Quaternionic

regular functions

 and the
$\bar{\partial}$-Neumann problem in \mathbb{C}^{2}

Alessandro Perotti*
University of Trento, Italy

Aveiro, June 2004
*Partially supported by MIUR (COFIN "Proprietà geometriche delle varietà reali e complesse") and GNSAGA of INdAM.

1. Some notations

$$
\begin{aligned}
& \mathbb{C}^{2} \ni\left(z_{1}, z_{2}\right)=\left(x_{0}+i x_{1}, x_{2}+i x_{3}\right) \leftrightarrow \\
& q=z_{1}+z_{2} j=x_{0}+i x_{1}+j x_{2}+k x_{3} \in \mathbb{H}
\end{aligned}
$$

Let Ω be a bounded domain in $\mathbb{H} \approx \mathbb{C}^{2}$. A quaternionic function $f=f_{1}+f_{2 j} \in C^{1}(\Omega)$ is (left) regular on Ω if

$$
\mathcal{D} f=\frac{\partial f}{\partial x_{0}}+i \frac{\partial f}{\partial x_{1}}+j \frac{\partial f}{\partial x_{2}}+k \frac{\partial f}{\partial x_{3}}=0 \text { on } \Omega
$$

f is (left) ψ-regular on Ω if

$$
\mathcal{D}^{\prime} f=\frac{\partial f}{\partial x_{0}}+i \frac{\partial f}{\partial x_{1}}+j \frac{\partial f}{\partial x_{2}}-k \frac{\partial f}{\partial x_{3}}=0 \text { on } \Omega
$$

Remarks 1. f is ψ-regular \Leftrightarrow

$$
\begin{gathered}
\frac{\partial f_{1}}{\partial \bar{z}_{1}}=\frac{\partial \overline{f_{2}}}{\partial z_{2}}, \quad \frac{\partial f_{1}}{\partial \bar{z}_{2}}=-\frac{\partial \overline{f_{2}}}{\partial z_{1}} \Leftrightarrow \\
* \bar{\partial} f_{1}=-\frac{1}{2} \partial\left(\overline{f_{2}} d \bar{z}_{1} \wedge d \bar{z}_{2}\right)
\end{gathered}
$$

2. Every regular or ψ-regular function is harmonic.
3. Every holomorphic map $\left(f_{1}, f_{2}\right)$ on Ω defines a ψ-regular function $f=f_{1}+f_{2} j$.
4. If Ω is pseudoconvex, every complex harmonic function f_{1} is the complex component of a ψ-regular function f on Ω.
5. Main results
2.1 A differential criterion for regularity

Theorem 1. $f=f_{1}+f_{2 j} \in C^{1}(\bar{\Omega})$ is $\psi-$ regular on Ω if and only if f is harmonic on Ω and

$$
\begin{equation*}
\left(\bar{\partial}_{n}-j L\right) f=0 \quad \text { on } \partial \Omega \tag{*}
\end{equation*}
$$

$\bar{\partial}_{n} f$ is the normal component of $\bar{\partial} f$ on $\partial \Omega$, defined by: $\bar{\partial}_{n} f d \sigma=* \bar{\partial} f_{\mid \partial \Omega}$,
L is the tangential Cauchy-Riemann operator

$$
L=\frac{1}{|\bar{\partial} \rho|}\left(\frac{\partial \rho}{\partial \bar{z}_{2}} \frac{\partial}{\partial \bar{z}_{1}}-\frac{\partial \rho}{\partial \bar{z}_{1}} \frac{\partial}{\partial \bar{z}_{2}}\right) .
$$

Remark. Condition (*) generalizes both the CR-tangential equation $L(f)=0$ and the condition $\bar{\partial}_{n} f=0$ on $\partial \Omega$ that distinguishes holomorphic functions among complex harmonic functions (Aronov and Kytmanov).

The single equation (*) is equivalent to the following system of complex equations on $\partial \Omega$:

$$
\begin{align*}
& \bar{\partial}_{n} f_{1}=-\overline{L\left(f_{2}\right)} \tag{1}\\
& \bar{\partial}_{n} f_{2}=\overline{L\left(f_{1}\right)} \tag{2}
\end{align*}
$$

A weak version of Theorem 1 gives a trace theorem:

Theorem 2. A continuous function $f: \partial \Omega \rightarrow$ \mathbb{H} is the trace of a ψ-regular function on Ω if and only if it satisfies the integral condition

$$
\int_{\partial \Omega} \bar{f}\left(\bar{\partial}_{n}-j L\right) \phi d \sigma=0 \forall \phi \in \operatorname{Harm}^{1}(\bar{\Omega})
$$

\square

From Theorem 1 we immediately get the following result about regular functions:

Theorem 3. $f=f_{1}+f_{2 j} \in C^{1}(\bar{\Omega})$ is regular on Ω if and only if f is harmonic on Ω and

$$
\begin{gather*}
(N-j T) f=0 \text { on } \partial \Omega \text {, where } \\
N=\frac{\partial \rho}{\partial z_{1}} \frac{\partial}{\partial \bar{z}_{1}}+\frac{\partial \rho}{\partial \bar{z}_{2}} \frac{\partial}{\partial z_{2}}, T=\frac{\partial \rho}{\partial z_{2}} \frac{\partial}{\partial \bar{z}_{1}}-\frac{\partial \rho}{\partial \bar{z}_{1}} \frac{\partial}{\partial z_{2}} .
\end{gather*}
$$

2.2 A criterion for holomorphicity

When $\partial \Omega$ is connected, Hartogs Theorem can be applied to improve the previous results. Now conditions

$$
\begin{align*}
& \bar{\partial}_{n} f_{1}=-\overline{L\left(f_{2}\right)} \tag{1}\\
& \bar{\partial}_{n} f_{2}=\overline{L\left(f_{1}\right)} \tag{2}
\end{align*}
$$

are equivalent: one of them implies the ψ regularity of f.
Remark. The connectedness of $\partial \Omega$ is a necessary assumption: consider a locally constant function on $\partial \Omega$.

The equivalence of C_{1} and C_{2} can be used to get the following criterion for holomorphicity:

Theorem 4. Let $\Omega \subseteq \mathbb{C}^{2}$ be bounded, with connected boundary $\partial \Omega$. Let $a \in \mathbb{C}$. If $h \in$ $C^{1}(\bar{\Omega})$ is complex harmonic and satisfies the condition $\bar{\partial}_{n} h=\overline{a L(h)}$ on $\partial \Omega$, then h is holomorphic on Ω.

Remark. The case $a=0$ is a theorem of Aronov and Kytmanov. Mixed differential conditions of this type have been studied in particular by Chirka and Kytmanov.
2.3 Regularity and the $\bar{\partial}$-Neumann problem

The $\bar{\partial}$-Neumann for complex functions can be formulated in the following way:

$$
\bar{\partial}_{n} g=\phi \text { on } \partial \Omega, \quad g \text { harmonic in } \Omega,
$$

with compatibility condition

$$
\int_{\partial \Omega} \phi \bar{h} d \sigma=0 \quad \forall h \in \mathcal{O}(\bar{\Omega})
$$

If $\partial \Omega$ is connected and $C^{\infty}-$ smooth and Ω is strongly pseudoconvex or weakly pseudoconvex with real analytic boundary, the solvability of $\bar{\partial}$-Neumann problem (Kytmanov) applied to the equation

$$
\begin{equation*}
\bar{\partial}_{n} f_{2}=\overline{L\left(f_{1}\right)} \tag{2}
\end{equation*}
$$

allows to achieve the following:
Theorem 5. Let $f_{1}: \partial \Omega \rightarrow \mathbb{C}$ be of class C^{∞}. Then f_{1} is the trace on $\partial \Omega$ of one complex component of a ψ-regular function f on Ω, of class C^{∞} on $\bar{\Omega}$.

Remark. f_{2} is determined up to a holomorphic function, so f is uniquely determined by the orthogonality condition

$$
\int_{\partial \Omega}\left(f-f_{1}\right) \bar{h} d \sigma=0 \quad \forall h \in \mathcal{O}(\bar{\Omega})
$$

This defines a \mathbb{C}-linear operator

$$
R: C^{\infty}(\partial \Omega) \rightarrow M^{\infty}(\Omega)
$$

Corollary 1. Let $M^{\infty}(\Omega)$ be the right \mathbb{H}-module of left ψ-regular functions of class C^{∞} on $\bar{\Omega}$. The mapping C defined by $C(f)=f_{1 \mid \partial \Omega}$ for every $f=f_{1}+f_{2} j \in M^{\infty}(\Omega)$ induces an isomorphism of real spaces

$$
\frac{M^{\infty}(\Omega)}{A^{\infty}\left(\Omega, \mathbb{C}^{2}\right)} \approx \frac{C^{\infty}(\partial \Omega)}{C R(\partial \Omega)} .
$$

2.4 An application: a product in $M^{\infty}(\Omega)$

The existence of a right inverse for C
$M^{\infty}(\Omega) \stackrel{R}{\stackrel{R}{\leftrightarrows}} C^{\infty}(\partial \Omega) \Longleftrightarrow C \circ R=I d_{C^{\infty}(\partial \Omega)}$
allows to define a product in $M^{\infty}(\Omega)$, with respect to which $M^{\infty}(\Omega)$ becomes a commutative \mathbb{R}-algebra, with unity the constant function 1 , and which contains $A^{\infty}\left(\Omega, \mathbb{C}^{2}\right)$ as a subalgebra with respect to the product $\left(f_{1}, f_{2}\right) \cdot\left(g_{1}, g_{2}\right)=\left(f_{1} g_{1}+f_{2} g_{2}, f_{1} g_{2}+f_{2} g_{1}\right)$.

Given $f, g \in M^{\infty}(\Omega)$, let

$$
f * g=R\left(f_{1} g_{1}\right)-\left(f-R\left(f_{1}\right)\right) j\left(g-R\left(g_{1}\right)\right)
$$

where $f_{1}=C(f), g_{1}=C(g)$.
Let $\phi: M^{\infty}(\Omega) \rightarrow M^{\infty}(\Omega)$

$$
\phi(f)=f(1+j)
$$

The product $m_{\Omega}(f, g)$ can be defined as

$$
m_{\Omega}(f, g)=\phi^{-1}(\phi(f) * \phi(g))
$$

3. The case of the unit ball

When $\Omega=B$ is the unit ball in \mathbb{C}^{2}, S the unit sphere, the operators

$$
\bar{\partial}_{n}=\bar{z}_{1} \frac{\partial}{\partial \bar{z}_{1}}+\bar{z}_{2} \frac{\partial}{\partial \bar{z}_{2}}, \quad L=z_{2} \frac{\partial}{\partial \bar{z}_{1}}-z_{1} \frac{\partial}{\partial \bar{z}_{2}}
$$

preserve harmonicity. Condition (*) in Theorem 1 can be reformulated for polynomials. Let

$$
D_{k}=\sum_{0 \leq l \leq k / 2-1} \frac{(k-2 l-1)!(2 l-1)!!}{k!(l+1)!} 2^{l} \Delta^{l+1} .
$$

Theorem 6. The restriction to S of a homogeneous polynomial $f=f_{1}+f_{2} j$ of degree k extends as a ψ-regular function into B if and only if

$$
\left(\bar{\partial}_{n}-D_{k}\right) f_{1}+\overline{L\left(f_{2}\right)}=0 \quad \text { on } S .
$$

It extends as a regular function if and only if

$$
\left(N-D_{k}\right) f_{1}+\overline{T\left(f_{2}\right)}=0 \quad \text { on } S .
$$

Theorem 5 has the following homogeneous version:

Theorem 7. a) For every $f_{1} \in \mathcal{P}_{k}$ (complex k-homogeneous polynomial), there exists $f_{2} \in \mathcal{P}_{k}$ such that the trace of $f=f_{1}+f_{2} j$ on S extends as a ψ-regular polynomial of degree $\leq k$ on \mathbb{H}.
b) If f_{1} is harmonic, then f belongs to the right \mathbb{H}-module U_{k}^{ψ} of ψ-regular homogeneous polynomials of degree k.

The right inverse

$$
R: \mathcal{H}_{k}(S)=\bigoplus_{p+q=k} \mathcal{H}_{p, q}(S) \rightarrow U_{k}^{\psi}
$$

of $C\left(\mathcal{H}_{p, q}\right.$ the space of harmonic homogeneous polynomials of degree p in z and q in $\bar{z}, \mathcal{H}_{k}(S)$ the space of spherical harmonics) gives the following:

Corollary 2. The restriction first-component operator C induces isomorphisms

$$
\frac{U_{k}^{\psi}}{\mathcal{H}_{k, 0}+\mathcal{H}_{k, 0} j} \simeq \frac{\mathcal{H}_{k}(S)}{\mathcal{H}_{k, 0}(S)}
$$

These isomorphisms can be applied to obtain \mathbb{H}-bases for U_{k}^{ψ} starting from \mathbb{C}-bases of $\mathcal{H}_{p, q}(p+q=k)$. This construction preserves orthogonality w.r.t. $L^{2}(S)$.

Given bases $\left\{P_{l}\right\}$ of $\mathcal{H}_{p, q}$, a suitably chosen subset of the images

$$
R\left(P_{l}\right)= \begin{cases}P_{l} & \text { if } q=0 \\ P_{l}+\frac{1}{p+1} \overline{L\left(P_{l}\right)} j & \text { if } q>0\end{cases}
$$

gives a \mathbb{H}-basis for $U_{k}^{\psi}\left(\operatorname{dim}_{\mathbb{H}} U_{k}^{\psi}=\frac{(k+1)(k+2)}{2}\right)$.
A possible choice for a $L^{2}(S)$-orthogonal basis of $\mathcal{H}_{p, q}$ is given by the $p+q+1$ polynomials

$$
P_{l}\left(z_{1}, z_{2}\right)=\sum_{r=\max \{0, l-p\}}^{\min \{q, l\}} c_{l, r} z_{1}^{p-l+r} z_{2}^{l-r} \bar{z}_{1}^{r} \bar{z}_{2}^{q-r}
$$

where $c_{l, r}=(-1)^{r}\binom{p}{l-r}\binom{q}{r}$ and $l=0, \ldots, p+q$.

Cf. RegularHarmonics: a Mathematica 4.2 package available at www.science.unitn.it /~perotti/regular harmonics.htm
4. Sketch of proofs

4.1 Theorem 1 (criterion for ψ-regularity)

The main point is a property of the differential form associated to the Cauchy-Fueter kernel for ψ-regular functions: its first complex component is the Bochner-Martinelli kernel in dimension 2 (Fueter-Vasilevski-Shapiro).

We show that the Bochner-Martinelli integral representation formula for harmonic functions, under condition $(*)$, is the same as the CauchyFueter integral representation formula, from which regularity follows.

4.2 Theorem 2 (trace theorem)

The result follows from the jump formula for the Cauchy-Fueter integral. Using again the property above, we show that the CauchyFueter integral of $f \in C(\partial \Omega)$ vanishes on the complement $\mathbb{C}^{2} \backslash \bar{\Omega}$ under condition

$$
\int_{\partial \Omega} \bar{f}\left(\bar{\partial}_{n}-j L\right) \phi d \sigma=0 \forall \phi \in \operatorname{Harm}^{1}(\bar{\Omega})
$$

When $\partial \Omega$ is connected and one of conditions $\mathrm{C}_{1}, \mathrm{C}_{2}$ (say C_{2}) holds, the Cauchy-Fueter integral of f defines on $\mathbb{C}^{2} \backslash \bar{\Omega}$ a complex valued ψ-regular function $F^{-} \Rightarrow$ a holomorphic function on $\mathbb{C}^{2} \backslash \bar{\Omega} \Rightarrow$ a holomorphic function \tilde{F}^{-} on \mathbb{C}^{2}.

In this way we get a ψ-regular function $F=$ $F^{+}-\tilde{F}_{\mid \Omega}^{-}$on Ω, whose trace on $\partial \Omega$ is f.
4.3 Theorem 4 (criterion for holomorphicity)

Given $f=a h+h j$, condition C_{2} is satisfied, and then f is ψ-regular. From ψ-regularity equations we obtain

$$
\bar{\partial} h=0 .
$$

4.4 Theorem 5 ($\bar{\partial}$-Neumann problem)

The result follows easily since $\phi=\overline{L\left(f_{1}\right)}$ satisfies the compatibility condition for $\bar{\partial}$-Neumann problem. Then there exists f_{2} such that $\bar{\partial}_{n} f_{2}=\overline{L\left(f_{1}\right)} \Rightarrow$ condition C_{2} holds.
4.5 The case of the unit ball

For Theorem 6 we use a computation made by Kytmanov, who proved the analogous result for holomorphic extensions of homogeneous polynomials.

For Theorem 7, we suppose $f_{1} \in \mathcal{H}_{p, q}$ and use Gauss formula for the harmonic extension into B of the trace $f_{1 \mid S}$:

$$
\tilde{f}_{1}=\sum_{s \geq 0} g_{p-s, q-s}
$$

where $g_{p-s, q-s}$ is the homogeneous harmonic polynomial of degree $p+q-2 s$ defined by
$g_{p-s, q-s}=c_{p, q, s} \sum_{j \geq 0} \frac{(-1)^{j}(p+q-j-2 s)!}{j!}|z|^{2 j} \Delta^{j+s} f_{1}$.

The equation $\bar{\partial}_{n} f_{2}=\overline{L\left(f_{1}\right)}$ can now be solved easily since

$$
\bar{\partial}_{n} \overline{L\left(g_{p-s, q-s}\right)}=(p-s+1) \overline{L\left(g_{p-s, q-s}\right)}
$$

4.6 Bases of U_{k}^{ψ}

Let $\mathcal{B}_{p, q}$ denote a complex base of the space $\mathcal{H}_{p, q}(S)(p+q=k)$. Then:
(i) if $k=2 m$ is even, a basis of U_{k}^{ψ} over \mathbb{H} is given by the set
$\mathcal{B}_{k}=\left\{R(h): h \in \mathcal{B}_{p, q}, p+q=k, 0 \leq q \leq p \leq k\right\}$.
(ii) if $k=2 m+1$ is odd, a basis of U_{k}^{ψ} over \mathbb{H} is given by

$$
\mathcal{B}_{k}=\left\{R(h): h \in \mathcal{B}_{p, q}, p+q=k, 0 \leq q<p \leq k\right\}
$$

$$
\cup\left\{R\left(h_{1}\right), \ldots, R\left(h_{m+1}\right)\right\},
$$

where h_{1}, \ldots, h_{m+1} are chosen such that the set

$$
\left\{h_{1}, \frac{1}{p+1} \overline{L\left(h_{1}\right)}, \ldots, h_{m+1}, \frac{1}{p+1} \overline{L\left(h_{m+1}\right)}\right\}
$$

forms a complex basis of $\mathcal{H}_{m, m+1}(S)$.
4.7 The product in $M^{\infty}(B)$

On the unit ball we have explicit formulas for harmonic continuation of polynomials and for the operator R.
Example. The product of the ψ-regular, not holomorphic function

$$
f=\left(\bar{z}_{1}+\bar{z}_{2}\right)+\left(\bar{z}_{2}-\bar{z}_{1}\right) j
$$

with itself is the ψ-regular function

$$
m_{B}(f, f)=\left(2 \bar{z}_{1}^{2}+4 z_{1} \bar{z}_{2}\right)+\left(4 z_{1} \bar{z}_{2}-2 \bar{z}_{1}^{2}\right) j
$$

and the product of f and $g=z_{1}-z_{1} j$ is

$$
\begin{aligned}
& m_{B}(f, g)=m_{B}(g, f)= \\
& \left(\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}+\bar{z}_{1} \bar{z}_{2}+1\right)+\left(\left|z_{2}\right|^{2}-\left|z_{1}\right|^{2}+\bar{z}_{1} \bar{z}_{2}-1\right) j .
\end{aligned}
$$

