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Abstract

We introduce a family of Cauchy integral formulas for slice and slice regular
functions on a real associative *-algebra. For every suitable choice of a real subspace
of the algebra, a different formula is given, in which the domains of integration are
subsets of the subspace. In particular, in the quaternionic case we get a volume
Cauchy formula. In the Clifford algebra case, the choice of the paravector subspace
R™*! gives a volume Cauchy formula for slice monogenic functions.
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1 Introduction

The concept of slice regularity for functions of one quaternionic, octonionic or Clifford
variable has been introduced recently by Gentili and Struppa [1, 2] and by Colombo,
Sabadini and Struppa [3]. In [4] and [5], a new approach to slice functions, based on the
concept of stem function, allowed to extend further the theory to any real alternative *-
algebra of finite dimension. In this setting, a Cauchy integral formula for slice functions
of class €' was proved. In the quaternionic case, a Cauchy kernel was already introduced
in [6], and for slice monogenic functions in [7, 8]. This kernel was applied in [9] to get
Cauchy formulas for ¢!-functions on a class of domains intersecting the real axis.

In the present work, we introduce a family of Cauchy integral formulas for slice and
slice regular functions, in which the domains of integration depend on the choice of a
suitable real vector subspace of the algebra. In the quaternionic case, taking as subspace
the whole space H, we get a volume Cauchy formula. In the Clifford algebra case, we can
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choose the paravector subspace R"*!, obtaining a Cauchy formula in which integration
is performed on an open subset of R”*! and on its boundary.

We begin by fixing some assumptions and by recalling some basic notions.

Fiz a real associative algebra A with unity 1 of finite dimension d > 0, equipped with
the €°°-manifold structure as a real vector space and with an anti-involution x — €.
Define e := d — 1. Identify R with the subalgebra of A generated by 1. The anti-
involution = — x¢ is a real linear map of A into A satisfying the following properties:
()¢ ==z for all z € A, (xy)¢ = y°z¢ for all z,y € A and ¢ = x for each real z. We can
then consider A as a real *-algebra.

For each element x of A, the trace of z is t(x) := x4+ 2¢ € A and the (squared) norm
of z is n(x) := za® € A. We recall some definitions from [4] and [5].

Definition 1.1. The quadratic cone of A is the set
Q4 :=RU{zecA|tx)eR, nx)eR, 4n(x) > t(z)?}.

We also set Sy :={J € Qa | J2 = —1}. Elements of Sa are called square roots of —1
in the algebra A. For each J € S, we will denote by Cy := (1,J) ~ C the subalgebra of
A generated by J.

In what follows, we assume that Sy # 0. It follows that d is even.

Let Ac = A ®r C be the complexification of A. We will use the representation
Ac = {w = z+iy | z,y € A}, with 2 = —1 and complex conjugation w = z + iy = x—iy.

Let D be a non-empty subset of C, invariant under the complex conjugation z =
a+if — zZ = a—1if. A function F' : D — Ac is called a stem function on D if
it satisfies the condition F(Z) = F(z) for each z € D. If F},Fy : D — A are the
A-valued components of F' = F} + iFy, then such a condition is equivalent to require
that F1(Z) = Fi(z) and F(Z) = —Fy(z) for each z € D. We call F' continuous if F}
and F, are continuous. We say that F' is of class &' if Iy and F5 can be extended on
an open neighborhood U of D in C to functions Fy, F» of class €' in the usual sense.
The reader observes that one can also suppose that U is invariant under the complex
conjugation of C and F} + iF} is a stem function.

Let Qp be the subset of Q4 defined by:

We set Dy := Qp NCy; and denote by 0D the (relative topological) boundary of D
in Cy. Observe that, if D is open, then 2p is relatively open in Q4 and the boundary
OQp of Qp in Q4 coincides with UJeSA 0D;.

Definition 1.2. Any stem function F = Fy +iFy : D — Ac induces a (left) slice
function f = Z(F) : Qp — A as follows: if x = a+ 8J € Dy for some o, 5 € R and
J € Sy, we set

flz):=Fi(2) + JFa(z) (2 =a+if).



We will denote by S°(Qp, A) the real vector space of (left) slice functions on Qp
induced by continuous stem functions and by S'(€2p, A) the real vector space of slice
functions induced by stem functions of class €. Proposition 7 of [4] ensures that
ShMQp, A) Cc €°(Qp, A) (h=0,1).

Suppose that D is a non—empty open subset of C. Let F' : D — Ac be a stem
function of class ¢! and let f = Z(F) € S*(Qp, A). Let us denote by 0F/9z : D — Ac
the stem function on D defined by

oF _1(0F .OF
0z 2\aa "'a5 )

F
which induces the slice derivative of =7 8—7 € S'(Qp, A).
0x¢ 0z
Definition 1.3. A slice function f € S*(Qp, A) is called slice regular if it holds:
aajc =0 onQp.

We denote by SR(Qp, A) the real vector space of all slice reqular functions on Qp.

Let S be a non—empty subset of A. We say that S is a genuine imaginary sphere
of A, for short a gis of A, if there exists a (real) vector subspace M of A such that
RCcMcCQsand S=MNS,. If such a M exists, then it is unique. In fact, it is easy
to verify that M = J;c4C;. For this reason, if S is a gis of A, then we say that M is
the wvector subspace of A inducing S. The reader observes that, since M contains 1 and
at least one element of S 4, its dimension is at least 2. Moreover, the set {J, —J} is a gis
of A for each J € Sy4.

Lemma 1.4. Let S be a gis of A and let M be the vector subspace of A inducing S.
Then there exists a norm || || on A such that ||z||* = n(x) for each x € M.

Proof. Since M C Q4, the function n(z) is real-valued and non-negative on M. We
prove that the function \/n(z) is a norm on M. First of all, the function is positive-
homogeneous and vanishes only at x = 0. It remains to prove that it satisfies the triangle
inequality:

Vnlz +y) < v/n(z) +/n(y) for each x,y € M.
This is equivalent to

n(z +y) —n(z) —nly) < 2v/n(x)n(y) . (1)
The left-hand side of (1) is zy® + ya© = t(zy°). Let x = a+ I, y =o' + f'J in M,
with I,J € S C Sz, o,8,0/,8 € R and 3,3 > 0. Since I — J € M, we have that
n(I —J) e R and

0<n(I—J)=—(I—J)*=2+tJ).
It follows that ¢(I.J) is real and ¢(IJ) > —2. Since zy¢ = (a + BI)(a/ — B'J), the
trace of zy° is equal to 2aa’ — BB't(IJ). Therefore, t(zy®) < 2(ac’ + 5f’), while
n(z)n(y) = (o + %) (a? + %) > (ad + BB)?. Tt follows that t(zy°) < 2+/n(z)n(y),
which is precisely inequality (1). Since the restriction of \/n(z) to M is a norm, it can
be extended to a norm || || on A. O



2 The volume Cauchy formulas

Fix a gis S of A. Denote by M the vector subspace of A inducing S and by m the
dimension of M. Choose a norm || || on A as in Lemma 1.4.

Let B = (vg,v1,...,0e) be a (real) vector basis of A with vg = 1, orthonormal
w.r.t. the scalar product ( ,) on A associated to the norm || || and such that v =
(vo,v1,...,Vm—1) form a orthonormal basis of M. Note that M is the orthogonal direct
sum of R and M N ker(t), since (z,y) = St(zy®) on M. Let L : R? — A be the real
vector isomorphism sending x = (zg,21,...,7.) into L(z) = >_j_,zev,. Identify R?
with A via L and hence M with R™ = R™ x {0} C R™ x R¥™ = R¢. The product
of A becomes a product on R¢ by requiring that L is an isomorphism of R-algebras. In
other words, given z,y € R%, xy is defined as L™'(L(x)L(y)). Since B is orthonormal,
|z coincides with the usual euclidean norm (3°5_,22)!/2 of 2 in R%. By Proposition
1(6) of [4], we know that Sy = {J € A|t(J) =0, n(J) = 1}. In this way, we have that

8 ={(@o, 21, wm1) €R™ g = 0, 37" aif = 1}.

In what follows, we assume that D is a non—empty bounded open subset of C with
boundary 0D of class €. Denote by n : 9D — C the continuous function sending
z € 0D into the outer normal versor of 0D at z. Since D is stable under conjugation,
the map n is a stem function on 9D.

We define the circularization Qp(S) of D w.r.t. S as the following subset of Q4:

Qp(S) ={rx € Qulz=a+bJ, o, R, a+if €D, JeS}.

Since Qp({J, =J}) = D for each J € Sy, it follows that Qp(S) = J;cg Ds. On the
other hand, M = |J;.4 C; and hence 2p(S) is an open subset of M. Denote by 9€2p(S)
the boundary of Qp(S) in M. It is easy to see that dQp(S) = U;cg0Ds = Qap(S).
We define the outer normal vector field n : 0Qp(S) — A to 0Qp(S) as the slice
function induced by the stem function n. More explicitly, n is defined as follows. Given
x=a+pJ €0Np(Y), z := a+if belongs to D and hence we can write n(z) = nj+ins
for some nj,ng € R. Then we have: n(z) :=n; + naJ.

For each non-negative integer n, we denote by 7, the volume of the standard sphere
S™ of R™*1. It is well known that 7, has the following explicit expression:

n+1

2m 2

RGN

where I' is Fuler’s gamma function.

Let us introduce a notion of Cauchy kernel of A relative to the gis S.

We start recalling from [4] the definitions of the characteristic polynomial A, of
w € Q4 and of the Cauchy kernel of A. A, is the slice regular polynomial

Ay(z) = 2% — zt(w) + n(w),



with zero set Sy, := {x € Q4 | t(x) = t(w), n(x) = n(w)}. The Cauchy kernel for slice
regular functions on A is defined, for each z € Q4 \ Sy, as

C(z,w) := Ay(z) Hw® — ).

C(-,w) is slice regular on Q4 \S,, and has the following property w.r.t. the slice product
of functions:

C(z,w) - (w—1z)=1.

Define I's := {(z,w) € Qa4 x (M \R)|Ay(x) # 0}. Observe that, if (z,w) € I's and
x = a+ BJ for some o, € R and J € S, then A, (x) belongs to C; \ {0} and hence
Ay () is invertible in A, or better, in C;. This fact ensures that the following definition
is consistent.

Definition 2.1. We define the Cauchy kernel of A w.r.t. S as the smooth function
Cs :T'gs — A given by setting

Colaw) = 2 C(m,w)miz_ 2 C(z,w)

=2 (n(Im(w))) 2 2 [[Tm(w) |2

where Im(w) 1= (w — w°) /2.

Note that, for each fixed w € M \ R, Cg(-,w) is a slice regular function on Q4 \ S,.
In particular, when S = {J,—J} for some J € Sy, then m = 2, n,,—2 = 2, and Cg
extends up to the real axis and coincides with the kernel C of A.

Denote by w = (wo, w1, ..., wnm—-1) : M — R™ the coordinate system on M sending
w into ZZ:Ol wyvy and by dw the corresponding volume form dwg A dwy A - -+ A dw,y,—1.
Such a volume form induces a structure of oriented Riemannian manifold on M and hence
on its open subset Qp(S). Its boundary 9Qp(S) is a hypersurface of M of class €,
which inherits a structure of oriented Riemannian manifold, via the standard rule “first
the outer normal vector”. Denote by do,, the corresponding volume form of 9Qp(S).
By abusing notation, we will use the letter w to indicate both a point of M and its
coordinates w.r.t. v.

We have:

Lemma 2.2. For each x € Qp(S5), the function from Qp(S) \ (Sz UR) to A, sending
w into Cg(z,w), is summable on Qp(S) w.r.t. dw and the function from 0Qp(S)\ R to
A, sending w into Cs(z,w), is summable on OQp(S) w.r.t. doy,.

Denote by Qp the closure of Qp in Qy4, which coincides with Q5 if D denotes the
closure of D in C.
We are now in position to state our main result.

Theorem 2.3. Let S be a gis of A, let M be the vector subspace of A inducing S and
let m := dimM. Choose a volume form dw of M as above and denote by do,, the



corresponding volume form of OQp(S). Then, for each f € S*(Qp, A) and for each
x € Qp, it holds:

1 1
=5 Cs(xz,w)n(w) f(w) doy, — / Cs(z,w)
T JoQp(S) T JQp(s)

of

1) .

(w)dw . (2)

If f is slice regular on Qp, then formula (2) holds with only the boundary term.

Formula (2) is still valid for all functions in S*(Q2p, A), which admit a continuous
extension on Qp. This can be seen by approximating the domain with smaller subdo-
mains. Using the same strategy, one can relax also the assumption on the ¢'-regularity
of 0D and hence of 0Qp(.5).

The reader observes that, if S is equal to the gis {J,—J} for some J € S4, then
formula (2) reduces to the Cauchy formula obtained in Theorem 27 of [4].

For each continuous slice function f € S%(0Qp(S), A), we can consider the Cauchy-
type integrals F ; :Qp — Aand F§ : Q4 \ Qp — A defined respectively by setting

1

T o

FZ(z): / Cs(z,w)n(w) f(w) doy, . (3)
oNp(S)

Observe that F ;[ are slice regular functions. If the boundary function f is of class %!
(in fact, a Holder condition suffices), then a Sokhotskii—Plemelj jump formula is valid.

Theorem 2.4. Let S be a gis of A, let f € SY(00p(S), A) and let Féﬁ be the functions
defined in (3). Then F; extends continuously to Qp and Fg extends continuously to
Q4 \ Qp. Moreover, for each x € IQp(S), it holds:

f@) =Fg(2) - Fg (x) . (4)

Corollary 2.5. Let S be a gis of A and let f € SY(O0p(S), A). Then there exists
F € SR(p, A)NE°(Qp, A) such that F = f on OQp(S) if and only if Fg vanishes on
O0p(S). In this case, the extension F is given by Fg .

Remark 2.6. In general, the integrals FgF depend on S. For example, if A =H, Qp is
the unit ball, S = {i,—i}, S" = {j,—j} and f(z) = zo+ix1, then Fd (z) =z, Fg (z) =0,
while Fg,(z) = /2, Fg (z) = —1/(2x).

We give the proof of the preceding results in the next section.
We conclude the present section by reformulating our Cauchy formula (2) in the
quaternionic and in the Clifford algebra cases.

2.1 The quaternionic case

If A is the algebra H of (real) quaternions, the quadratic cone is the whole algebra (see
[4]) and therefore we can take M = H and S = Sy as a gis. In this case, Qp(S) = Qp
is an open domain in H, with 9Qp(S) = 0Qp.



Corollary 2.7. For each slice function f € S*(Qp,H) and for each x € Qp, it holds:

1 1 of
= 5x |, Coatmw)mtu)sydow — - | Gl w) ) d

f(z)

where, for x € H and w = wo + wii + waj + wsk € H\ R with w ¢ S;, the kernel is

1A @)

Cs,(r,w) =
5 ) 2wl + wi +w?

2.2 The Clifford algebra case

If A is the real Clifford algebra R,, with signature (0,7n), the quadratic cone Q,, contains
the subspace R"! of paravectors (see [4, 5]). We can then take M = R"*! and S =

St ={r =z101+ - +1pe, €R, |23+ +22 =1} asagis. Hereey,. .., e, denote the
basic generators of R,,, satisfying the relations e;ej+eje; = —20;5. In this case, {2 D(Snfl)
is an open domain in R"*! and we can take v = (1,e1,...,e,) as orthonormal basis of M.

Slice regularity on R, generalizes the concept of slice monogenic functions introduced
in [3]. If D intersects the real axis, then the restriction of a slice regular function f on
Qp to R™*! is a slice monogenic function. Conversely, each slice monogenic function is
the restriction of a unique slice regular function.

Corollary 2.8. Let w = wy + wieq + - - - + wpe, € R \ R and let w = wy — wie; —
- — wpey, be its Clifford conjugate. For x € Qgr, and w ¢ S,, consider the Cauchy
kernel
2 Ay(r) Hw - 2)
M1 (w2 + -+ w2)"s
Then, for each slice function f € SY(Qp,Ry,) and for each x € Qp, it holds:

1 1 af
= — Can— xjwnwfwdaw—/ Con-1(x,w w) dw .
55 o oy G don — [ Cons(aw) )

Csn-1(z,w) =

f(z)

If f is slice monogenic on Qp(S™™1), continuous up to the boundary, and x € Qp(S*1),

then
1

27 0 (Sn—1)

f(x) Con—1(z,w)n(w) f(w) doy, .

Another instance of Cauchy formula (2) on R,, can be obtained by choosing the gis
S = {J,—J} for some imaginary unit J € Sg,. If J € S""! C Sg,, then formula (2)
reduces to the Cauchy and Pompeiu formulas given in [7, 9] for slice monogenic functions.

3 Proofs

Let us construct explicitly polar coordinates on the standard sphere S™ of R"*! and on
R+ itself.



Let I; be the interval (0,27) of R, let I;” be the interval (0, ), let N be the subset
[0,4+00) x {0} of RZ2 = R x R and let ¢; : I; — R?>\ N be the smooth embedding
defined by setting ¢1(61) := (cos(61),sin(61))T. For each n > 2, identify R" with
R"~! x R and define the open subsets I,, and I, of R" and the smooth embedding
on I, — R\ (N x R"2) by induction as follows: I, := I, 1 x (—7/2,7/2),
LY =1, 1 x (0,7/2) and @, (¢, 0,) := (cos(0n)pn_1(0"),sin(6,))7.

Let n > 1. It is easy to verify that ¢, (I,) is equal to the dense open subset
S™\ (N xR™ 1) of S™, where N x R"~! denotes N if n = 1. The map ¢, is a smooth dif-
feomorphism onto its image, called polar coordinates on S™. Similarly, if S denotes the
northern hemisphere S N {xz,+1 > 0} of S™, then ,, induces a smooth diffeomorphism
from I, to the dense open subset S7 \ (N x R"!) of S7.

Let R, := R\ {0}. Define H, 1 := (N x R* 1)U (R" x {0}) € R*"! and the polar
coordinates @, 1 : R, x I} — R""1\ H, .1 of R"! by setting ®,,11(p,0) := pon(6).
Denote by Jg,,,, and J,,, the jacobian matrices of ®,, 11 and of ¢y, respectively. Observe
that, given p € R, and 0 € I}, Jg, ., (p,0) is equal to the block matrix (¢n(0)|pJ,, (6)).
Define the smooth function .#, : I} — R by setting

In(0) == det (Jo,,,(1,0)) = det ((¢n(0)|Js,(0))) (5)
for each 6 € ;7. Let us prove an elementary, but very useful, lemma.
Lemma 3.1. For each integer n > 1, the following assertions hold:
(i) det (Jo,,,(p,0)) = p"F(0) for each (p,0) € Ry x I}
(i) (pn)TJs, =0 on L.

(iil) Sn(0) = [[r_y(cos(0x))*~t for each 0 = (01,...,0,) € L. The latter product
reduces to 1 if n = 1.

(iv) &, =det ((pn|Jp,)) >0 on L.

(V) S = \/det ((J%)TJ%) on I,f.

(vi) ff:{ In(0)di = np, /2.

Proof. Since Js, ., (p,0) = (pn(0)|pJy, (6)), point (i) is evident.

Let us prove points (ii) and (iii) by induction on n > 1. If n = 1, then (ii) and (iii)
are immediate to verify. Let n > 2 and let 0 = (¢',6,) € I,,_1 x (0,7/2) = I,}. Define
Cn = cos(0y,), sp :=sin(b,), v, = pn_1(6') and J),_, := J,,_,(#"). By definition, we
have that ¢,(0) = (cn!,_1,5,)7. In this way, it holds:

o (s

and hence
(son(9>)TJ%(9) = (C%(Sf?%fl)TJéfl‘ - Cnsn((@%fl)TSD;zfl - 1))

8



By induction, we know that (¢/,_;)T.J!_; = 0. On the other hand, ¢/, ; belongs to S"~*
and hence (¢!, _,)T¢! | = 1. Tt follows that (0, (6))TJ,, () = 0, as desired. This prove
(ii). Observe that

Cn In— C”J;L— —Sn ;L_
In(0) = det (Jq>n+1(1,0)) = det ( Pt ‘ 1 ‘ Pn-1 >

Sn ‘ 0 ‘ Cn

/ J . ’
:cﬁ_ldet<cn¢n_l 1| e )

n—
Sn ‘ 0 ‘ Cn,

The last determinant can be expanded w.r.t. the last row, to obtain
Fn(0) =7 ((=1)"sp det ( J),_y ‘ —Sp@lh_1 )+ cndet ( cnpl_y ‘ J_1)) =
=t (shdet (@l _y | Jhy ) Hepdet (g | Jhy)) =cn ().
Point (iii) follows by induction. Point (iv) is an immediate consequence of (iii) and the
fact that the cosine is positive on (—m/2,7/2).

It remains to prove (v) and (vi). Fix an integer n > 1 and 6 € I,}. Bearing in mind
(i) and the equality (¢, (0))Tpn(8) = 1, it follows that

o ()
(Ja,41(1,0))" Ja, . (1,0) = ( 0| (7 (0))77,.(0)

and hence
Fn(0)? = det ((Ja,,,(1,0) o, ., (1,0)) = det ((J,,(0))" s, (0)) .

By combining this fact with (iv), we infer point (v). In particular, if d¢, is the standard
volume form on S™, then (¢n)*(dé,) = #,(0)df and hence (vi) holds:

1 _
/mfn(e)de_Z/ndfn_ 5 -

The proof is complete. O

In what follows, we will use the notations fixed in the preceding section.

Proof of Lemma 2.2: Identify R”~! with the vector subspace {0} x R™~! of M ~
R™ =R x R™! and S with the sphere §™~2 in R™~ L.

If m = 2, then Lemma 2.2 is evident. Suppose m > 3 and fix J € ™ 2. We will
prove the following two inequalities

/ 1Cs(a,w) [ dow < +00 (6)
9Qp(9)

and
/ 1O, w)[dw < +o0o . (7)
Qp(S)

9



Evidently, points (6) and (7) are equivalent to Lemma 2.2. We organize the remainder
of the proof into two steps. In the first, we prove (6). The second is devoted to the proof
of (7).

Step I. For simplicity, we assume that 0D is connected. If this is not true, it suffices
to consider each connected component of 9D j, suitably oriented.

Let u = ag + Boi € 0D, let v := ap + BoJ € 0Dy and let a,b : (0,1) — R be
% '-functions such that the map (0,1) 3 ¢t ~— a(t) + b(t)J € C; \ {v} is a € -embedding,
which parametrizes 0D\ {v}. Observe that b(t) has at most two zeros in (0, 1). Define
the €'-map ¥ : (0,1) x I+ 5, — R™ = R x R™~! and the dense open subset = of
00p(S) by setting

W(t,0) = (a(?), b(t)spm—2(0))T

and
E:={a+fKcQi|la,fER, a+BicdD\{u}, K€ ST 2\ (N xR" )}

It is immediate to see that the image of W coincides with = and the restriction o :
(0,1) x It _, — = of ¥ onto its image = is a ¢*-diffeomorphism.
Let (¢,0) € (0,1) x I' _, and let Jy(t,0) be the jacobian matrix of ¥ at (¢,6). It

holds:
To(t,0) = ( @ |0 )
’ V() om—a(0) | b(t) Ty, ,(0) )

where o’ and b’ denote the derivatives of a and of b, respectively. By points (ii), (iv) and
(v) of Lemma 3.1, we obtain:

o (1)2 /(£))2
(Ju(4.0))7 I (1.6) = <( OF + 07| : <9>>

0 (02 T2 (0) T,
and hence
Vet (Ju(t.0))7 T (1,0)) = b(0)" 2 Fr—2(0)/ (@ (D)% + (0(1))2
By combining point (iv) of Lemma 3.1 with the latter equality, we infer that
W (dow) = 1B Fna(6) (@O + (V(0))? de . (®)

Bearing in mind (8) and performing the change of variable w = (¢, ), we obtain:

2 |C(z, w)|
C doy, =
/{mD(s) |Cs(z, w)|do P /(01 O Ty Y (dow) =

S / HC(%U})Hfm—Q(@)\/(a’(t))2+(b’(t))thdG.
(01)

Nm—2 It

m—2

Since the integrand in the last integral is continuous, positive and bounded on (0,1) X
I, inequality (6) holds.

m—2

10



Step II. Let us prove (7). The proof is similar to the one of the preceding step,
but slightly simpler. Let (r,s) be the coordinates of C ~ R2. Define the ¢'-map
[':(D\R)x It , — R™=R x R™ ! and the dense open subset T of Qp(S) \ R by
setting

T(r,5,0) := (r,®m,_1(s,0))T

and
T = {r—l—sKGQA‘r,seR,r—i—siED\R,Kesiz—z\(Nme_g)}.

It is easy to verify that the image of I" is equal to T and the restriction « : (D \ R) x
I:[L_Q — Y of I onto its image T is a ¢1-diffeomorphism.
Given (r,s,0) € (D\R)xI,} _,, it is immediate to see that the determinant det (Jp(r, s, 6))

of the jacobian matrix of I' at (r, s, ) is equal to det (Jas,, ,(s,0)) and hence, by point
(i) of Lemma 3.1, we have:

‘det (.]1"(7‘,8,(9))‘ = |s|™ 2. 7_2(0) . (9)

Using the change of variable w = I'(r, s,0) and (9), we obtain:

2
[ leswldo= 2 I -2 1,y (0) ar s as =
Qp(S) Mm—2 J(O\R)x1-_,  |S|™

2
= / |IC (2, w)|| Fm—2(0) dr dsdf .
NMm—-2 JDxIt ,

This equality implies immediately (7).

Proof of Theorem 2.3: During this proof, we will use the maps ¢ and I' defined in
the preceding one. If m = 2, then, as we have just said, Theorem 2.3 is equivalent to
Theorem 27 of [4]. Suppose m > 3. Let us prove that, fixed any J € S, the following
equality holds:

af -
/BQD(S) Cs (@, w)n(w)f(w) dow = 2/ Cs(z,w) %(w) dw =

Qp(S)
_ 1 e 0
= Cla,y)J "y fly) — | Cla,y)J 'dy Adyai
8D Dy x

(y) - (10)

Bearing in mind Theorem 27 of [4], equation (10) is equivalent to Theorem 2.3. Observe
that, if (¢,0) € (0,1) x It _, and w = (¢, 0), then

b (t) —d(t)Jy
V@) +@1))?

where Jp = ¢,,—2(0) € S. Making use of (8), (11) and of the change of variable

n(w) = (11)

11



w = 1(t,0), we obtain:

fhm—2 Cs(x,w)n(w) f(w)doy, =
/aQDm o(, w) n(w) f(w)

2

_ /(0 ) O, w)(V(£) — ' (£)Jg) Iomo(0) dt 6 f(w) —

It

m—2

1
= /. Im—2(0) dG/ C(x,w)(b'(t) — d'(t)Jp) dt f(w) =
I 5 0

m

1
= [ Fua@ a0 [ Claw) 17 ata0) + 00150 S w)
I, 0

(12)

since J, ! = —.Jp. Using the change of variable w = I'(r,s,0) = (r,s.Jy) and (9) again,

we also have:

(13)

of / of
m— Cs(z,w w) dw = Clx,w)Im—2(0)2drdsdb w) =
i Ot grayde = [ O sna® 2 (w)
d
[ A [ Clo) gty ny )
1;.72 DJQ 8.%'
where 2dr ds = J(;ldyc/\dy ify=r+sJypecDy,.
From (12) and (13), we get
— 0
Tt [ Colwhm) ) o = moa [ Cstew) S w) du =
a0 (S Qp(S) t

)
— /+ Ir_o(0) dO ( / C(z,w)Jy td(a(t) + b(t)Jp) f(w)—
I 5 0

_ of
. 1,4 c
b, C(z,y) Jy dy° Ndy amc(?J)) :

The Cauchy formula proved in Theorem 27 of [4] gives that

1
_ _ 0
| ctwws; it + 500 sw) - [ o) gy aye ndy 55 ) =
0 Dy, €
—1 -1, c 8f
= | Clay) T dy fly) = | Cla,y)J ™ dy" ndy 57 (y) = 2mf(x)
dD Dy T
for each @ € It _,. Therefore, thanks to point (vi) of Lemma 3.1, we have:
m— 0
Tt [ Colrwym)f ) o = mos [ Cstew) 2 w)du =
2 Joaps) 2p(8) Ox
_ Nm-2 -1 —14c of _
= Clz,y)J dy f(y) — | Clz,y)J dy“ Ndy ==(y) | =
2 8DJ DJ 6$

_ /1  Tua(6)d0 (2mf(2)) = T2 f ().

m—2
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Equality (10) is proved and the proof is complete.

Proof of Theorem 2.4: Let f € SY9Qp(9),A). For each 6 € It ,, let Jy =
©m—2(0) € S be as in the preceding proof. Denote by F(f and F, the Cauchy-type
integrals defined on D, and Cy, \ D, by

1

Fif = —
o () o oD,

C(z,w)J, ' dw f(w). (14)

Since the restriction fjop I is of class €', F0+ extends continuously to D, and Fy

extends as a continuous function on Cj,\ D,. Moreover, the classical Sokhotskii-Plemelj
formula (see [10, §2]) holds:

Ef(z) — F; (z) = f(z) for each x € 0D,,. (15)

The functions F(;“ and F, are slice regular on p and Qy \ Qp, respectively. The
continuity of their restrictions to Cj, up to the boundary implies the continuity of the
inducing stem functions (see the proof of Proposition 5 of [4]). In view of Proposition
7(1) of [4], also the functions ng are continuous up to the boundary. Given a point
T = a+ Bl € 00p(S), let ' = a+ BJy and 2’ = o — BJy. From (15), we get:
f(@) = Ff(2/) — F; (/) and f(z") = F, (") — F, (z"). The representation formula
(see [4, Prop. 6]) applied to f and to ng gives

F(#) = SR + @) — 52 — fa) = B @)~ Fy ). (16)
From (12) and (14), we get:
Fi(z) = — Cls(, w) n(w) f (w) dow =
21 Joop(s)
1
-— /1;2 Tr(0) d6 /0 Ca,w) Ty d(a(t) + b()Jo) f(w) =
_ 2 t
- = /1,:_2 Fna(8) dO F () (17)

Let U be a compact neighborhood of 0D, invariant w.r.t. complex conjugation. There
exists a positive constant K such that ||, (z)|| < K for each x € D, and || F, (z)|| < K
for each z € (Cy, \ Dj,) N Q. The representation formula gives ||F, (z)|| < 2K for each
z € Qp and ||F, (z)|| < 2K for each z € (Qa \ 2p) N Qy. Then Lebesgue’s dominated
convergence theorem ensures that F Si extend continuously up to the boundary 9Qp.
Moreover, from (16) and (17), we get the jump Fd (2) — Fg (&) at & € 9Qp(9):

FE@) =P (@) = —— [ Sua0) a0 (5 (0) = Fy () =
2 o
- = /m T 2(0) dO £(3) = f(3) . (18)
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