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1. Some notations

C2 3 (z1, z2) = (x0 + ix1, x2 + ix3)↔
q = z1 + z2j = x0 + ix1 + jx2 + kx3 ∈ H

Let Ω be a bounded domain in H ≈ C2. A

quaternionic function f = f1 + f2j ∈ C1(Ω)

is (left) regular on Ω if

Df =
∂f

∂x0
+ i

∂f

∂x1
+ j

∂f

∂x2
+ k

∂f

∂x3
= 0 on Ω,

f is (left) ψ-regular on Ω if

D′f =
∂f

∂x0
+ i

∂f

∂x1
+ j

∂f

∂x2
− k

∂f

∂x3
= 0 on Ω.

Remarks 1. f is ψ-regular ⇔

∂f1
∂z̄1

=
∂f2
∂z2

,
∂f1
∂z̄2

= −
∂f2
∂z1

⇔

∗∂f1 = −
1

2
∂(f2dz̄1 ∧ dz̄2).



2. Every regular or ψ-regular function is har-

monic.

3. Every holomorphic map (f1, f2) on Ω de-

fines a ψ-regular function f = f1 + f2j.

4. If Ω is pseudoconvex, every complex har-

monic function f1 is the complex component

of a ψ-regular function f on Ω.

2. Main results

2.1 A differential criterion for regularity

Theorem 1. f = f1 + f2j ∈ C1(Ω) is ψ-

regular on Ω if and only if f is harmonic on

Ω and

(∂n − jL)f = 0 on ∂Ω. (*)

∂nf is the normal component of ∂f on ∂Ω,

defined by: ∂nfdσ = ∗∂f|∂Ω,



L is the tangential Cauchy-Riemann operator

L =
1

|∂ρ|

(
∂ρ

∂z̄2

∂

∂z̄1
−
∂ρ

∂z̄1

∂

∂z̄2

)
.

Remark. Condition (*) generalizes both the

CR-tangential equation L(f) = 0 and the

condition ∂nf = 0 on ∂Ω that distinguishes

holomorphic functions among complex har-

monic functions (Aronov and Kytmanov).

The single equation (*) is equivalent to the

following system of complex equations on ∂Ω:

∂nf1 = −L(f2) (C1)

∂nf2 = L(f1) (C2)

A weak version of Theorem 1 gives a trace

theorem:

Theorem 2. A continuous function f : ∂Ω→
H is the trace of a ψ-regular function on Ω if

and only if it satisfies the integral condition∫
∂Ω

f̄
(
∂n − jL

)
φ dσ = 0 ∀ φ ∈ Harm1(Ω).



From Theorem 1 we immediately get the fol-

lowing result about regular functions:

Theorem 3. f = f1 + f2j ∈ C1(Ω) is regular

on Ω if and only if f is harmonic on Ω and

(N − jT )f = 0 on ∂Ω, where

N = ∂ρ
∂z1

∂
∂z̄1

+ ∂ρ
∂z̄2

∂
∂z2

, T = ∂ρ
∂z2

∂
∂z̄1
− ∂ρ
∂z̄1

∂
∂z2

.

2.2 A criterion for holomorphicity

When ∂Ω is connected, Hartogs Theorem

can be applied to improve the previous re-

sults. Now conditions

∂nf1 = −L(f2) (C1)

∂nf2 = L(f1) (C2)

are equivalent: one of them implies the ψ-

regularity of f .

Remark. The connectedness of ∂Ω is a neces-

sary assumption: consider a locally constant

function on ∂Ω.



The equivalence of C1 and C2 can be used to

get the following criterion for holomorphicity:

Theorem 4. Let Ω ⊆ C2 be bounded, with

connected boundary ∂Ω. Let a ∈ C. If h ∈
C1(Ω) is complex harmonic and satisfies the

condition ∂nh = aL(h) on ∂Ω, then h is holo-

morphic on Ω.

Remark. The case a = 0 is a theorem of

Aronov and Kytmanov. Mixed differential

conditions of this type have been studied in

particular by Chirka and Kytmanov.



2.3 Regularity and the ∂-Neumann problem

The ∂-Neumann for complex functions can

be formulated in the following way:

∂ng = φ on ∂Ω, g harmonic in Ω,

with compatibility condition∫
∂Ω

φhdσ = 0 ∀h ∈ O(Ω).

If ∂Ω is connected and C∞–smooth and Ω is

strongly pseudoconvex or weakly pseudocon-

vex with real analytic boundary, the solvabil-

ity of ∂-Neumann problem (Kytmanov) ap-

plied to the equation

∂nf2 = L(f1) (C2)

allows to achieve the following:

Theorem 5. Let f1 : ∂Ω→ C be of class C∞.

Then f1 is the trace on ∂Ω of one complex

component of a ψ-regular function f on Ω,

of class C∞ on Ω.



Remark. f2 is determined up to a holomor-

phic function, so f is uniquely determined by

the orthogonality condition∫
∂Ω

(f − f1)hdσ = 0 ∀h ∈ O(Ω).

This defines a C-linear operator

R : C∞(∂Ω)→M∞(Ω).

Corollary 1. Let M∞(Ω) be the right H-mo-

dule of left ψ-regular functions of class C∞ on

Ω. The mapping C defined by C(f) = f1|∂Ω
for every f = f1 + f2j ∈ M∞(Ω) induces an

isomorphism of real spaces

M∞(Ω)

A∞(Ω,C2)
≈→
C∞(∂Ω)

CR(∂Ω)
.



2.4 An application: a product in M∞(Ω)

The existence of a right inverse for C

M∞(Ω)
R←−−−→
C

C∞(∂Ω)⇐⇒ C ◦R = IdC∞(∂Ω)

allows to define a product in M∞(Ω), with
respect to which M∞(Ω) becomes a com-
mutative R-algebra, with unity the constant
function 1, and which contains A∞(Ω,C2) as
a subalgebra with respect to the product

(f1, f2) · (g1, g2) = (f1g1 + f2g2, f1g2 + f2g1).

Given f, g ∈M∞(Ω), let

f ∗ g = R(f1g1)− (f −R(f1))j(g −R(g1))

where f1 = C(f), g1 = C(g).

Let φ : M∞(Ω)→M∞(Ω)

φ(f) = f(1 + j).

The product mΩ(f, g) can be defined as

mΩ(f, g) = φ−1(φ(f) ∗ φ(g)).



3. The case of the unit ball

When Ω = B is the unit ball in C2, S the unit

sphere, the operators

∂n = z̄1
∂

∂z̄1
+ z̄2

∂

∂z̄2
, L = z2

∂

∂z̄1
− z1

∂

∂z̄2

preserve harmonicity. Condition (*) in The-

orem 1 can be reformulated for polynomials.

Let

Dk =
∑

0≤l≤k/2−1

(k − 2l − 1)!(2l − 1)!!

k!(l+ 1)!
2l∆l+1.

Theorem 6. The restriction to S of a homo-

geneous polynomial f = f1 + f2j of degree k

extends as a ψ-regular function into B if and

only if

(∂n −Dk)f1 + L(f2) = 0 on S.

It extends as a regular function if and only if

(N −Dk)f1 + T (f2) = 0 on S.



Theorem 5 has the following homogeneous
version:

Theorem 7. a) For every f1 ∈ Pk (com-
plex k-homogeneous polynomial), there ex-
ists f2 ∈ Pk such that the trace of f = f1+f2j

on S extends as a ψ-regular polynomial of de-
gree ≤ k on H.
b) If f1 is harmonic, then f belongs to the
right H-module Uψk of ψ-regular homogeneous
polynomials of degree k.

The right inverse

R : Hk(S) =
⊕

p+q=k

Hp,q(S)→ U
ψ
k

of C (Hp,q the space of harmonic homoge-
neous polynomials of degree p in z and q in
z̄, Hk(S) the space of spherical harmonics)
gives the following:

Corollary 2. The restriction first-component
operator C induces isomorphisms

U
ψ
k

Hk,0 +Hk,0j
'
Hk(S)

Hk,0(S)
.



These isomorphisms can be applied to ob-
tain H-bases for Uψk starting from C-bases of
Hp,q (p+ q = k). This construction preserves
orthogonality w.r.t. L2(S).

Given bases {Pl} of Hp,q, a suitably chosen
subset of the images

R(Pl) =


Pl if q = 0

Pl +
1

p+ 1
L(Pl)j if q > 0

gives a H-basis for Uψk (dimHU
ψ
k = (k+1)(k+2)

2 ).

A possible choice for a L2(S)-orthogonal ba-
sis of Hp,q is given by the p+q+1 polynomials

Pl(z1, z2) =
min{q,l}∑

r=max{0,l−p}
cl,rz1

p−l+rz2
l−rz̄r1z̄

q−r
2

where cl,r = (−1)r
(
p
l−r

)(
q
r

)
and l = 0, . . . , p+q.

Cf. RegularHarmonics: a Mathematica 4.2
package available at
www.science.unitn.it

/~perotti/regular harmonics.htm



4. Sketch of proofs

4.1 Theorem 1 (criterion for ψ-regularity)

The main point is a property of the differ-
ential form associated to the Cauchy-Fueter
kernel for ψ-regular functions: its first com-
plex component is the Bochner-Martinelli ker-
nel in dimension 2 (Fueter–Vasilevski–Shapiro).

We show that the Bochner-Martinelli integral
representation formula for harmonic functions,
under condition (*), is the same as the Cauchy-
Fueter integral representation formula, from
which regularity follows.

4.2 Theorem 2 (trace theorem)

The result follows from the jump formula for
the Cauchy-Fueter integral. Using again the
property above, we show that the Cauchy-
Fueter integral of f ∈ C(∂Ω) vanishes on the
complement C2 \Ω under condition∫

∂Ω
f̄
(
∂n − jL

)
φ dσ = 0 ∀ φ ∈ Harm1(Ω).



When ∂Ω is connected and one of conditions

C1, C2 (say C2) holds, the Cauchy-Fueter in-

tegral of f defines on C2\Ω a complex valued

ψ-regular function F− ⇒ a holomorphic func-

tion on C2 \Ω ⇒ a holomorphic function F̃−

on C2.

In this way we get a ψ-regular function F =

F+ − F̃−|Ω on Ω, whose trace on ∂Ω is f .

4.3 Theorem 4 (criterion for holomorphicity)

Given f = ah+ hj, condition C2 is satisfied,

and then f is ψ-regular. From ψ-regularity

equations we obtain

∂h = 0.

4.4 Theorem 5 (∂-Neumann problem)

The result follows easily since φ = L(f1) sat-

isfies the compatibility condition for ∂-Neu-

mann problem. Then there exists f2 such

that ∂nf2 = L(f1)⇒ condition C2 holds.



4.5 The case of the unit ball

For Theorem 6 we use a computation made

by Kytmanov, who proved the analogous re-

sult for holomorphic extensions of homoge-

neous polynomials.

For Theorem 7, we suppose f1 ∈ Hp,q and

use Gauss formula for the harmonic extension

into B of the trace f1|S:

f̃1 =
∑
s≥0

gp−s,q−s,

where gp−s,q−s is the homogeneous harmonic

polynomial of degree p+ q − 2s defined by

gp−s,q−s = cp,q,s
∑
j≥0

(−1)j(p+q−j−2s)!
j! |z|2j∆j+sf1.

The equation ∂nf2 = L(f1) can now be solved

easily since

∂nL(gp−s,q−s) = (p− s+ 1)L(gp−s,q−s).



4.6 Bases of Uψk

Let Bp,q denote a complex base of the space

Hp,q(S) (p+ q = k). Then:

(i) if k = 2m is even, a basis of Uψk over H is

given by the set

Bk = {R(h) : h ∈ Bp,q, p+q = k,0 ≤ q ≤ p ≤ k}.

(ii) if k = 2m+ 1 is odd, a basis of Uψk over

H is given by

Bk = {R(h) : h ∈ Bp,q, p+q = k,0 ≤ q < p ≤ k}

∪ {R(h1), . . . , R(hm+1)},

where h1, . . . , hm+1 are chosen such that the

set{
h1,

1

p+ 1
L(h1), . . . , hm+1,

1

p+ 1
L(hm+1)

}
forms a complex basis of Hm,m+1(S).



4.7 The product in M∞(B)

On the unit ball we have explicit formulas for

harmonic continuation of polynomials and for

the operator R.

Example. The product of the ψ-regular, not

holomorphic function

f = (z̄1 + z̄2) + (z̄2 − z̄1)j

with itself is the ψ-regular function

mB(f, f) = (2z̄21 + 4z1z̄2) + (4z1z̄2 − 2z̄21)j

and the product of f and g = z1 − z1j is

mB(f, g) = mB(g, f) =

(|z1|2−|z2|2+z̄1z̄2+1)+(|z2|2−|z1|2+z̄1z̄2−1)j.


