F \in \text{Fix}(N_0) \), then \(\overline{\partial}_n F|_S = \overline{\partial}_n N_0(F)|_S \) is real, since \(\overline{\partial}_n N_0(P_{s,t})|_S \) is real for every \(s, t \). Then \(F \in \text{Fix}(N) = \text{Harm}^0(B) \).

This result allows to obtain a proof of a theorem of Nagel and Rudin (see [NR] or [R]§13):

Corollary 2. A real function \(u \in C^0(S) \) has a pluriharmonic extension on \(B \) if and only if \(u \) is orthogonal to the spaces \(H(s, t) \) in \(L^2(S) \) for any \(s > 0 \), \(t > 0 \).

Proof. We show that condition (*) is equivalent to Nagel-Rudin condition. If \(u \) satisfies condition (*), we can take \(H = N_0(P_{s,t}) \) and get that \(u \) is orthogonal to \(\text{Re}(P_{s,t}) \) for every \(s > 0 \), \(t > 0 \). Taking \(iP_{s,t} \) in place of \(P_{s,t} \), we get orthogonality with respect to \(\text{Im}(P_{s,t}) \) for every \(s > 0 \), \(t > 0 \), and then with respect to the spaces \(H(s, t) \). Conversely, orthogonality with respect to \(\overline{\partial}_n N_0(P_{s,t}) \) for any \(s, t \) implies that \(u \) is orthogonal to \(\overline{\partial}_n H|_S \) for every \(H = N_0(H) \in \text{Fix}(N_0) \). From Proposition 3, this is condition (*). Theorems 1 and 3 give the result.

Remarks. (i) If \(F \in \text{Harm}^1(B) \) and \(N_0(F) \in \text{Harm}^0(B) \), then the imaginary part of \(N_0(F) \) is the unique classical solution of the interior Neumann problem with boundary datum \(\frac{\partial \text{Re} F}{\partial \sigma} \) and such that \(N_0(F)(0) = F(0) \).

(ii) The real projection \(N_0 \) is the identity on holomorphic functions, it is the conjugation operator on non-constant antiholomorphic functions and has the property \(\text{Re} N_0(F) = \text{Re} F \) for every \(F \). Assume that \(N_0 \) is a real linear operator with the same properties on a smooth domain \(D \). Let \(N_0(u) \in \text{Harm}^0(D) \), \(u \) a real function continuous on \(\partial D \) as usual, \(u \) is identified with its harmonic extension \(U \). Then \(u \in \text{Re} A^0_{\partial D}(D) \) if and only if \(\overline{\partial}_n N_0(u) = 0 \) on \(\partial D \). In fact, from the above cited theorem of Aronov and from a theorem of Kytmanov and Aizenberg [KA], \(\overline{\partial}_n N_0(u) = 0 \) on \(\partial D \) if and only if \(N_0(u) \) is holomorphic on \(D \).

Acknowledgments

We would like to thank G. Tomassini for many helpful discussions about the subject. We also wish to acknowledge the hospitality of the Mathematics Department of the Trento University.
References

Dipartimento di Matematica Università di Milano Via Saldini 50 I-20133 Milano ITALY

E-mail address: perotti@mat.unimi.it