
1

Distributed Architectures -- 1

XII. Distributed Architectures
Types of Distributed Architectures

Client-Server Architectures
Distributed Databases

Data Fragmentation and Allocation
Transparency Levels

Distributed Architectures -- 2

Paradigms for Data Distribution

� Client-server architecture: separation of the database
server from the client

� Distributed databases: several database servers used
by the same application

� Parallel databases: several data storage devices and
processors operate in parallel for increasing
performances

� Replicated databases: data logically representing the
same information and physically stored on different
servers

� Data warehouses: servers specialized for the
management of data dedicated to decision support.

2

Distributed Architectures -- 3

Technologies for Distributed Systems

� Networks -- local area and wide area networks (LAN and
WAN respectively); you need to install network cables.

� Internet -- use telephone lines to transfer data and
programs, thereby facilitating distribution.

� Wireless communication technologies -- the way of the
future
9Packet radio technology; generally works for short

distances, low transfer rates;
9Cellular networks, support cell phones;
9Commercial satellite systems, such as iridium

� Telephone companies world-wide are scrambling to get
out of wired telephony and into wireless services.

Distributed Architectures -- 4

How Much Distributed Data is there?

� It is estimated that we produce about 1 hexabyte of
unique web data per year; that’s 1018Bytes, or ~250MB
per person on earth; no disk can hold so much data.

� We produce 500 times more information through email
messages than through the web.

� The great challenge (some say the greatest ever!) of
technology is to search, retrieve, organize and manage all
these data, and make them useful to people.

� Someone (Brewster Kahle, an archivist) is trying to
archive the web…

…a lot!!!

3

Distributed Architectures -- 5

Separation of Functionalities

� OLTP (On-Line Transaction Processing) systems, aims
at optimized management and reliable transactions on
database servers, specialized for supporting hundreds or
even thousands of transactions per second

� OLAP (On-Line Analytic Processing) systems, aimed at
data analysis, which operate on data warehouse servers,
specialized for data management for decision support

Distributed Architectures -- 6

Desirable Properties for
Highly Interactive Systems

� Portability refers to the ease of transporting programs
from one environment to another (and it is thus a typical
compile-time property)

Facilitated by language standards (e.g., SQL-2, SQL-3)

� Interoperability refers to a system’s ability to interact
with other, possibly heterogeneous, systems (and it is
thus a typical execution-time property.)

Facilitated by standard data access protocols,
including Database Connectivity (ODBC) and X-Open

Distributed Transaction Processing (DTP)

4

Distributed Architectures -- 7

Client-Server Architectures

� Client-server is a general model of interaction
between software processes, where interacting
processes are classified into clients (which require
services) and servers (which offer services)

� Requires a precise definition of a service interface,
which lists the services offered by the server

� The client process performs an active role, the
server process is reactive

� Normally, a client process requests few services in
sequence from one or more server processes, while
a process server responds to multiple requests from
many process clients.

Distributed Architectures -- 8

Typical Client-Server Architecture

5

Distributed Architectures -- 9

Client Server Architecture for
Data Management

� It is a good idea to assign clients and servers to distinct
computers because:
9The functions of clients and servers are clearly identified
9They give rise to a convenient separation of application

and management activities
� SQL offers an ideal programming paradigm for the

identification of the ‘service interface’
9SQL queries are sent from the client to the server
9The query results are returned to the client
9The standardization, portability and interoperability of

SQL allows the construction of client applications that
involve different server systems

Distributed Architectures -- 10

Allocation of Clients and Servers
to Different Computers

� The computer dedicated to the client must be suitable
for interaction with the user and support productivity
tools (electronic mail, word processing, spreadsheet,
Internet access, and workflow management)

� The server computer must have a large main
memory (to support buffer management) and a high
capacity disk (for storing the entire database)

6

Distributed Architectures -- 11

Multi-Threaded Architectures
� Often, database (and other) servers are multi-threaded:
9Behave like a single process that works dynamically on

behalf of several transactions;
9Each unit of execution of the server process for a given

transaction is called a thread;

� Servers are permanently active processes that control an
input queue for client requests and an output queue for
the query results

� Often, a dispatcher process distributes requests to the
servers and returns the responses to the clients

� When the dispatchers can dynamically define the number
of active server processes as a function of the number of
requests received: we say that a server class is available

Distributed Architectures -- 12

Two-Tier vs Three-Tier Architectures

� Two-tier architectures: the client is both the user
interface and the application manager
9The client is called thick-client, as it supports the

application logic
� Three-tier architectures: a second server is present,

known as the application server, responsible for the
management of the application logic common to many
clients
9The client is named thin-client; it is responsible only

for the interface with the final user; such clients can be
deployed using browser technology

7

Distributed Architectures -- 13

Distributed Databases

� A distributed database is a system in which some
clients interact with multiple servers for the execution
of an application

� We discuss separately:
9How a user can specify distributed queries
9How the server technology is extended in a

distributed database

Distributed Architectures -- 14

Advantages of Distributed Databases

� Distributed databases respond to application needs. After
all, enterprises are geographically distributed; distributed
databases allow the distribution of data processing and
control to the environment where data is generated and
largely used

� Distributed databases offer greater flexibility, modularity
and resistance to failures
9Distributed systems can be configured by the

progressive addition and modification of components;
9Although they are more vulnerable to failures, they

support ‘graceful degradation’ (respond to failures with
a reduction in performance but without total failure)

8

Distributed Architectures -- 15

Classification of Applications
� Based on the type of DBMS involved:
9Homogeneous Distributed Databases: When all

the servers have the same DBMS
9Heterogeneous Distributed Databases: When the

servers support different DBMSs
� Based on the network:
9Can use a local area network (LAN)
9Can use a wide area network (WAN)

Distributed Architectures -- 16

Network typeType of DBMS

LAN WAN

Homogeneous Data management and
financial applications

Travel management and
financial applications

Heterogeneous Inter-divisional
information systems

Integrated banking and
inter-banking systems

Classification of Applications

9

Distributed Architectures -- 17

Local Independence and Cooperation

� In a distributed database, each server has its own
capacity to manage applications independently:
9A distributed database should not maximize the

interaction and the necessity of transmitting data via
networks

9On the contrary, the planning of data distribution and
allocation should be done in such a way that
applications should operate independently on a single
server

Distributed Architectures -- 18

Data Fragmentation and Allocation

� Given a relation R, its fragmentation consists of determining
fragments Ri by applying algebraic operations to R.
9 In horizontal fragmentation, fragments Ri are groups of

tuples having the same schema as R (as after selection on
R); Horizontal fragments are usually disjoint;

9 In vertical fragmentation, each fragment Ri has a subset
of the schema of R (as though projection was applied on
R). Each vertical fragment includes the primary key of R

� The fragmentation is correct if it is:
9Complete: each data item of R must be present in one of

its fragments Ri

9Restorable: the content of R must be restorable from its
fragments

10

Distributed Architectures -- 19

Example

� Consider EMPLOYEE (Emp#, Name, Dept#, Salary, Taxes)
� Horizontal fragmentation

9 EMPLOYEE1 = σEmp#<=3 EMPLOYEE

9 EMPLOYEE2 = σEmp#>3 EMPLOYEE

� Reconstruction requires a union:

9 EMPLOYEE = EMPLOYEE1 U EMPLOYEE2

� Vertical fragmentation:

9 EMPLOYEE1 = ΠEmp#,NameEMPLOYEE

9 EMPLOYEE2 = ΠEmp#,DeptName,Salary,TaxEMPLOYEE

� Reconstruction requires an equi-join on key values (natural
join).

9 EMPLOYEE = EMPLOYEE1 �� EMPLOYEE2

Distributed Architectures -- 20

Initial Table

EMPLOYEE EmpNum Name DeptName Salary Tax
1 Robert Production 3.7 1.2
2 Greg Administration 3.5 1.1
3 Anne Production 5.3 2.1
4 Charles Marketing 3.5 1.1
5 Alfred Administration 3.7 1.2
6 Paolo Planning 8.3 3.5
7 George Marketing 4.2 1.4

EMPLOYEE

11

Distributed Architectures -- 21

Example of Horizontal Fragmentation

EMPLOYEE1 EmpNum Name DeptName Salary Tax
1 Robert Production 3.7 1.2
2 Greg Administration 3.5 1.1
3 Anne Production 5.3 2.1

EMPLOYEE2 EmpNum Name DeptName Salary Tax
4 Charles Marketing 3.5 1.1
5 Alfred Administration 3.7 1.2
6 Paolo Planning 8.3 3.5
7 George Marketing 4.2 1.4

EMPLOYEE1

EMPLOYEE2

Distributed Architectures -- 22

Vertical Fragmentation

EMPLOYEE2 EmpNum DeptName Salary Tax
1 Production 3.7 1.2
2 Administration 3.5 1.1
3 Production 5.3 2.1
4 Marketing 3.5 1.1
5 Administration 3.7 1.2
6 Planning 8.3 3.5
7 Marketing 4.2 1.4

EMPLOYEE1 EmpNum Name
1 Robert
2 Greg
3 Anne
4 Charles
5 Alfred
6 Paolo
7 George

EMPLOYEE1

EMPLOYEE2

12

Distributed Architectures -- 23

Fragmentation and Allocation Schemata

� Each fragment Ri corresponds to a different physical file and is
allocated to a different server.

� Thus, the relation is present in a virtual mode (like a view),
while fragments are actually stored.

� The allocation schema describes the mapping of relations or
fragments to the servers that store them. This mapping can be:
9non-redundant, when each fragment or relation is

allocated to a single server
9 redundant, when at least one fragment or relation is

allocated to more than one server

Distributed Architectures -- 24

Transparency Levels

� There are three significant levels: transparency of
fragmentation, allocation and language

� In the absence of transparency, each DBMS accepts its
own SQL ‘dialect’: the system is heterogeneous and the
DBMSs do not support a common interoperability standard

� Given SUPPLIER(S#,Name,City), with horizontal fragments
9 SUPPLIER1 = σCity=‘London’ SUPPLIER

9 SUPPLIER2 = σCity=‘Manchester’ SUPPLIER

� …and the allocation schema:
9 SUPPLIER1@company.London.uk
9 SUPPLIER2@company.Manchester1.uk
9 SUPPLIER2@company.Manchester2.uk

13

Distributed Architectures -- 25

Fragmentation Transparency
� At this level, the programmer should not worry about

whether or not the database is distributed or fragmented
� Query:

procedure Query1(:snum,:name);

select Name into :name

from Supplier

where SNum = :snum;

end procedure

Distributed Architectures -- 26

Allocation Transparency
� The programmer should know the structure of the

fragments, but does not have to indicate their allocation
� With replication, the programmer does not have to

indicate which copy is chosen for access (replication
transparency)

� Query:
procedure Query2(:snum,:name);

select Name into :name from Supplier1

where SNum = :snum;

if :empty then

select Name into :name

from Supplier2 where SNum = :snum;

end procedure;

14

Distributed Architectures -- 27

Language Transparency
� The programmer indicates both the structure of the

fragments and their allocation
� Queries expressed at a higher level of transparency are

transformed to this level by the distributed query optimizer.
� Query:

procedure Query3(:snum,:name);

select Name into :name

from Supplier1@company.London.uk

where SNum = :snum;

if :empty then select Name into :name

from Supplier2@company.Manchester1.uk

where SNum = :snum;

end procedure;

Distributed Architectures -- 28

Optimizations
This application can be made more efficient in two ways:
� By using parallelism: instead of submitting the two requests

in sequence, they can be processed in parallel, thus saving
on the global response time

� By using knowledge on the logical properties of fragments
(but then the programs are not flexible)
procedure Query4(:snum,:name,:city);

case :city of

"London": select Name into :name

from Supplier1 where SNum = :snum;

"Manchester": select Name into :name

from Supplier2 where SNum = :snum;

end procedure;

15

Distributed Architectures -- 29

Classification of Transactions
� Remote requests: read-only transactions made up of an

arbitrary number of SQL queries, addressed to a single remote
DBMS (remote DBMS can only be queried)

� Remote transactions made up of any number of SQL
commands (select, insert, delete, update) directed to a single
remote DBMS (each transaction writes on one DBMS.)

� Distributed transactions made up of any number of SQL
commands (select, insert, delete, update) directed to an
arbitrary number of remote DBMSs, but each SQL command
refers to a single DBMS (Transactions may update more than
one DBMS, require the two-phase commit protocol)

� Distributed requests are arbitrary transactions, in which each
SQL command can refer to any DBMS; assumes a distributed
optimizer

