Quaternionic regular functions and the $\overline{\partial}$ -Neumann problem in \mathbb{C}^2

Alessandro Perotti* University of Trento, Italy

Aveiro, June 2004

*Partially supported by MIUR (COFIN "Proprietà geometriche delle varietà reali e complesse") and GN-SAGA of INdAM.

1. Some notations

$$\mathbb{C}^2 \ni (z_1, z_2) = (x_0 + ix_1, x_2 + ix_3) \leftrightarrow q = z_1 + z_2 j = x_0 + ix_1 + jx_2 + kx_3 \in \mathbb{H}$$

Let Ω be a bounded domain in $\mathbb{H} \approx \mathbb{C}^2$. A quaternionic function $f = f_1 + f_2 j \in C^1(\Omega)$ is (left) *regular* on Ω if

$$\mathcal{D}f = \frac{\partial f}{\partial x_0} + i\frac{\partial f}{\partial x_1} + j\frac{\partial f}{\partial x_2} + k\frac{\partial f}{\partial x_3} = 0 \text{ on } \Omega,$$

f is (left) ψ -regular on Ω if
$$\mathcal{D}'f = \frac{\partial f}{\partial x_0} + i\frac{\partial f}{\partial x_1} + j\frac{\partial f}{\partial x_2} - k\frac{\partial f}{\partial x_3} = 0 \text{ on } \Omega.$$

Remarks 1. f is ψ -regular \Leftrightarrow

$$\frac{\partial f_1}{\partial \bar{z}_1} = \frac{\partial \overline{f_2}}{\partial z_2}, \quad \frac{\partial f_1}{\partial \bar{z}_2} = -\frac{\partial \overline{f_2}}{\partial z_1} \Leftrightarrow$$
$$*\overline{\partial} f_1 = -\frac{1}{2} \partial (\overline{f_2} d\bar{z}_1 \wedge d\bar{z}_2).$$

2. Every regular or ψ -regular function is harmonic.

3. Every holomorphic map (f_1, f_2) on Ω defines a ψ -regular function $f = f_1 + f_2 j$.

4. If Ω is pseudoconvex, every complex harmonic function f_1 is the complex component of a ψ -regular function f on Ω .

2. Main results

2.1 A differential criterion for regularity

Theorem 1. $f = f_1 + f_2 j \in C^1(\overline{\Omega})$ is ψ regular on Ω if and only if f is harmonic on Ω and

$$(\overline{\partial}_n - jL)f = 0 \quad on \ \partial\Omega.$$
 (*)

 $\overline{\partial}_n f$ is the normal component of $\overline{\partial} f$ on $\partial \Omega$, defined by: $\overline{\partial}_n f d\sigma = *\overline{\partial} f_{|\partial\Omega}$, \boldsymbol{L} is the tangential Cauchy-Riemann operator

$$L = \frac{1}{|\overline{\partial}\rho|} \left(\frac{\partial\rho}{\partial \overline{z}_2} \frac{\partial}{\partial \overline{z}_1} - \frac{\partial\rho}{\partial \overline{z}_1} \frac{\partial}{\partial \overline{z}_2} \right).$$

Remark. Condition (*) generalizes both the CR-tangential equation L(f) = 0 and the condition $\overline{\partial}_n f = 0$ on $\partial \Omega$ that distinguishes holomorphic functions among complex harmonic functions (Aronov and Kytmanov).

The single equation (*) is equivalent to the following system of complex equations on $\partial \Omega$:

$$\overline{\partial}_n f_1 = -\overline{L(f_2)} \tag{C_1}$$

$$\overline{\partial}_n f_2 = \overline{L(f_1)} \tag{C_2}$$

A weak version of Theorem 1 gives a trace theorem:

Theorem 2. A continuous function $f : \partial \Omega \rightarrow$ \mathbb{H} is the trace of a ψ -regular function on Ω if and only if it satisfies the integral condition

$$\int_{\partial\Omega} \overline{f} \left(\overline{\partial}_n - jL \right) \phi \, d\sigma = 0 \, \forall \, \phi \in Harm^1(\overline{\Omega}). \quad \Box$$

From Theorem 1 we immediately get the following result about regular functions:

Theorem 3. $f = f_1 + f_2 j \in C^1(\overline{\Omega})$ is regular on Ω if and only if f is harmonic on Ω and

 $(N - jT)f = 0 \text{ on } \partial\Omega, \text{ where}$ $N = \frac{\partial\rho}{\partial z_1}\frac{\partial}{\partial \bar{z}_1} + \frac{\partial\rho}{\partial \bar{z}_2}\frac{\partial}{\partial z_2}, \ T = \frac{\partial\rho}{\partial z_2}\frac{\partial}{\partial \bar{z}_1} - \frac{\partial\rho}{\partial \bar{z}_1}\frac{\partial}{\partial z_2}.$

2.2 A criterion for holomorphicity

When $\partial \Omega$ is connected, Hartogs Theorem can be applied to improve the previous results. Now conditions

$$\overline{\partial}_n f_1 = -\overline{L(f_2)} \tag{C_1}$$

$$\overline{\partial}_n f_2 = \overline{L(f_1)} \tag{C_2}$$

are equivalent: one of them implies the ψ -regularity of f.

Remark. The connectedness of $\partial \Omega$ is a necessary assumption: consider a locally constant function on $\partial \Omega$.

The equivalence of C_1 and C_2 can be used to get the following criterion for holomorphicity:

Theorem 4. Let $\Omega \subseteq \mathbb{C}^2$ be bounded, with connected boundary $\partial\Omega$. Let $a \in \mathbb{C}$. If $h \in C^1(\overline{\Omega})$ is complex harmonic and satisfies the condition $\overline{\partial}_n h = \overline{aL(h)}$ on $\partial\Omega$, then h is holomorphic on Ω .

Remark. The case a = 0 is a theorem of Aronov and Kytmanov. Mixed differential conditions of this type have been studied in particular by Chirka and Kytmanov.

2.3 Regularity and the $\overline{\partial}$ -Neumann problem

The $\overline{\partial}$ -Neumann for complex functions can be formulated in the following way:

 $\overline{\partial}_n g = \phi$ on $\partial \Omega$, g harmonic in Ω ,

with compatibility condition

$$\int_{\partial\Omega}\phi\overline{h}d\sigma=0\quad\forall h\in\mathcal{O}(\overline{\Omega}).$$

If $\partial \Omega$ is connected and C^{∞} -smooth and Ω is strongly pseudoconvex or weakly pseudoconvex with real analytic boundary, the solvability of $\overline{\partial}$ -Neumann problem (Kytmanov) applied to the equation

$$\overline{\partial}_n f_2 = \overline{L(f_1)} \tag{C_2}$$

allows to achieve the following:

Theorem 5. Let $f_1 : \partial \Omega \to \mathbb{C}$ be of class C^{∞} . Then f_1 is the trace on $\partial \Omega$ of one complex component of a ψ -regular function f on Ω , of class C^{∞} on $\overline{\Omega}$. *Remark.* f_2 is determined up to a holomorphic function, so f is uniquely determined by the orthogonality condition

$$\int_{\partial\Omega} (f - f_1) \overline{h} d\sigma = 0 \quad \forall h \in \mathcal{O}(\overline{\Omega}).$$

This defines a $\mathbb{C}\text{-linear}$ operator

$$R: C^{\infty}(\partial \Omega) \to M^{\infty}(\Omega).$$

Corollary 1. Let $M^{\infty}(\Omega)$ be the right \mathbb{H} -module of left ψ -regular functions of class C^{∞} on $\overline{\Omega}$. The mapping C defined by $C(f) = f_{1|\partial\Omega}$ for every $f = f_1 + f_2 j \in M^{\infty}(\Omega)$ induces an isomorphism of real spaces

$$\frac{M^{\infty}(\Omega)}{A^{\infty}(\Omega, \mathbb{C}^2)} \xrightarrow{\approx} \frac{C^{\infty}(\partial \Omega)}{CR(\partial \Omega)}$$

2.4 An application: a product in $M^{\infty}(\Omega)$

The existence of a right inverse for C

$$M^{\infty}(\Omega) \xrightarrow{\overset{R}{\longleftarrow}} C^{\infty}(\partial \Omega) \Longleftrightarrow C \circ R = Id_{C^{\infty}(\partial \Omega)}$$

allows to define a product in $M^{\infty}(\Omega)$, with respect to which $M^{\infty}(\Omega)$ becomes a *commutative* \mathbb{R} -algebra, with unity the constant function 1, and which contains $A^{\infty}(\Omega, \mathbb{C}^2)$ as a subalgebra with respect to the product

$$(f_1, f_2) \cdot (g_1, g_2) = (f_1g_1 + f_2g_2, f_1g_2 + f_2g_1).$$

Given $f, g \in M^{\infty}(\Omega)$, let

 $f * g = R(f_1g_1) - (f - R(f_1))j(g - R(g_1))$ where $f_1 = C(f)$, $g_1 = C(g)$.

Let $\phi: M^{\infty}(\Omega) \to M^{\infty}(\Omega)$

$$\phi(f) = f(1+j).$$

The product $m_{\Omega}(f,g)$ can be defined as

$$m_{\Omega}(f,g) = \phi^{-1}(\phi(f) * \phi(g)).$$

3. The case of the unit ball

When $\Omega = B$ is the unit ball in \mathbb{C}^2 , S the unit sphere, the operators

$$\overline{\partial}_n = \overline{z}_1 \frac{\partial}{\partial \overline{z}_1} + \overline{z}_2 \frac{\partial}{\partial \overline{z}_2}, \quad L = z_2 \frac{\partial}{\partial \overline{z}_1} - z_1 \frac{\partial}{\partial \overline{z}_2}$$

preserve harmonicity. Condition (*) in Theorem 1 can be reformulated for polynomials. Let

$$D_k = \sum_{0 \le l \le k/2 - 1} \frac{(k - 2l - 1)!(2l - 1)!!}{k!(l + 1)!} 2^l \Delta^{l+1}.$$

Theorem 6. The restriction to S of a homogeneous polynomial $f = f_1 + f_2 j$ of degree kextends as a ψ -regular function into B if and only if

$$(\overline{\partial}_n - D_k)f_1 + \overline{L(f_2)} = 0$$
 on S.

It extends as a regular function if and only if

$$(N-D_k)f_1+\overline{T(f_2)}=0$$
 on S.

Theorem 5 has the following homogeneous version:

Theorem 7. *a)* For every $f_1 \in \mathcal{P}_k$ (complex k-homogeneous polynomial), there exists $f_2 \in \mathcal{P}_k$ such that the trace of $f = f_1 + f_2 j$ on S extends as a ψ -regular polynomial of degree $\leq k$ on \mathbb{H} .

b) If f_1 is harmonic, then f belongs to the right \mathbb{H} -module U_k^{ψ} of ψ -regular homogeneous polynomials of degree k.

The right inverse

$$R: \mathcal{H}_k(S) = \bigoplus_{p+q=k} \mathcal{H}_{p,q}(S) \to U_k^{\psi}$$

of C ($\mathcal{H}_{p,q}$ the space of harmonic homogeneous polynomials of degree p in z and q in \overline{z} , $\mathcal{H}_k(S)$ the space of *spherical harmonics*) gives the following:

Corollary 2. The restriction first-component operator C induces isomorphisms

$$\frac{U_k^{\psi}}{\mathcal{H}_{k,0} + \mathcal{H}_{k,0}j} \simeq \frac{\mathcal{H}_k(S)}{\mathcal{H}_{k,0}(S)}.$$

These isomorphisms can be applied to obtain \mathbb{H} -bases for U_k^{ψ} starting from \mathbb{C} -bases of $\mathcal{H}_{p,q}$ (p+q=k). This construction preserves orthogonality w.r.t. $L^2(S)$.

Given bases $\{P_l\}$ of $\mathcal{H}_{p,q}$, a suitably chosen subset of the images

$$R(P_l) = \begin{cases} P_l & \text{if } q = 0\\ P_l + \frac{1}{p+1} \overline{L(P_l)} j & \text{if } q > 0 \end{cases}$$

gives a \mathbb{H} -basis for U_k^{ψ} (dim_{\mathbb{H}} $U_k^{\psi} = \frac{(k+1)(k+2)}{2}$).

A possible choice for a $L^2(S)$ -orthogonal basis of $\mathcal{H}_{p,q}$ is given by the p+q+1 polynomials

$$P_{l}(z_{1}, z_{2}) = \sum_{r=max\{0, l-p\}}^{min\{q, l\}} c_{l,r} z_{1}^{p-l+r} z_{2}^{l-r} \overline{z}_{1}^{r} \overline{z}_{2}^{q-r}$$

where $c_{l,r} = (-1)^r {p \choose l-r} {q \choose r}$ and l = 0, ..., p+q.

Cf. **RegularHarmonics**: a *Mathematica* 4.2 package available at www.science.unitn.it /~perotti/regular harmonics.htm

4. Sketch of proofs

4.1 Theorem 1 (criterion for ψ -regularity)

The main point is a property of the differential form associated to the Cauchy-Fueter kernel for ψ -regular functions: its first complex component is the Bochner-Martinelli kernel in dimension 2 (Fueter–Vasilevski–Shapiro).

We show that the Bochner-Martinelli integral representation formula for harmonic functions, under condition (*), is the same as the Cauchy-Fueter integral representation formula, from which regularity follows.

4.2 Theorem 2 (trace theorem)

The result follows from the jump formula for the Cauchy-Fueter integral. Using again the property above, we show that the Cauchy-Fueter integral of $f \in C(\partial\Omega)$ vanishes on the complement $\mathbb{C}^2 \setminus \overline{\Omega}$ under condition

$$\int_{\partial\Omega} \overline{f} \left(\overline{\partial}_n - jL \right) \phi \ d\sigma = 0 \ \forall \ \phi \in Harm^1(\overline{\Omega}).$$

When $\partial\Omega$ is *connected* and one of conditions C_1 , C_2 (say C_2) holds, the Cauchy-Fueter integral of f defines on $\mathbb{C}^2 \setminus \overline{\Omega}$ a *complex valued* ψ -regular function $F^- \Rightarrow$ a holomorphic function on $\mathbb{C}^2 \setminus \overline{\Omega} \Rightarrow$ a holomorphic function \tilde{F}^- on \mathbb{C}^2 .

In this way we get a ψ -regular function $F = F^+ - \tilde{F}^-_{|\Omega}$ on Ω , whose trace on $\partial\Omega$ is f.

4.3 Theorem 4 (criterion for holomorphicity)

Given f = ah + hj, condition C₂ is satisfied, and then f is ψ -regular. From ψ -regularity equations we obtain

$$\overline{\partial}h = 0.$$

4.4 Theorem 5 ($\overline{\partial}$ -Neumann problem)

The result follows easily since $\phi = \overline{L(f_1)}$ satisfies the compatibility condition for $\overline{\partial}$ -Neumann problem. Then there exists f_2 such that $\overline{\partial}_n f_2 = \overline{L(f_1)} \Rightarrow$ condition C₂ holds. For Theorem 6 we use a computation made by Kytmanov, who proved the analogous result for holomorphic extensions of homogeneous polynomials.

For Theorem 7, we suppose $f_1 \in \mathcal{H}_{p,q}$ and use Gauss formula for the harmonic extension into B of the trace $f_{1|S}$:

$$\tilde{f}_1 = \sum_{s \ge 0} g_{p-s,q-s},$$

where $g_{p-s,q-s}$ is the homogeneous harmonic polynomial of degree p + q - 2s defined by

$$g_{p-s,q-s} = c_{p,q,s} \sum_{j \ge 0} \frac{(-1)^j (p+q-j-2s)!}{j!} |z|^{2j} \Delta^{j+s} f_1.$$

The equation $\overline{\partial}_n f_2 = \overline{L(f_1)}$ can now be solved easily since

$$\overline{\partial}_n \overline{L(g_{p-s,q-s})} = (p-s+1)\overline{L(g_{p-s,q-s})}.$$

4.6 Bases of U_k^{ψ}

Let $\mathcal{B}_{p,q}$ denote a complex base of the space $\mathcal{H}_{p,q}(S)$ (p+q=k). Then:

(i) if k = 2m is even, a basis of U_k^{ψ} over $\mathbb H$ is given by the set

$$\mathcal{B}_k = \{R(h) : h \in \mathcal{B}_{p,q}, p+q = k, 0 \le q \le p \le k\}.$$

(ii) if k=2m+1 is odd, a basis of U_k^ψ over $\mathbb H$ is given by

 $\mathcal{B}_k = \{R(h) : h \in \mathcal{B}_{p,q}, p+q = k, 0 \le q$

 $\cup \{R(h_1),\ldots,R(h_{m+1})\},\$

where h_1, \ldots, h_{m+1} are chosen such that the set

$$\left\{h_1, \frac{1}{p+1}\overline{L(h_1)}, \dots, h_{m+1}, \frac{1}{p+1}\overline{L(h_{m+1})}\right\}$$

forms a complex basis of $\mathcal{H}_{m,m+1}(S)$.

4.7 The product in $M^{\infty}(B)$

On the unit ball we have explicit formulas for harmonic continuation of polynomials and for the operator R.

Example. The product of the ψ -regular, not holomorphic function

 $f = (\bar{z}_1 + \bar{z}_2) + (\bar{z}_2 - \bar{z}_1)j$

with itself is the ψ -regular function

 $m_B(f, f) = (2\bar{z}_1^2 + 4z_1\bar{z}_2) + (4z_1\bar{z}_2 - 2\bar{z}_1^2)j$ and the product of f and $g = z_1 - z_1j$ is

 $m_B(f,g) = m_B(g,f) = (|z_1|^2 - |z_2|^2 + \bar{z}_1 \bar{z}_2 + 1) + (|z_2|^2 - |z_1|^2 + \bar{z}_1 \bar{z}_2 - 1)j.$