
1

Distributed Transactions -- 1

XIII. Distributed Transactions

Distributed Transactions
Classification of Transactions
2PC, 4PC, and 3PC Protocols

Interoperability

Distributed Transactions -- 2

Classification of Transactions
� Remote requests: read-only transactions made up of an

arbitrary number of SQL queries, addressed to a single remote
DBMS (remote DBMS can only be queried)

� Remote transactions made up of any number of SQL
commands (select, insert, delete, update) directed to a single
remote DBMS (each transaction writes on one DBMS.)

� Distributed transactions made up of any number of SQL
commands (select, insert, delete, update) directed to an
arbitrary number of remote DBMSs, but each SQL command
refers to a single DBMS (Transactions may update more than
one DBMS, require the two-phase commit protocol)

� Distributed requests are arbitrary transactions, in which each
SQL command can refer to any DBMS; assumes a distributed
optimizer

2

Distributed Transactions -- 3

Typical Transaction: Fund Transfer
� Assume: ACCOUNT (AccNum,Name,Tl) with accounts lower than

10000 allocated on fragment ACCOUNT1 and accounts above
10000 allocated on fragment ACCOUNT2

begin transaction

update Account1

set Tl = Tl - 100000 where AccNum = 3154;

update Account2

set Tl = Tl + 100000 where AccNum = 14878;

commit work;

end transaction

� Note: It is generally an unacceptable violation of atomicity that
one of the modifications is executed while the other is not.

Distributed Transactions -- 4

Technology of Distributed Databases

� Data distribution does not influence consistency and
durability
9Consistency of transactions does not depend on data

distribution, because integrity constraints describe only
local properties (a limit of the actual DBMS technology)

9Durability is not a problem that depends on the data
distribution, because each system guarantees local
durability by using local recovery mechanisms (logs,
checkpoints, and dumps)

� Other subsystems require major enhancements:
9Query optimization
9Concurrency control
9Reliability control

3

Distributed Transactions -- 5

Distributed Query Optimization

� Required when a DBMS receives a distributed request; the
DBMS that is queried is responsible for the ‘global optimization’
9 It decides on the breakdown of the query into many sub-

queries, each addressed to a specific DBMS
9 It builds a strategy (plan) of distributed execution: consisting

of the coordinated execution of various programs on various
DBMSs and in the exchange of data among them

� The cost factors of a distributed query include the quantity of
data transmitted on the network
Ctotal = CI/O x nI/O + Ccpu x ncpu + Ctr x ntr

ntr: the quantity of data transmitted on the network
Ctr: unit cost of transmission

Distributed Transactions -- 6

Concurrency Control

� In a distributed system, a transaction ti can carry out various sub-
transactions tij , where the second subscript denotes the node of
the system on which the sub-transaction works.

t1 : r11(x) w11(x) r12(y) w12(y)
t2 : r22(y) w22(y) r21(x) w21(x)

� Local serializability is not a sufficient guarantee of serializability.
Consider schedules at nodes 1 and 2:

S1 : r11(x) w11(x) r21(x) w21(x)
S2 : r22(y) w22(y) r12(y) w12(y)

� They are locally serializable, but global conflict graph has a cycle:
9on node 1, t1 precedes t2 and is in conflict with t2
9on node 2, t2 precedes t1 and is in conflict with t1

4

Distributed Transactions -- 7

Global Serializability

� Global serializability of distributed transactions over the nodes
of a distributed database requires the existence of a unique
serial schedule S equivalent to all the local schedules Si

� The following properties are valid.
9 If each scheduler uses two-phase locking on each node

and commits when all the sub-transactions have acquired
all the resources, then the resulting schedules are globally
conflict-serializable; thanks to the 2-phase commit protocol

9 If each distributed transaction acquires a single timestamp
and uses it in all requests to all the schedulers that use
concurrency control based on timestamp, the resulting
schedules are globally serial, based on the order imposed
by the timestamps

Distributed Transactions -- 8

Lamport Timestamp Method
� The Lamport method for assigning timestamps reflects the

precedence among events in a distributed system.
� A timestamp is a number consisting of two groups of digits:
9Least significant digits identify the node ofr the event;
9The most significant digits identify the events that happen

at that node; they can be obtained from a local counter,
which is incremented with each event.

� Whenever two nodes exchange a message, the timestamps
become synchronized:
9The receiving event must have a timestamp greater than

the timestamp of the sending event;
9This may require increasing of the local counter on the

receiving node.

5

Distributed Transactions -- 9

Example of Lamport’s Method

Distributed Transactions -- 10

Distributed Deadlocks

� Distributed deadlocks can be caused by circular waiting
situations between two or more nodes

� The time-out method is valid and most used by
distributed DBMSs

� Deadlock resolution can be done with an asynchronous
and distributed protocol (implemented in a distributed
version of DB2 by IBM)

6

Distributed Transactions -- 11

Distributed Deadlock Resolution
� Assume that sub-transactions are activated by using a

remote procedure call; that is a synchronous call to a
procedure that is remotely executed; this model allows for
two distinct types of waiting
9Two sub-transactions of the same transaction can be

in waiting in distinct DBMSs as one waits for the
termination of the other

If t11 activates t12, it waits for the termination of t12

9Two different sub-transactions on the same DBMS can
wait as one blocks a data item to which the other one
requires access

If t11 locks an objects requested by t21, t21 waits for
the termination of t11

Distributed Transactions -- 12

Example of Distributed Deadlock

7

Distributed Transactions -- 13

Representation of Waiting Conditions

� The waiting conditions at each DBMS can be characterized
using precedence conditions, where EXT represents
executions at a remote DBMS:
9On DBMS1 we have: EXT --> t21 --> t11 --> EXT
9On DBMS2 we have: EXT --> t12 --> t22 --> EXT

, where EXT represents a remote procedure call
� The general format of a waiting condition is summarized

using a wait sequence: EXT --> ti --> tj --> EXT

Distributed Transactions -- 14

Algorithm

� The algorithm is periodically activated on various DBMSs of the
system. When it is activated, it:
9 integrates new wait sequences with the local wait conditions

as described by the lock manager;
9analyzes wait conditions on its DBMS and detects deadlocks
9 communicates the wait sequences to other instances of the

same algorithm
� To avoid situations where the same deadlock is discovered

more than once, the algorithm sends wait sequences:
9 ‘ahead’, towards the DBMS which has received the remote

procedure call
9only if, for example, i > j where i and j are the identifiers of

the transactions

8

Distributed Transactions -- 15

Application of
the AlgorithmSend wait

sequence from
DBMS 1 to 2

Send sequence
(t3 waits for t2)

from DBMS 2 to 3

Distributed Transactions -- 16

Failures in Distributed Systems
A distributed system is subject to a variety of failures:

� Node failure may occur on any node of the system and be
soft or hard, as discussed before

� Message losses leave a protocol in an uncertain state:

9Each protocol message (msg) is followed by an
acknowledgement message (ack)

9The loss of either one leaves the sender uncertain about
whether the message has been received.

� Network partitioning is a failure of the communication links
of the computer network resulting in two sub-networks that
have no communication between each other.

9A transaction can be simultaneously active in more than
one sub-network.

9

Distributed Transactions -- 17

The Two-Phase Commit Protocol

� Commit protocols allow a transaction to reach the
correct commit or abort decision at all participating nodes.

� The two-phase commit protocol (2PC) is like a
marriage, in that a decision of two parties is received and
registered by a third party, who ratifies the marriage.
9The servers – who represent the participants to the

marriage – are called resource managers (RM)
9The ceremonial agent (or coordinator) is allocated to a

process, called the transaction manager (TM)

Distributed Transactions -- 18

More on Two-Phase Commit (2PC)

� The 2PC protocol takes place by means of a rapid
exchange of messages between TM and RM and writing
of records into their logs. The TM can use:
9broadcast mechanisms (transmission of the same

message to many nodes, collecting responses arriving
from various nodes);

9 serial communication with each of the RMs in turn.

10

Distributed Transactions -- 19

New Log Records
� Records of TM
9The prepare record contains the identity of all the

RM processes (that is, their identifiers of nodes
and processes.)

9The global com mit or global abort record
describes the global decision. When the TM writes
in its log the global com mit or global abort
record, it has reached a final decision.

9The complete record is written at the end of the
protocol.

Distributed Transactions -- 20

New Log Records
� Records of RM
9The ready record indicates the irrevocable availability

to participate in the 2PC protocol, thereby contributing
to a decision to commit. Can be written only when the
RM is recoverable, i.e., possesses locks on all
resources that need to be written. The identifier
(process identifier and node identifier) of the TM is also
written on this record.

9 In addition, begin, insert, delete, and update records
are written as in centralized servers.

� At any time an RM can autonomously abort a sub-
transaction, thereby ending its participation to the 2PC
protocol. This causes a global abort.

11

Distributed Transactions -- 21

First Phase of the Basic Protocol
� The TM writes the prepare record in its log and sends a
prepare message to all the RMs. Sets a timeout indicating
the maximum time allocated to the completion of this phase.

� The recoverable RMs write on their own logs the ready
record and transmit to the TM a ready message, which
indicates the positive choice of commit participation.

� The non-recoverable RMs send a not-ready message and
end the protocol.

� The TM collects the reply messages from the RMs:
9 If it receives a positive message from all the RMs, it writes

a global com mit record on its log;
9 If one or more negative messages are received or the

time-out expires without the TM receiving all the
messages, it writes a global abort record on its log.

Distributed Transactions -- 22

Second Phase of the Basic Protocol

� The TM transmits its global decision to the RMs. It then
sets a second time-out

� The RMs that are ready receive the decision message,
write the com mit or abort record on their own logs, and
send an acknowledgement to the TM. Then they
implement the commit or abort by writing the pages to the
database (as discussed earlier.)

� The TM collects all the ack messages from the RMs
involved in the second phase. If the time-out expires it sets
another time-out and repeats the transmission to all the
RMs from which it has not received an ack.

� When all the acks have arrived, the TM writes the
complete record on its log.

12

Distributed Transactions -- 23

Two-Phase Commit Protocol

Distributed Transactions -- 24

Actions of Client, TM, and RM for 2PC

(all RMs are done)

13

Distributed Transactions -- 25

Blocking, Uncertainty, Recovery

� An RM in a ready state loses its autonomy and awaits
the decision of the TM. A failure of the TM leaves the RM
in an uncertain state. The resources acquired by using
locks are blocked.

� The interval between the writing on the RM’s log of the
ready record and the writing of the com m it or abort
record is called the window of uncertainty. The 2PC
protocol is designed to keep this interval to a minimum.

� Recovery protocols are performed by the TM or RM after
failures; they recover a final state which depends on the
global decision of the TM.

Distributed Transactions -- 26

Recovery of Participants

� Performed by the warm restart protocol, based on the last
record written in the log:
9when it’s an action or abort, actions are undone; when it’s

a com mit, actions are redone; either way, the failure has
occurred before starting the commit protocol;

9when it’s ready, failure has occurred during 2PC;
participant is in doubt about the result of the transaction.

� During a warm restart, the identifiers of the transactions in
doubt are collected in the ready set. For each of them the
final transaction outcome must be requested from the TM.

� This can happen as a result of a direct (remote recovery)
request from the RM or as a repetition of the second phase of
the protocol.

14

Distributed Transactions -- 27

Recovery of the Coordinator

� When the last record in the log is a prepare, the
failure of the TM might have placed some RMs in a
blocked situation. Two recovery options:
9Write global abort on the log, and then carry out

the second phase of the protocol.
9Repeat the first phase, trying to arrive to a global

commit.
� When the last record in the log is a global decision,

some RMs may have been correctly informed of the
decision and others may have been left in a blocked
state. The TM must repeat the second phase.

Distributed Transactions -- 28

Message Loss and Network Partitioning

� The loss of a prepare or ready message is not
distinguishable by the TM. In both cases, the time-out of
the first phase expires and a global abort decision is
made.

� The loss of a decision or ack message are also
indistinguishable. In both cases, the time-out of the
second phase expires and the second phase is repeated.

� A network partitioning does not cause further problems,
in that the transaction will be successful only if the TM
and all the RMs belong to the same partition.

15

Distributed Transactions -- 29

The Presumed Abort Protocol

� The presumed abort protocol is used by most DBMSs.
� Based on the following rule: when a TM receives a remote

recovery request from an in-doubt RM and doesn’t know
the outcome of that transaction, the TM returns a global
abort decision as default.

� As a consequence, the force of prepare and global abort
records can be avoided, because in the case of loss of
these records the default behavior gives an identical
recovery.

� Furthermore, the complete record is not critical for the
algorithm, so it need not be forced; in some systems, it is
omitted. In conclusion the records to be forced are ready,
global com mit and com mit.

Distributed Transactions -- 30

Read-only Optimization
� When a participant is found to have carried out only

read operations (no write operations.)
� It responds read-only to the prepare message and

suspends the execution of the protocol.
� The coordinator ignores read-only participants in the

second phase of the protocol.

16

Distributed Transactions -- 31

Four-Phase Commit Protocol
� Created by Tandem, a provider of hardware-software

solutions for data management based on the use of
replicated resources to obtain reliability.

� The TM process is replicated by a backup process,
located on a different node. At each phase of the
protocol, the TM first informs the backup of its
decisions and then communicates with the RMs.

� The backup can replace the TM in case of failure:
� When a backup becomes TM, it first activates

another backup, to which it communicates the
information about its state, and then continues the
execution of the transaction.

Distributed Transactions -- 32

Four-Phase Commit Protocol

17

Distributed Transactions -- 33

Three-Phase Commit Protocol
� Basic idea is to introduce a third pre-commit phase to the

standard protocol; if the TM fails, a participant can be elected
as new TM and decide the result of the transaction by looking
at its log:
9 If the new TM finds ready as last record, no other

participants in the protocol has gone beyond the pre-
commit condition, and the decision is to abort;

9 If the new TM finds pre-com mit as last record, it knows
that the other participants are at least in the ready state,
and thus can make the decision to commit.

� The three-phase commit protocol has serious drawbacks and
has not been successfully implemented: it lengthens the
window of uncertainty, and is not resilient to network
partitioning, without additional quorum mechanisms.

Distributed Transactions -- 34

The Three-Phase Commit Protocol

18

Distributed Transactions -- 35

Interoperability

� Interoperability is an important problem in the
development of heterogeneous applications for
distributed databases

� Interoperability means that there are conversion and
translation functions available which make it possible to
exchange information between systems, networks and
applications, despite their heterogeneity.

� Interoperability is made possible by means of standard
protocols such as FTP, SMTP/MIME, and so on

� With reference to databases, interoperability is
guaranteed by the adoption of suitable standards

Distributed Transactions -- 36

Open Database Connectivity (ODBC)
� It is an application interface proposed by Microsoft in 1991

for the construction of heterogeneous database
applications, supported by most relational products.

� The language supported by ODBC is a restricted SQL,
characterized by a minimal set of instructions.

� Applications interact with DBMS servers by means of a
driver, a library that is dynamically connected to the
applications. The driver masks the differences of
interaction due to the DBMS, the operating system and the
network protocol; for example, the trio (Sybase,
Windows/NT, Novell) identifies a single driver.

� ODBC does not support the two-phase commit protocol.

19

Distributed Transactions -- 37

The ODBC Interface

Distributed Transactions -- 38

X-Open Distributed Transaction
Processing (DTP)

� Guarantees the interoperability of transactions on DBMSs
of different suppliers ; assumes the presence of one client,
several RMs and one TM.

� The protocol consists of two interfaces:
9Between client and TM, called TM-interface;
9Between TM and each RM, called XA-interface.

� Relational DBMSs must provide the XA-interface.
� Various products specializing in transaction management,

such as Encina (a product of the Transarc company) and
Tuxedo (from Unix Systems, originally AT&T) provide the
TM component.

20

Distributed Transactions -- 39

Features of X-Open DTP
� RMs are passive; they respond to RPCs issued by the TM.
� Uses 2PC with presumed abort and read-only optimizations.
� The protocol supports heuristic decisions, which in the

presence of failures allow the evolution of a transaction
under the control of the operator:
9When an RM is blocked because of the failure of the TM,

an operator can impose a heuristic decision (generally,
an abort), thus allowing the release of locked resources;

9When heuristic decisions cause a loss of atomicity, the
protocol guarantees that the client processes are notified;

9The resolution of inconsistencies due to erroneous
heuristic decisions is application-specific.

Distributed Transactions -- 40

The TM Interface
� tm_init and tm_exit initiate and terminate the

client-TM dialogue.
� tm_open and tm_term open and close a session

with the TM.
� tm_begin begins a transaction.
� tm_commit requests a global commit.

21

Distributed Transactions -- 41

The XA Interface
� xa_open and xa_close open and close a session between

TM and a given RM.
� xa_start, xa_end activate, complete a new transaction
� xa_precom requests that the RM carry out the first phase of

the commit protocol; the RM process can respond positively
to the call only if it is in a recoverable state.

� xa_commit and xa_abort communicate the global
decision about the transaction.

� xa_recover initiates a recovery procedure after the failure
of a process (TM or RM); the RM consults its log and builds
three sets of transactions: transactions in doubt, ones
decided by a heuristic commit, and ones decided by a
heuristic abort.

� xa_forget allows an RM to forget transactions decided in a
heuristic manner.

Distributed Transactions -- 42

The XA Interface

22

Distributed Transactions -- 43

Cooperation Among Pre-existing
Systems

� Cooperation is the ability of a system to make use of
application services made available by other systems,
possibly managed by different organizations.

� Needs for cooperation rise for different reasons, which range
from the simple demand for integration of components
developed separately within the same organization, to the co-
operation or fusion of different companies and organizations.

� The integration of databases is quite difficult. Over-ambitious
integration and standardization objectives are destined to fail.
The ‘ideal’ model of a highly integrated database, which can
be queried transparently and efficiently, is impossible to
develop and manage in most cases.

Distributed Transactions -- 44

System Cooperation Types

� Two types of cooperation:
9process-centered cooperation: systems cooperate

by exchanging messages, information or documents,
or by triggering activities, without making remote data
explicitly visible;

9data-centered cooperation, where the data is
distributed, heterogeneous and autonomous, and
accessible by cooperating systems, according to a
cooperation agreement.

� We concentrate on data-centered cooperation,
characterized by data autonomy, heterogeneity and
distribution

23

Distributed Transactions -- 45

Features of Data-Centered Cooperation

� Transparency level measures how the distribution
and heterogeneity of the data are masked.

� Complexity of distributed operations measures the
degree of coordination necessary to carry out
operations among the cooperating databases.

� Currency level indicates whether the data being
accessed is up-to-date or not.

� Based on the above criteria, we can identify three
architectures for guaranteeing data-based
cooperation.

