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LAGRANGE POLYNOMIALS OVER CLIFFORD NUMBERS

RICCARDO GHILONI AND ALESSANDRO PEROTTI

Abstract. We construct Lagrange interpolating polynomials for a set
of points and values belonging to the algebra of real quaternions H ≃

R0,2, or to the real Clifford algebra R0,3. In the quaternionic case, the
approach by means of Lagrange polynomials is new, and gives a complete
solution of the interpolation problem. In the case of R0,3, such a problem
is dealt with here for the first time. Elements of the recent theory of slice
regular functions are used. Leaving apart the classical cases R0,0 ≃ R,
R0,1 ≃ C and the trivial case R1,0 ≃ R ⊕ R, the interpolation problem
on Clifford algebras Rp,q with (p, q) 6= (0, 2), (0, 3) seems to have some
intrinsic difficulties.

1. Introduction

The aim of this work is to define Lagrange interpolating polynomials for
a set of points and values belonging to a real Clifford algebra. We make
some preliminary considerations to select the Clifford algebras on which the
construction can be performed. We then restrict to two cases, the Clifford
algebra of signature (0, 2) (isomorphic to the algebra of real quaternions)
and the one of signature (0, 3).

Let Rp,q denote the real Clifford algebra with signature (p, q), equipped
with the usual Clifford anti-involution x 7→ xc defined by

xc = ([x]0+[x]1+[x]2+[x]3+[x]4+· · · )c = [x]0−[x]1−[x]2+[x]3+[x]4−· · · ,

where [x]k denotes the k–vector component of x ∈ Rp,q (cf. e.g. [1, §4.1] or
[7, §3.2]). For every element x of Rp,q, the trace of x is t(x) := x+ xc and
the (squared) norm of x is n(x) := xxc. Let m := p + q. An element x of
Rp,q can be represented in the form x =

∑

K xKeK , with K = (i1, . . . , ik)
an increasing multiindex of length k, 0 ≤ k ≤ m, eK = ei1 · · · eik , e∅ = 1,
xK ∈ R, x∅ = x0, e1, . . . , em basis elements (with e2i = 1 for i ≤ p, e2i = −1
for i > p). The (real vector) subspace generated by 1, e1, e2, . . . , em is called

the set of paravectors in Rp,q and denoted by R
(m+1). We identify the field of

real numbers with the subspace of Rp,q generated by the unit of the algebra.
In a non–commutative setting, the ring of polynomials is usually defined

by fixing the position of the coefficients w.r.t. the indeterminate X (e.g.
on the right) and by imposing commutativity of X with the coefficients
when two polynomials are multiplied together (cf. e.g. [10, §16]). Given
two polynomials P (X) and Q(X), let P · Q denote the product obtained
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in the way we just described. If P has real coefficients, then (P · Q)(x) =
P (x)Q(x). In general, a direct computation (cf. [10, §16.3]) shows that if
P (x) is invertible, then

(1) (P ·Q)(x) = P (x)Q(P (x)−1xP (x)).

In this setting, a (left) root of a polynomial P (X) =
∑d

h=0X
hah is an

element x ∈ Rp,q such that P (x) =
∑d

h=0 x
hah = 0. As shown in [5] and [4],

in order to obtain a good structure for the zero locus of a polynomial, it is
necessary to restrict the domain where roots are looked for, and to impose
some conditions on the polynomial. We recall from [5] the definition of the
quadratic cone Qp,q of Rp,q:

Qp,q := R ∪ {x ∈ Rp,q | t(x) ∈ R, n(x) ∈ R, 4n(x) > t(x)2}.

The quadratic cone coincides with the whole Clifford algebra only when
Rp,q is a division algebra, i.e. for R0,0 ≃ R, R0,1 ≃ C and R0,2 ≃ H. If we
restrict roots to the quadratic cone, then an admissible polynomial P (X)
with Clifford coefficients (cf. [5] for this notion) satisfies a version of the
Fundamental Theorem of Algebra.

In the construction of Lagrange polynomials for points x1, . . . , xn, we
are lead to consider only elements xi in the quadratic cone. Moreover, the
procedure requires the invertibility of differences of the form xi−xj (i 6= j),
and also of the form x′i − x′j, with x

′
i and x

′
j in the same conjugacy classes

of xi and xj, respectively.
These conditions impose severe restrictions on the Clifford algebras in

which the procedure can be done. In every Clifford algebra Rp,q with p ≥ 2,
one can find elements x, y ∈ Qp,q, not belonging to the same conjugacy
class, such that the difference x − y is non–invertible (e.g. x = e12 and
y = 1/3e1 + 2/3e12). Due to the isomorphism between R2,0 and R1,1, also
in the algebras R1,q, with q ≥ 1, one can find pairs of elements with the
same properties. As we will see below, this fact has consequences also on
the number of roots of polynomials, and therefore on the uniqueness of
interpolating polynomials.

In R1,0 ≃ R⊕R, the quadratic cone reduces to the real line R, where the
construction of the Lagrange polynomials is well–known. Therefore, leaving
apart the classical cases R0,0 ≃ R, R0,1 ≃ C, we are left with the algebras
R0,q, with q ≥ 2. In this case, the quadratic cone is simply

Q0,q = R ∪ {x ∈ R0,q | t(x) ∈ R, n(x) ∈ R}.

Let S denote the set of square roots of −1 in Q0,q. S is the set of elements
J such that t(J) = 0, n(J) = 1. Every x ∈ Q0,q has a decomposition
x = α+ βJ with α, β ∈ R, β ≥ 0 and J ∈ S.

For q = 2, 3, it can be shown that the conjugacy class of y = α+βJ ∈ Q0,q

is the set Sy = {α + βK | K ∈ S} ⊂ Q0,q. This comes from the fact that S
forms a unique conjugacy class (cf. [8]). Since t(y) = 2α, n(y) = α2 + β2,
Sx = Sy if and only if t(x) = t(y) and n(x) = n(y). The set Sy coincides
with the zero locus in Q0,q of the characteristic polynomial of y, i.e. the
polynomial with real coefficients

∆y(X) := (X − y) · (X − yc) = X2 −Xt(y) + n(y).
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If q ≥ 4, the conjugacy class of an element x ∈ Q0,q is not necessarily
contained in the quadratic cone. For example, the class of e4 contains also
(2 + e123)

−1e4(2 + e123) = 5/3e4 − 4/3e1234 /∈ Q0,q. For this reason, we will
restrict to the cases q = 2, 3.

2. Preliminary results

For q = 2 (the quaternionic case), the trace and the norm of an element
are always real. For q = 3, t and n take values in the center of the algebra, i.e.
in the subspace generated by 1 and e123: t(x) = 2(x0 + x123), n(x) = |x|2 +
φ(x)e123, where |x| = (x · x)1/2 is the euclidean norm of x ∈ R0,3 ≃ R

8 and
φ(x) = x · (xe123) = 2(x0x123 − x1x23 + x2x13 − x3x12). Since φ(x) = φ(xc),
we have that n(x) = n(xc) for each x ∈ R0,3. We have Q0,2 = R0,2 ≃ H,
Q0,3 = {x ∈ R0,3 | x123 = 0, φ(x) = 0}.

In H, every non–zero element is invertible. In R0,3, there are non–
invertible non–zero elements.

Proposition 2.1. Let x ∈ R0,3. Then the following facts hold:

1. x is invertible if and only if its norm n(x) is invertible.
2. x is invertible if and only if ψ+(x)ψ−(x) 6= 0, where

ψ±(x) = (x0 ± x123)
2 + (x1 ∓ x23)

2 + (x2 ± x13)
2 + (x3 ∓ x12)

2.

Proof. 1. If x is invertible, then (x−1)c = (xc)−1 and (x−1)cx−1 is the inverse
of n(x) = xxc. Conversely, if n(x) is invertible, then n(x)−1xc = xcn(x)−1

is the inverse of x.
2. The center of R0,3 is isomorphic to the algebra R ⊕ R. Therefore, an

element a+ be123 is invertible if and only if a2 − b2 6= 0. From the first part
it follows that x ∈ R0,3 is invertible if and only if |x|4 − φ(x)2 6= 0. The
thesis follows from the fact that ψ+(x) =

1
2 |x+xe123|

2 = |x|2+ x · (xe123) =
|x|2 + φ(x) and ψ−(x) = |x|2 − φ(x). �

In Q0,3, there exist distinct elements whose difference is not invertible.
For example, e1, e23 belong to S but e1 − e23 is not invertible.

Proposition 2.2. Let x, y ∈ Q0,3, with Sx 6= Sy. Then x− y is invertible.

Proof. If x− y is not invertible, from Proposition 2.1 we get ψ+(x− y) = 0
or ψ−(x − y) = 0. Assume ψ+(x − y) = 0. Then x0 + x123 = y0 + y123
and ψ+(x) = ψ+(y). Since x, y ∈ Q0,3, φ(x) = φ(y) = 0. It follows that
n(x) = |x|2 = ψ+(x) = n(y). Moreover, x123 = y123 = 0. Therefore
t(x) = 2x0 = 2y0 = t(y). But then x and y are in the same conjugacy class.
The same conclusion is obtained if ψ−(x− y) = 0. �

Remark 2.3. The previous results can be obtained also by using an explicit
form of the isomorphism R0,3 ≃ H ⊕ H (cf. for example [7] for such an
isomorphism).

Let V (P ) denote the set of roots of a polynomial P (X) =
∑d

h=0X
hah

belonging to the quadratic cone Q0,q:

V (P ) = {x ∈ Q0,q | P (x) =
∑d

h=0 x
hah = 0}.
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We now prove an analogue of the Gordon–Motzkin Theorem ([6], see also
[10, §16.4]), which in his original form is valid for polynomials over division
rings (e.g. over the quaternions).

Theorem 2.4. Let P (X) =
∑d

h=0X
hah be a polynomial of positive degree

d, with coefficients ah ∈ R0,3. Then its roots belong to at most d distinct
conjugacy classes in Q0,3.

Proof. We proceed by induction on d. If d = 1, and xa1+a0 = ya1+a0 = 0,
with x, y ∈ Q0,3, then (x − y)a1 = 0. From Proposition 2.2, it follows that
x and y must belong to the same conjugacy class. For d ≥ 2, let y ∈ V (P ).
Applying the non–commutative version of the Remainder Theorem (cf. [10,

§16.2]), we can find a polynomial Q(X) =
∑d−1

h=0X
hbh, of degree d− 1, such

that

P (X) = (X − y) ·Q(X).

If x ∈ V (P ), with Sx 6= Sy, then a := x−y is invertible from Proposition 2.2.
Since 0 = P (x) = aQ(a−1xa), we get Q(a−1xa) = 0. Therefore x′ :=
a−1xa ∈ Sx ∩ V (Q). From the inductive hypothesis, x belongs to the union
of at most d − 1 conjugacy classes. Therefore the roots of P belong to at
most d conjugacy classes. �

It is not clear if the preceding theorem holds on every Clifford algebra R0,q.
The same proof can not be repeated, since for q > 3 the element x′ = a−1xa
does not necessarily belongs to the quadratic cone, and then Proposition 2.2
can not be applied. Surely the result is not valid on Clifford algebras Rp,q

with p ≥ 2: for example, the degree one polynomial X(e1− e12)+ e2− 1 has
roots e12 and 1/3e1+2/3e12 in the quadratic cone, belonging to two distinct
conjugacy classes.

The preceding theorem is valid in any Clifford algebra R0,q for admissible
(see [5]) polynomials. In particular, it holds for polynomials with paravector
coefficients, a case considered in [13].

A polynomial of degree d can have more than d roots if two or more of
these are allowed to belong to the same conjugacy class. In R0,3, this can
happen also for degree one polynomials. For example, the (not admissible)
polynomial X(e1+e23)+1−e123 has two distinct roots e1 and e23 in the same
conjugacy class S. Observe that e2 ∈ S but is not a root of the polynomial.

Since the quadratic cone Q0,3 contains the paravector space R(4), one can

consider the subset of paravector roots of P =
∑d

h=0X
hah:

V (4)(P ) = {x ∈ R
(4) | P (x) =

∑d
h=0 x

hah = 0} ⊂ V (P ).

Let r be the number of real roots of P (counted with multiplicity). As shown

in [2], if V (4)(P ) contains two distinct roots in the same conjugacy class Sy,

then Sy ∩ R
(4) ⊂ V (4)(P ). We call these roots spherical roots of P . In this

case, P is divisible by the characteristic polynomial ∆y(X) of y. Let sy be
the maximum exponent of a power of ∆y dividing P . Let s be the sum
of integers sy when y varies, without repetitions, in the conjugacy classes

of non–real roots contained in V (4)(P ). From Theorem 2.4, the number of
these classes is at most d. We can get a more precise estimate, similar to
what obtained in [12] in the quaternionic case.
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Corollary 2.5. Let P (X) =
∑d

h=0X
hah be a polynomial of positive degree

d, with coefficients ah ∈ R0,3. Let r and s be as before. Let k be the number
of non–real, non–spherical paravector roots of P . Then r + 2s + k ≤ d.

Proof. We can factor out from P a polynomial with real coefficients, of
degree r + 2s. The quotient is a polynomial of degree d − r − 2s, to which
Theorem 2.4 applies. Therefore k ≤ d−r−2s, and the estimate is proved. �

3. Main results

Lagrange interpolation on the quaternionic space. The problem of
polynomial interpolation on quaternions has already been considered, usu-
ally studying properties of a quaternionic Vandermonde matrix. In [11, §16]
(in the general setting of division rings) and in [9], it is proved that the
problem has a unique solution if and only if the interpolation points are
distinct and every conjugacy class contains at most two of the points. Here
we define the Lagrange interpolating polynomials, and give the supplemen-
tary condition that must be satisfied by the data to assure the existence
of the solution when more than two points belong to the same conjugacy
class. This is a collinearity condition involving also the values to be taken,
coming from a property of polynomials with right coefficients (shared with
the larger class of slice regular functions, cf. [3, 5]): their restriction to each
sphere Sy is an affine function.

Theorem 3.1. Let S1, . . . ,Sn be pairwise distinct conjugacy classes of H

and, for every j ∈ {1, . . . , n}, let xj1, . . . , xjdj be pairwise distinct elements
of Sj with dj ≥ 1, let wj1, . . . , wjdj be arbitrary elements of H and let d′j :=

min{dj , 2}. Define d := −1 +
∑n

j=1 d
′
j . Then there exists, and is unique, a

quaternionic polynomial P (X) =
∑d

h=0X
hah of degree at most d such that

P (xjk) = wjk for each j ∈ {1, . . . , n} and k ∈ {1, . . . , dj} if and only if,
for every j ∈ {1, . . . , n} with dj ≥ 3, the following quaternionic collinear
condition (Cj) holds:

(xj2 − xj1)
−1(wj2 − wj1) = (xjh − xj1)

−1(wjh − wj1) ∀h ∈ {3, . . . , dj}.

Proof. Up to reordering indices, we can assume that d1 = d2 = . . . = dm = 1
and dm+1 ≥ 2, . . . , dn ≥ 2 for some m ∈ {0, 1, . . . , n}.

Given T ∈ H[X] and y ∈ H, with V (T ) ∩ Sy = ∅, it follows from formula
(1) that the polynomial

S(X) := T (X) · (X − T (y)−1yT (y))

vanishes exactly on V (T ) ∪ {y}. Then we can find, for each j ∈ {1, . . . ,m}
and for each k ∈ {m + 1, . . . , n}, polynomials Pj , Pk,1, Pk,2 ∈ H[X] such
that

V (Pj) = {x11, . . . , x(j−1)1, x(j+1)1, . . . , xm1},

V (Pk1) = {x11, . . . , xm1} ∪ {xk2}, V (Pk2) = {x11, . . . , xm1} ∪ {xk1}.
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For each j ∈ {1, . . . ,m} and k ∈ {m + 1, . . . , n}, define the quaternionic
Lagrange polynomials

Lj(X) := ∆x(m+1)1
(X) · · ·∆xn1(X)Pj(X) aj ,

L′
k(X) := ∆x(m+1)1

(X) · · ·∆x(k−1)1
(X)∆x(k+1)1

(X) · · ·∆xn1(X)Pk1(X) bk1,

L′′
k(X) := ∆x(m+1)1

(X) · · ·∆x(k−1)1
(X)∆x(k+1)1

(X) · · ·∆xn1(X)Pk2(X) bk2,

where aj :=
(

∆x(m+1)1
(xj1) · · ·∆xn1(xj1)Pj(xj1)

)−1
and

bkℓ :=
(

∆x(m+1)1
(xkℓ) · · ·∆x(k−1)1

(xkℓ)∆x(k+1)1
(xkℓ) · · ·∆xn1(xkℓ)Pkℓ(xkℓ)

)−1

with ℓ ∈ {1, 2}. Then

P :=
∑m

j=1 Ljwj1 +
∑n

k=m+1(L
′
kwk1 + L′′

kwk2)

is an interpolating polynomial for points {xi1}i=1,...,m ∪ {xjh}
h=1,2
j=m+1,...,n. If

there are conjugacy classes containing more than two data points, it remains

to prove that P interpolates also at the points {xjh}
h=3,...,dj
j=m+1,...,n. Since the

restriction of P to each sphere Sy is an affine function, there exist a, b ∈ H

such that P (x) = xa+ b for every x ∈ Sy. For the sphere Sxjh
the constants

a and b are given by

a = (xj2 − xj1)
−1(wj2 −wj1), b = wj1 − xj1a .

Therefore, the set of equalities P (xjh) = xjha+ b = wjh for h ∈ {3, . . . , dj},
is equivalent to the collinearity condition (Cj).

The uniqueness of the interpolating polynomial comes from the estimate
on the number of roots of a quaternionic polynomial proved by Pogorui and
Shapiro [12]. �

We give an example of the procedure described in the proof for five points
in H×H satisfying the collinearity conditions.

Example 3.2. Let x11 = 0, x21 = 1 + i, x31 = i, x32 = j, x33 = k.
Consider the values w11 = 1, w21 = −1, w31 = 1, w32 = k, w33 = −j. Note
that x31, x32, x33 belong to the same conjugacy class S, with characteristic
polynomial X2 + 1. The relative collinearity condition is satisfied:

(x32 − x31)
−1(w32 − w31) = −i = (x33 − x31)

−1(w33 − w31).

We construct the Lagrange polynomials L1, L2, L
′
3, L

′′
3. We set:

P1(X) := X − x21 = X − 1− i

L∗
1(X) := (X2 + 1)P1(X) = X3 −X2(1 + i) +X − 1− i

L1(X) := L∗
1(X)L∗

1(x11)
−1 = L∗

1(X)(−1 − i)−1 = X3
(

i−1
2

)

+X2 +X
(

i−1
2

)

+ 1

and

P2(X) := X − x11 = X

L∗
2(X) := (X2 + 1)P2(X) = X3 +X

L2(X) := L∗
2(X)L∗

2(x21)
−1 = L∗

2(X)(−1 + 3i)−1 = X3
(

−1−3i
10

)

+X
(

−1−3i
10

)

.
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Moreover, let

Q(X) := (X − x11) · (X − x21) = X2 −X(1 + i)

P31(X) := Q(X) · (X −Q(x32)
−1x32Q(x32)) = X3 +X2

(

−3−i−j+2k
3

)

−X
(

−2+2i−3j+k
3

)

L′
3(X) := P31(X)P31(x31)

−1 = X3
(

5−2j−k
10

)

+X2
(

−1+k
2

)

+X
(

5−5i+3j−k
10

)

and

P32(X) := Q(X) · (X −Q(x31)
−1x31Q(x31)) = X3 −X2(1 + 2i) +X(−1 + i)

L′′
3(X) := P32(X)P32(x32)

−1 = X3
(

1−2i+2j+k
10

)

−X2
(

1+k
2

)

+X
(

1+3i−3j+k
10

)

.

Finally, we get the unique interpolating polynomial of degree 3

P (X) := L1(X)w11 + L2(X)w21 + L′
3(X)w31 + L′′

3(X)w32 =

= L1(X)− L2(X) + L′
3(X) + L′′

3(X)k = X3i+X2 + 1.

Lagrange interpolation on the Clifford algebra R0,3. We now perform
the construction of Lagrange polynomials for a set of points in R0,3. Due
to the presence of zero–divisors, we must restrict to points belonging to
different conjugacy classes.

Theorem 3.3. Let x1, . . . , xm be pairwise distinct elements of Q0,3. Assume
that xj ∈ Sj for each j ∈ {1, . . . ,m}, with S1, . . . ,Sm pairwise distinct
conjugacy classes. Let w1, . . . , wm be arbitrary elements of R0,3. Define

d := m − 1. Then there exists a unique polynomial P (X) =
∑d

h=0X
hah

with coefficients ah ∈ R0,3, of degree at most d, such that P (xj) = wj for
each j ∈ {1, . . . ,m}.

In order to prove the theorem, we need a preliminary result.

Lemma 3.4. Given a polynomial P (X) =
∑d

h=0X
hah with coefficients

ah ∈ R0,3 and y ∈ Q0,3, with V (P ) ∩ Sy = ∅ and P (y) invertible, the
polynomial Q(X) := P (X) · (X − P (y)−1yP (y)) vanishes on V (P ) ∪ {y},
and Q(x) is invertible for each x /∈ Sy such that P (x) is invertible.

Proof. The first part follows from the equality

Q(X) = XP (X) − P (X)P (y)−1yP (y).

For each x ∈ Q0,3 such that P (x) is invertible, it holds

Q(x) = P (x)(P (x)−1xP (x)− P (y)−1yP (y)).

If x /∈ Sy, the latter equality and Proposition 2.2 give the invertibility of
Q(x). �

Proof of Theorem 3.3. Let P
(1)
m (X) := X − x1 and define recursively, for

k = 2, . . . ,m− 1, the polynomials

P (k)
m (X) := P (k−1)

m (X) · (X − P (k−1)
m (xk)

−1xkP
(k−1)
m (xk)).

Note that P
(k−1)
m (xl) is invertible for every l = k, . . . ,m, as can be seen

applying inductively Lemma 3.4. The polynomial Pm := P
(m−1)
m vanishes

at x1, . . . , xm−1 and Pm(xm) is invertible. We can then define the m-th
Lagrange polynomial Lm(X) := Pm(X)Pm(xm)−1.
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For each j ∈ {1, . . . ,m − 1}, we can define similarly the Lagrange poly-
nomials L1, . . . , Lm−1. Finally, we set P (X) :=

∑m
j=1 Lj(X)wj .

The uniqueness of the interpolating polynomial follows immediately from
Theorem 2.4. �

As an illustration of the procedure described in the proof of Theorem 3.3,
we give an example of Lagrange interpolation for three points in R0,3×R0,3.

Example 3.5. Let x1 = e1, x2 = e2 + e23, x3 = −1 in Q0,3 and let w1 = 1,
w2 = 2e23, w3 = e1. We construct the Lagrange polynomial L3:

P
(1)
3 (X) := X − e1

P3(X) := P
(2)
3 (X) := (X − e1) · (X − (e2 + e23 − e1)

−1(e2 + e23)(e2 + e23 − e1)) =

= X2 +X

(

e1
5

−
3e2
5

+
2e1e3
5

−
e2e3
5

)

+

(

6

5
+

3e1e2
5

+
2e3
5

+
1

5
e1e2e3

)

L3(X) := P3(X)P3(−1)−1 = X2a23 +Xa13 + a03, with

a03 =
1
30(16 + 4e1 − 3e2 + 3e1e2 + 2e3 + 2e1e3 + e2e3 + e1e2e3),

a13 =
1
30(−3 + 5e1 − 6e2 + 4e1e3 + 2e1e2e3),

a23 =
1
30(11 + e1 − 3e2 − 3e1e2 − 2e3 + 2e1e3 − e2e3 + e1e2e3).

Similarly, we compute the Lagrange polynomials L1 and L2:

L1(X) := X2a21 +Xa11 + a01, with

a01 =
1
20(8− 8e1 + 6e2 − 6e1e2 − 4e3 − 4e1e3 − 2e2e3 − 2e1e2e3),

a11 =
1
20(6− 10e1 + 12e2 − 8e1e3 − 4e1e2e3),

a21 =
1
20(−2− 2e1 + 6e2 + 6e1e2 + 4e3 − 4e1e3 + 2e2e3 − 2e1e2e3),

and L2(X) := X2a22 +Xa12 + a02, with

a02 =
1
15(1 + 4e1 − 3e2 + 3e1e2 + 2e3 + 2e1e3 + e2e3 + e1e2e3),

a12 =
1
15(−3 + 5e1 − 6e2 + 4e1e3 + 2e1e2e3),

a22 =
1
15(−4 + e1 − 3e2 − 3e1e2 − 2e3 + 2e1e3 − e2e3 + e1e2e3).

Finally, we get the interpolating polynomial

P (X) :=

m
∑

j=1

Lj(X)wj := X2a2 +Xa1 + a0, with

a0 =
1
15 (6e1 + 8e2 − 5e1e2 − 10e3 − 2e1e3 + 4e2e3 + 5e1e2e3),

a1 =
1
15 (−6− 9e1 + 13e2 + 3e1e2 − 8e3 − 12e1e3 − e2e3 + 9e1e2e3),

a2 =
1
15 (−6 + 5e2 + 8e1e2 + 2e3 − 10e1e3 − 5e2e3 + 4e1e2e3).

Observe that the expansion of P (X) w.r.t. the eight real coordinates contains
239 terms.
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(Birkhäuser, Basel, 2013).

[9] R.M. Hou, X.Q. Zhao, and L.T. Wang. The double determinant of Vandermonde’s
type over quaternion field. Appl. Math. Mech. 20(9) (1999) 977–984.

[10] T. Y. Lam. A first course in noncommutative rings, volume 131 of Graduate Texts in

Mathematics. (Springer-Verlag, New York, 1991).
[11] T. Y. Lam. Exercises in classical ring theory. Problem Books in Mathematics.

(Springer-Verlag, New York, 1995).
[12] A. Pogorui and M. Shapiro. On the structure of the set of zeros of quaternionic

polynomials. Complex Var. Theory Appl. 49(6) (2004) 379–389.
[13] Y. Yang and T. Qian. On sets of zeroes of Clifford algebra–valued polynomials. Acta

Math. Sci. Ser. B Engl. Ed. 30(3) (2010) 1004–1012.

E-mail address: ghiloni@science.unitn.it

E-mail address: perotti@science.unitn.it

Department of Mathematics, University of Trento, I–38123, Povo-Trento,

Italy


	1. Introduction
	2. Preliminary results
	3. Main results
	Lagrange interpolation on the quaternionic space
	Lagrange interpolation on the Clifford algebra R0,3

	References

