XIl. Distributed Architectures

Types of Distributed Architectures
Client-Server Architectures
Distributed Databases
Data Fragmentation and Allocation

Distributed Architectures -- 1

Paradigms for Data Distribution

B Client-server architecture: separation of the database
server from the client

B Distributed databases: several database servers used
by the same application

B Parallel databases: several data storage devices and
processors operate in parallel for increasing
performances

B Replicated databases: data logically representing the
same information and physically stored on different
servers

B Data warehouses: servers specialized for the
management of data dedicated to decision support.

Distributed Architectures -- 2

=

Technologies for Distributed Systems

B Networks -- local area and wide area networks (LAN and
WAN respectively); you need to install network cables.

B Internet -- use telephone lines to transfer data and
programs, thereby facilitating distribution.

B Wireless communication technologies -- the way of the
future

v'Packet radio technology; generally works for short
distances, low transfer rates;

v’ Cellular networks, support cell phones;
v’ Commercial satellite systems, such as iridium

B Telephone companies world-wide are scrambling to get
out of wired telephony and into wireless services.

Distributed Architectures -- 3

How Much Distributed Data is there?

B |t is estimated that we produce about 1 hexabyte of
unigue web data per year; that's 10'8Bytes, or ~250MB
per person on earth; no disk can hold so much data.

B We produce 500 times more information through email
messages than through the web.

B The great challenge (some say the greatest ever!) of
technology is to search, retrieve, organize and manage all
these data, and make them useful to people.

B Someone (Brewster Kahle, an archivist) is trying to
archive the web...

...alot!!!

Distributed Architectures -- 4

N

Separation of Functionalities

B OLTP (On-Line Transaction Processing) systems, aims
at optimized management and reliable transactions on
database servers, specialized for supporting hundreds or
even thousands of transactions per second

B OLAP (On-Line Analytic Processing) systems, aimed at
data analysis, which operate on data warehouse servers,
specialized for data management for decision support

Distributed Architectures -- 5

Desirable Properties for
Highly Interactive Systems

B Portability refers to the ease of transporting programs
from one environment to another (and it is thus a typical
compile-time property)

Facilitated by language standards (e.g., SQL-2, SOL-3)

B Interoperability refers to a system’s ability to interact
with other, possibly heterogeneous, systems (and it is
thus a typical execution-time property.)

Facilitated by standard data access protocols,
including Database Connectivity (ODBC) and X-Open
Distributed Transaction Processing (DTP)

Distributed Architectures -- 6

W

Client-Server Architectures

B Client-server is a general model of interaction
between software processes, where interacting
processes are classified into clients (which require
services) and servers (which offer services)

B Requires a precise definition of a service interface,
which lists the services offered by the server

B The client process performs an active role, the
server process is reactive

B Normally, a client process requests few services in
sequence from one or more server processes, while
a process server responds to multiple requests from
many process clients.

Distributed Architectures -- 7

Typical Client-Server Architecture

Client Client Client
il
ol
ol
_ LAN
‘ —_ - — — 1
il
|
!
|
!
il
-~
lnput .~ ™ ~. Output
queue & queue

‘ ‘ ‘ Server Database
PI’OCESS

Database server

Distributed Architectures -- 8

I~

Client Server Architecture for
Data Management

B |t is a good idea to assign clients and servers to distinct
computers because:

v The functions of clients and servers are clearly identified
v’ They give rise to a convenient separation of application
and management activities
B SQL offers an ideal programming paradigm for the
identification of the ‘service interface’
v'SQL queries are sent from the client to the server
v/ The query results are returned to the client

v’ The standardization, portability and interoperability of
SQL allows the construction of client applications that
involve different server systems

Distributed Architectures -- 9

Allocation of Clients and Servers
to Different Computers

B The computer dedicated to the client must be suitable
for interaction with the user and support productivity
tools (electronic mail, word processing, spreadsheet,
Internet access, and workflow management)

B The server computer must have a large main
memory (to support buffer management) and a high
capacity disk (for storing the entire database)

Distributed Architectures -- 10

(63

Multi-Threaded Architectures

B Often, database (and other) servers are multi-threaded:

v'Behave like a single process that works dynamically on
behalf of several transactions;

v Each unit of execution of the server process for a given
transaction is called a thread;

B Servers are permanently active processes that control an
input queue for client requests and an output queue for
the query results

B Often, a dispatcher process distributes requests to the
servers and returns the responses to the clients

B When the dispatchers can dynamically define the number
of active server processes as a function of the number of
requests received: we say that a server class is available

Distributed Architectures -- 11

Two-Tier vs Three-Tier Architectures

B Two-tier architectures: the client is both the user
interface and the application manager

v'The client is called thick-client, as it supports the
application logic
B Three-tier architectures: a second server is present,
known as the application server, responsible for the
management of the application logic common to many
clients

v The client is named thin-client; it is responsible only
for the interface with the final user; such clients can be
deployed using browser technology

Distributed Architectures -- 12

[e)

Distributed Databases

B A distributed database is a system in which some
clients interact with multiple servers for the execution
of an application

B We discuss separately:
v"How a user can specify distributed queries

v"How the server technology is extended in a
distributed database

Distributed Architectures -- 13

Advantages of Distributed Databases

B Distributed databases respond to application needs. After
all, enterprises are geographically distributed; distributed
databases allow the distribution of data processing and
control to the environment where data is generated and
largely used

B Distributed databases offer greater flexibility, modularity
and resistance to failures
v Distributed systems can be configured by the

progressive addition and modification of components;

v Although they are more vulnerable to failures, they
support ‘graceful degradation’ (respond to failures with
a reduction in performance but without total failure)

Distributed Architectures -- 14

I~

Classification of Applications

B Based on the type of DBMS involved:

v"Homogeneous Distributed Databases: When all
the servers have the same DBMS

v'Heterogeneous Distributed Databases: When the
servers support different DBMSs

B Based on the network:
v'Can use a local area network (LAN)
v'Can use a wide area network (WAN)

Distributed Architectures -- 15

Classification of Applications

Type of DBMS Network type
LAN WAN
Homogeneous Data management and | Travel management and
financial applications financial applications
Heterogeneous Inter-divisional Integrated banking and
information systems inter-banking systems

Distributed Architectures -- 16

100

Local Independence and Cooperation

B In a distributed database, each server has its own
capacity to manage applications independently:

v'A distributed database should not maximize the

interaction and the necessity of transmitting data via
networks

¥v'On the contrary, the planning of data distribution and
allocation should be done in such a way that

applications should operate independently on a single
server

Distributed Architectures -- 17

Data Fragmentation and Allocation

B Given arelation R, its fragmentation consists of determining
fragments R, by applying algebraic operations to R.
v'In horizontal fragmentation, fragments R; are groups of
tuples having the same schema as R (as after selection on
R); Horizontal fragments are usually disjoint;
v'In vertical fragmentation, each fragment R, has a subset
of the schema of R (as though projection was applied on
R). Each vertical fragment includes the primary key of R
B The fragmentation is correct if it is:

v'Complete: each data item of R must be present in one of
its fragments R,

v’ Restorable: the content of R must be restorable from its
fragments

Distributed Architectures -- 18

[<e)

Example

B Consider EMPLOYEE (Emp#, Name, Dept#, Salary, Taxes)
B Horizontal fragmentation
v EMPLOYEEL = Og,4.-3 EMPLOYEE
v EMPLOYEE2 = Ogy,s,3 EMPLOYEE
B Reconstruction requires a union:
v' EMPLOYEE = EMPLOYEE1 U EMPLOYEE2
B Vertical fragmentation:
v EMPLOYEEL = Mg NameEMPLOYEE
v EMPLOYEE2 = Mg peptname. salary, TaxEMPLOYEE
B Reconstruction requires an equi-join on key values (natural
join).
v' EMPLOYEE = EMPLOYEEL1 ><1 EMPLOYEE?2

Distributed Architectures -- 19

Initial Table

EMPLOYEE

EmpNum | Name DeptName Salary | Tax
1 Robert Production 3.7 1.2
2 Greg Administration 3.5 1.1
3 Anne Production 5.3 2.1
4 Charles Marketing 3.5 1.1
5 Alfred Administration 3.7 1.2
6 Paolo Planning 8.3 3.5
7 George Marketing 4.2 1.4

Distributed Architectures -- 20

Example of Horizontal Fragmentation

EMPLOYEE1L
EmpNum | Name DeptName Salary | Tax
1 Robert Production 3.7 1.2
2 Greg Administration 3.5 1.1
3 Anne Production 5.3 2.1
EMPLOYEEZ2
EmpNum |Name DeptName Salary | Tax
4 Charles Marketing 3.5 1.1
5 Alfred Administration 3.7 1.2
6 Paolo Planning 8.3 3.5
7 George Marketing 4.2 1.4

Distributed Architectures -- 21

Vertical Fragmentation

EMPLOYEE1
EmpNum | Name
1 Robert
2 reg EMPLOYEEZ2
3 Anne EmpNum |DeptName Salary | Tax
4 harles 1 Production 3.7 1.2
5 Alfred 2 Administration | 3.5 1.1
6 Paolo 3 Production 5.3 2.1
7 George 4 Marketing 3.5 1.1
5 Administration 3.7 1.2
6 Planning 8.3 35
7 Marketing 4.2 1.4

Distributed Architectures -- 22

Fragmentation and Allocation Schemata

B Each fragment R, corresponds to a different physical file and is
allocated to a different server.
B Thus, the relation is present in a virtual mode (like a view),
while fragments are actually stored.
W The allocation schema describes the mapping of relations or
fragments to the servers that store them. This mapping can be:
v'non-redundant, when each fragment or relation is
allocated to a single server
v'redundant, when at least one fragment or relation is
allocated to more than one server

Distributed Architectures -- 23

Transparency Levels

B There are three significant levels: transparency of
fragmentation, allocation and language

B In the absence of transparency, each DBMS accepts its
own SQL ‘dialect’: the system is heterogeneous and the
DBMSs do not support a common interoperability standard

B Given SUPPLIER(S#,Name,City), with horizontal fragments
v SUPPLIERL = Ogjyy= ondon SUPPLIER
v SUPPLIER2 = O(jpy=anchester SUPPLIER
B ...and the allocation schema:
v SUPPLIER1@company.London.uk
v SUPPLIER2@company.Manchesterl.uk
v SUPPLIER2@company.Manchester2.uk

Distributed Architectures -- 24

Fragmentation Transparency

B At this level, the programmer should not worry about
whether or not the database is distributed or fragmented

B Query:
procedure Queryl(:snum :nane);
sel ect Name into :nane
from Supplier
where SNum = :snum
end procedure

Distributed Architectures -- 25

Allocation Transparency

B The programmer should know the structure of the
fragments, but does not have to indicate their allocation

B With replication, the programmer does not have to
indicate which copy is chosen for access (replication
transparency)

B Query:
procedure Query2(:snum :nane);
select Name into :name from Supplierl
where SNum = :snum
if :enpty then
sel ect Name into :nane
from Supplier2 where SNum = : snum
end procedure;

Distributed Architectures -- 26

Language Transparency

B The programmer indicates both the structure of the
fragments and their allocation

B Queries expressed at a higher level of transparency are
transformed to this level by the distributed query optimizer.

B Query:
procedure Query3(:snum :nane);
sel ect Name into :nane
from Suppl i er l@onpany. London. uk
where SNum = :snum
if :enpty then select Name into :nane
from Suppl i er2@onpany. Manchest er 1. uk
where SNum = :snum
end procedure;

Distributed Architectures -- 27

Optimizations

This application can be made more efficient in two ways:

B By using parallelism: instead of submitting the two requests
in sequence, they can be processed in parallel, thus saving
on the global response time

B By using knowledge on the logical properties of fragments
(but then the programs are not flexible)

procedure Query4(:snum:namne,:city);

case :city of

"London": select Nane into :nane
from Supplierl where SNum = :snum

"Manchester": select Nanme into :name
from Supplier2 where SNum = : snum

end procedure;

Distributed Architectures -- 28

Classification of Transactions

B Remote requests: read-only transactions made up of an
arbitrary number of SQL queries, addressed to a single remote
DBMS (remote DBMS can only be queried)

B Remote transactions made up of any number of SQL
commands (select, insert, delete, update) directed to a single
remote DBMS (each transaction writes on one DBMS.)

M Distributed transactions made up of any number of SQL
commands (select, insert, delete, update) directed to an
arbitrary number of remote DBMSs, but each SQL command
refers to a single DBMS (Transactions may update more than
one DBMS, require the two-phase commit protocol)

B Distributed requests are arbitrary transactions, in which each
SQL command can refer to any DBMS; assumes a distributed
optimizer

Distributed Architectures -- 29

