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1. Some notations

C? 5 (21,22) = (z0 + iz1, 70 + ix3) <
q=21+ 20] =x0 + 121+ jxro + kxrz € H

Let Q be a bounded domain in H ~ C2. A
quaternionic function f = f1 + foj € CH(Q)
is (left) regular on Q if

of [ .of | .0f of
Df = — — —— + k—— =0 on £,
! 0xq t Zaazl +]8w2 + 0x3

f is (left) +-regular on Q if

D’f:ﬁ+iﬁ+ja_f_kﬁ:0 on .
0xo ox1 0xo 0x3

Remarks 1. f is ¢y-regular <

0fi _0f2 Oh _ 0f2
0z1 0z 0z 0z1

_ 1
x0f1 = —Ea(fzdzl A dzo).



2. Every regular or y-regular function is har-
monic.

3. Every holomorphic map (f1, fo) on £ de-
fines a i-reqular function f = f1 4+ fo3.

4. If €2 is pseudoconvex, every complex har-
monic function f; is the complex component
of a -regular function f on 2.

2. Main results

2.1 A differential criterion for regularity

Theorem 1. f = f1 + foj € CHQ) is -
regular on 2 if and only if f is harmonic on
2 and

(On—jL)f =0 on 0%2. (*)
[ ]

Onf is the normal component of 0f on 6%,
defined by: Onfdo = *5f|aQ,



L is the tangential Cauchy-Riemann operator

1 dp O dp O
~ |9p (azz 8z, 07 822> '
Remark. Condition (*) generalizes both the
CR-tangential equation L(f) = 0 and the
condition d,f = 0 on OS2 that distinguishes
holomorphic functions among complex har-
monic functions (Aronov and Kytmanov).

The single equation (*) is equivalent to the
following system of complex equations on 0€2:

Onf1 = —L(f2) (C1)
Onf2 = L(f1) (C2)

A weak version of Theorem 1 gives a trace
theorem:

Theorem 2. A continuous function f . 082 —
H is the trace of a vy-regular function on 2 if
and only if it satisfies the integral condition

/an(En—jL)qﬁda:ovqbeHarml(ﬁ). ]



From Theorem 1 we immediately get the fol-
lowing result about regular functions:

Theorem 3. f = f; + foj € CYH(Q) is regular
on €2 if and only if f is harmonic on €2 and

(N —4T)f = 0 on 0%2, where

__0Op 0 dp 0O _ 0Op O  0Op O
N = 821851+(952822’ I'= 0zp0z1 0z10zp°

2.2 A criterion for holomorphicity

When 0f2 is connected, Hartogs Theorem
can be applied to improve the previous re-
sults. Now conditions

onf1 = —L(f2) (C1)
Onfo = L(f1) (C2)

are equivalent: one of them implies the -
regularity of f.

Remark. The connectedness of 02 is a neces-
sary assumption: consider a locally constant
function on 0X2.



The equivalence of C; and Co can be used to
get the following criterion for holomorphicity:

Theorem 4. Let Q C C2 be bounded, with
connected boundary 0S2. Let a € C. If h €
C1(Q) is complex harmonic and satisfies the
condition n,h = aL(h) on 82, then h is holo-
morphic on Q. [ ]

Remark. The case a O is a theorem of
Aronov and Kytmanov. Mixed differential
conditions of this type have been studied in
particular by Chirka and Kytmanov.



2.3 Regularity and the 8-Neumann problem

The O-Neumann for complex functions can
be formulated in the following way:

Ong = ¢ on 92, ¢ harmonic in €,

with compatibility condition
hdo =0 VYh € O(Q).
|, ¢hdo ()

If 02 is connected and C°°—smooth and €2 is
strongly pseudoconvex or weakly pseudocon-
vex with real analytic boundary, the solvabil-
ity of &-Neumann problem (Kytmanov) ap-
plied to the equation

Onf2 = L(f1) (C2)

allows to achieve the following:

Theorem 5. Let f1 : 902 — C be of class C*°.
Then f1 is the trace on 02 of one complex

component of a i-regular function f on €2,
of class C*® on Q. L]



Remark. fo is determined up to a holomor-
phic function, so f is uniquely determined by
the orthogonality condition

8Q(f — f1)hdo =0 Vh € O(R2).
This defines a C-linear operator

R :C®(02) — M>(2).

Corollary 1. Let M*°(2) be the right H-mo-
dule of left v-regular functions of class C'*° on
Q. The mapping C defined by C(f) = f1j00
for every f = f1 + foj € M°°(2) induces an
isomorphism of real spaces
M>®(Q2) ~ C*®(00)
A®(Q,C2)  CR(OQ)




2.4 An application: a product in M (2)

T he existence of a right inverse for C

R
M>=() % C*°(0R2) +=> C o R = Idgoo(g0)

allows to define a product in M°(£2), with
respect to which M(2) becomes a com-
mutative R-algebra, with unity the constant
function 1, and which contains A%°(,C?) as
a subalgebra with respect to the product

(f1, f2) - (91,92) = (f191 + f292, f192 + f291).

Given f,g € M°°(2), let

fxg9g=R(f191) — (f — R(f1))j(g — R(g1))
where f1 = C(f), g1 = C(g).
Let ¢ - M®(Q) — M®(S)

o(f) = f(1+7).
The product mo(f,g) can be defined as

ma(f,9) = ¢~ (6(f) * $(9)).



3. The case of the unit ball

When Q = B is the unit ball in C2, S the unit
sphere, the operators

— o o0 o o0
an — 21—_+52—_, L = R)—~—— — Rl ~——
0z1 0zo 0z1 0zo
preserve harmonicity. Condition (*) in The-
orem 1 can be reformulated for polynomials.

Let

(k — 20 — 1)1(21 — 1)1
Dy = >
0<IhI2-1 k(14 1)!

it

Theorem 6. The restriction to S of a homo-
geneous polynomial f = f1 + foy of degree k
extends as a y-regular function into B if and
only if

(On — D) f1+L(f2) =0 onS.

It extends as a reqgular function if and only if

(N—-Dp)f1+T(f2) =0 onS.



Theorem 5 has the following homogeneous
version:

Theorem 7. a) For every f1 € P, (com-
plex k-homogeneous polynomial), there ex-
ists fo € P such that the trace of f = f1+f2)
on S extends as a y-regular polynomial of de-
gree < k on H.

b) If f1 is harmonic, then f belongs to the
right H-module U}f of y-regular homogeneous
polynomials of degree k.

The right inverse

of C' (Hp,q the space of harmonic homoge-
neous polynomials of degree p in z and q in
z, Hp(S) the space of spherical harmonics)
gives the following:

Corollary 2. The restriction first-component
operator C induces isomorphisms

Uy . H(S)
Hio+ Hiroi  Hio(S)




These isomorphisms can be applied to ob-
tain H-bases for U;f starting from C-bases of
Hp.q (p + q = k). This construction preserves
orthogonality w.r.t. L2(8S).

Given bases {F;} of Hpgq4, a suitably chosen
subset of the images

P, if g =0

f(R) = Pz+—_|1_ L(BYj ifg>0

gives a H-basis for Uk (dimg Uk = (k+1>(k+2)).

A possible choice for a L2(S)-orthogonal ba-
sis of Hp q is given by the p+qg—+1 polynomials

min{q,l}
Pi(z1,22) = > P T
r=maz{0,l—p}
where¢ . = (-=1)"(,? )(9) andl =0,...,p+gq.
Lr [—r)\r ’ P4

Cf. RegularHarmonics: a Mathematica 4.2
package available at

WWw.Scilence.unitn.it

/“perotti/regular harmonics.htm



4. Sketch of proofs
4.1 Theorem 1 (criterion for -regularity)

The main point is a property of the differ-
ential form associated to the Cauchy-Fueter
kernel for -regular functions: its first com-
plex component is the Bochner-Martinelli ker-
nel in dimension 2 (Fueter—Vasilevski—Shapiro).

We show that the Bochner-Martinelli integral
representation formula for harmonic functions,
under condition (*), is the same as the Cauchy-
Fueter integral representation formula, from
which regularity follows.

4.2 Theorem 2 (trace theorem)

The result follows from the jump formula for
the Cauchy-Fueter integral. Using again the
property above, we show that the Cauchy-
Fueter integral of f € C'(0£2) vanishes on the
complement C2\ Q under condition

/mf(én—jL)qs do =0V ¢ € Harm* ().



When 0L2 is connected and one of conditions
C1, Co (say C») holds, the Cauchy-Fueter in-
tegral of f defines on C2\2 a complex valued
-regular function F'— = a holomorphic func-
tion on C2\ Q = a holomorphic function F—
on C2.

In this way we get a y-regular function F =
F+ — F’@ on 2, whose trace on 992 is f.

4.3 Theorem 4 (criterion for holomorphicity)
Given f = ah + hj, condition C, is satisfied,

and then f is -regular. From i-regularity
equations we obtain

oh = 0.

4.4 Theorem 5 (9-Neumann problem)

The result follows easily since ¢ = L(f1) sat-
isfies the compatibility condition for 0-Neu-
mann problem. Then there exists fo such
that Onfo = L(f1) = condition C» holds.




4.5 The case of the unit ball

For Theorem 6 we use a computation made
by Kytmanov, who proved the analogous re-
sult for holomorphic extensions of homoge-
neous polynomials.

For Theorem 7, we suppose f; € Hpq and
use Gauss formula for the harmonic extension
into B of the trace f1|5:

fl — Z dp—s,q—s

s>0
where g, s q—s IS the homogeneous harmonic
polynomial of degree p + q — 2s defined by

_1)J 98l 5 )
gp_s7q_8 = Cp.q,s Z ( ) (pth J 3) |Z| ]A]+Sf1'
j=0

The equation &, f> = L(f1) can now be solved
easily since

5nL(9p—s,q—s) =(p—s+ 1)L(9p—s,q—s)-




4.6 Bases of U;f

Let By 4 denote a complex base of the space
Hp,q(S) (p+q=k). Then:

(i) if Kk = 2m is even, a basis of U;f over H is
given by the set

By, ={R(h) : h € Bp,g,p+q=k,0<q<p<k}.

(ii) if k =2m 4+ 1 is odd, a basis of U,Zb over
H is given by

U {R(h1),..., R(hypt1)},

where hy,...,h,41 are chosen such that the
set
{hla . L(hl) P41 . L(hm—l—l)}
p+1 p+1

forms a complex basis of H,, ,,41(S).



4.7 The product in M°°(B)

On the unit ball we have explicit formulas for
harmonic continuation of polynomials and for
the operator R.

Example. The product of the -regular, not
holomorphic function

f=G1+22) + (220 —21)J
with itself is the y-regular function

mp(f, f) = (222 + 42125) + (4212> — 272)

and the product of f and g = z1 — z1J IS

mp(f,g9) = mp(g, f) =
(|21)% =222+ 2122+ 1)+ (|22|°—|21|°+ 21 22— 1) j.



