
1

DB Technology -- 1

XI. Technologies for DBMSs

Buffer Management
Reliability Control

Physical Access Structures
Query Optimization

Physical Database Design

DB Technology -- 2

Technologies for D ˚BMSs

Ideally, we’d like to have a DBMS support the
following:

� Query optimizer - selects a data access
strategy;

� Access Methods Manager - executes the
strategy using an
9Relational Storage System, or
9Object Manager.

� Buffer Manager - manages page accesses;
� Reliability Manager - manages failures;
� Concurrency Control Manager - manages

interferences due to multi-user data access.

2

DB Technology -- 3

Buffer Management
� A buffer is a section of main memory pre-allocated

to a DBMS for disk I/O.
� The buffer is organized in pages, of a size equal or

multiple of the disk input/output blocks used by the
operating system;

� The size of a page can range from a few Kbytes to
about a hundred Kbytes.

� Access times for main memory are generally six
orders of magnitude faster than access times for
secondary memory

� Sometimes a buffer can store the entire database
(main memory database)

DB Technology -- 4

Buffer Manager Principles

� The buffer manager deals with I/O of pages between
main mamory and disk storage.

� Manager supports primitive operations such as fix,
use, unfix, flush and force.

� The principles and policies of buffer management
are similar to those of main memory management for
operating systems, for example:
9Data locality: currently referenced data has a

greater probability of being referenced in the
immediate future;

980-20 Rule: On average, 80% of the applications
access 20% of available data.

3

DB Technology -- 5

Buffer Manager Organization

DB Technology -- 6

Primitive Buffer Operations

� fix -- loads a page into the buffer, requires a read from
disk only when the page is not already in the buffer; after
the operation, the page is loaded and valid, i.e.,
allocated to an active transaction; a pointer to the page is
returned to the transaction.

� use -- used by a transaction to gain access to a page
previously loaded in memory, confirming its presence in
the buffer and its status as a valid page

� unfix -- signals the end of use of a page by a transaction;
� force -- synchronously transfers a page from to disk.
� flush -- transfers invalid (unused) pages to secondary

memory asynchronously and independently of active
transactions

4

DB Technology -- 7

fix

� Searches the buffer for requested page, if found
and unused, its address is returned; else the page
is read from disk and its address is returned.

� If the requested page is in the disk, a buffer page is
selected for loading; if the buffer page is free, just
load; else buffer page is sent to disk (victim) by
invoking flush, then reads reads the requested
page from disk and returns the page address.

DB Technology -- 8

Buffer Management Policies

� The steal policy allows the buffer manager to select
an active page allocated to another transaction as a
victim. No-steal policy disallows this possibility.

� The force policy requires that all active pages of a
transaction are written to disk before committing. The
no-force policy delegates the writing of pages of a
transaction to the buffer manager.

� The no-steal/no-force policies are generally
preferred by the DBMSs.

� There is also the possibility of ‘anticipating’ the
loading and unloading times of the pages, by means
of pre-fetching and pre-flushing policies.

5

DB Technology -- 9

Buffer Managers and File Systems

� The file system is responsible for managing the data
structures stored on disk, also the current state of disk
use. It must identify which disk blocks are free and which
are allocated to files

� A DBMS uses a file system for the following functions:
9The creation (create) and removal (delete) of a file;
9The opening (open) and closing (close) of a file;
9read(fileid,block,buffer) for the direct access

to a block of a file which is copied to the buffer page;
9read_seq(fileid,f-block,count,f-buffer)

for sequential access to a fixed number (count) of
blocks of a file;

9The dual primitives write and write_seq.

DB Technology -- 10

Reliability Control System

� Responsible for executing the transactional
commands begin transaction (B), commit
work (C), rollback work (A, for abort), also the
primitives for recovery after malfunctions warm
restart and cold restart.

� Ensures atomicity and durability.
� Uses as main data structure the log; this is a

sequential file written in a stable memory. which
registers the operations carried out by the DBMS.

6

DB Technology -- 11

Reliability
Control
System

Architecture

DB Technology -- 12

Stable Memory
� Stable memory is a memory system that is failure-

resistant.
� There is no such thing in practice; however,

replication and robust writing protocols can bring the
probability close to zero.

� A failure of stable memory is assumed as
catastrophic and impossible, at least in this context.

� Stable memories usually come in different forms:
9a tape unit -- very reliable, but slow;
9a pair of devices of different kind (e.g., a tape and

a disk) -- better alternative;
9 two mirrored disk units.

7

DB Technology -- 13

Log Organization
� The actions carried out by the various transactions are

recorded in the log in chronological order (written
sequentially to the top block).

� There are two types of log records:
9Transaction records -- keep track of the activities

of the activities of a transaction by recording all
operations B(T), I(T,O,AS), D(T,O,BS),
U(T,O,BS,AS), C(T), A(T);

9System records -- keep track of system-wide
operations dump (rare) and checkpoint (more
frequent).

DB Technology -- 14

Log Content

8

DB Technology -- 15

Undo and Redo
� Undo of an action on an object O:

9update, delete: copy BS into the object O;

9insert: delete the object O;

� Redo of an action on an object O:
9insert, update: copy AS into the object O;

9delete: re-insert the object O.

� Idempotence of undo and redo: an arbitrary
number of undos and redos of the same action is
equivalent to the carrying out of such actions only
once:
9undo(undo(A)) = undo(A)
9 redo(redo(A)) = redo(A)

DB Technology -- 16

Checkpoint
� A checkpoint is carried out periodically, recording

active transactions and updating secondary memory
relative to all completed transactions
9After having initiated a checkpoint, no commit

operations are accepted by the active transactions
9The checkpoint ends by synchronously writing

(forcing) a checkpoint record CK(T1,T2,..Tn),
which contains the identifiers of all active
transactions;

9 In this way, the effects of all committed transactions
are permanently recorded in the database.

9

DB Technology -- 17

Dump
� A dump is a complete copy of the database, which is

normally created when the system is not operative.
� The copy is stored in the stable memory, typically on

tape, and is called backup.
� A dump record DUMP in the log signals the presence

of a backup made at a given time and identifies the
file or device where the dump took place.

DB Technology -- 18

Transactional Rules

The reliability control system must follow two rules:
� WAL rule (write-ahead log): before-state parts of the

log records must be written in the log before carrying
out the corresponding operation on the database.

� Commit-Precedence rule: after-state parts of the
log records must be written in the log before carrying
out the commit.

10

DB Technology -- 19

Transaction Outcome

� The atomic outcome of a transaction is established
at the time when it writes the commit record in the
log synchronously, using the force primitive
9Before this event, a failure is followed by the undo

of the actions, thereby reconstructing the original
state of the database;

9After this event, a failure is followed by the redo of
the actions carried out to reconstruct the final
state of the transaction;

� abort records can be simply written asynchronously
into the top block of the log.

DB Technology -- 20

Protocol for Writing Log (I)

� The transaction first records B(T), then carries out its
update actions by writing first the log records and then the
pages of the database, changing BS values to AS values.

� This way, at commit all the pages of the database
modified by the transaction are already written on disk.

� This scheme does not require redo operations.

11

DB Technology -- 21

Protocols for Writing Log (II)

� The writing of log records precedes that of the
actions on the database.

� This scheme does not requires undo operations
either.

DB Technology -- 22

Protocols for Writing Log (III)

� Commonly used, the writing in the database once
protected by the appropriate writing on the log, can
happen at any time with regard to the writing of the
commit record in the log.

� This scheme allows the buffer manager to optimize
the execution of flush operations.

� However, it requires both undo and redo.

12

DB Technology -- 23

Failures in Database Systems
� A system failure is caused by a software bug, (e.g.,

of the operating system), or an interruption of the
functioning of hardware (e.g., due to loss of power.)

/ Causes loss of the contents of main memory (and
thus of all buffers); but no loss of the contents of
secondary memory (-).

� A device failure is a failure of a secondary memory
device (e.g., a disk head crash).

/ Causes loss of disk contents, but no loss of stable
storage (i.e., the log)

� There are two types of restart protocols:
9Warm restart used after system crashes;
9Cold restart used after device crashes.

DB Technology -- 24

Fail-Stop Failure Model

13

DB Technology -- 25

Restart Process

� When the system restarts after a failure, it has to decide
what to do with the transactions that were executing at the
time of the failure.

� Transactions are classified as:
9Completed -- when their actions were recorded in

stable storage before the failure;
9Committed but possibly not completed -- whose

actions must be redone, e.g., because of data lost in
the buffer;

9Not committed -- whose actions have to be undone
because the transaction did not commit.

DB Technology -- 26

Warm Restart

Consists of four sequential steps:
� Trace back the log until the most recent checkpoint

record.
� Construct the UNDO set (i.e.,transactions to be

undone) and the REDO set (transactions to be
redone).

� Trace back the log until the first action of the ‘oldest’
transaction in the two sets, UNDO and REDO, is found,
and undo all the actions of the transactions in the
UNDO set.

� Trace forward the log and redo all the actions of the
transactions in the REDO set.

14

DB Technology -- 27

Warm Restart Protocol

The protocol guarantees:
� Atomicity in the sense that all the transactions in

progress at the time of failure leave the database
either in the initial state or in the final one

� Durability in the sense that all pages of transactions
in progress are written to secondary memory.

DB Technology -- 28

Cold Restart
Now parts of the database may have been damaged.

Consists of three steps:
� During the first phase, the dump operation is

executed and damaged parts are selectively copied
from the database. The most recent dump record in
the log is then accessed.

� The log is traced forward. The actions on the
database and the commit or abort actions are
applied as appropriate to the damaged parts of the
database. The situation preceding the failure is thus
restored.

� Finally, a warm restart is conducted.

15

DB Technology -- 29

Physical Access Structures

� Used for efficient storage and manipulation of data.
� For each access structure there are access

methods, i.e. software modules providing data
access and manipulation primitives for each physical
access structure.

� Each DBMS has a limited number of access methods
available.

� Sometimes, access methods can be used directly
from an application without going through a DBMS.

� We will consider sequential, hash-based, and index-
based access structures and methods.

DB Technology -- 30

Architecture
of the

Access
Manager

16

DB Technology -- 31

Tuples within Pages

� Each access method has its own page organization.
Each page includes:
9An initial part and a final part with control

information for the file system and the access
method;

9A page dictionary, containing pointers to
elementary data contained in the page;

9A useful part, which contains data; page dictionary
and useful data grow as opposing stacks within the
page;

9A checksum, to verify that page data are valid.
� Tree structures have a different page organization.

DB Technology -- 32

Tuples within Pages

17

DB Technology -- 33

Page Manager Primitives

� Insert or update a tuple -- may require a reorganization
of the page if there is sufficient space to manage the
extra bytes introduced).

� Delete a tuple -- often carried out by marking the tuple
as ‘invalid’.

� Access a tuple field -- first identify tuple by means of
its key or its offset, then locate field by its offset and
length.

� Note that some page managers do not allow the
separation of a tuple in different pages.

� Also, when all the tuples have the same size, the page
dictionary is simplified.

DB Technology -- 34

Sequential Access Structures

� Characterized by a sequential arrangement of tuples
in the secondary memory.

� In an entry-sequenced organization, the sequence
of the tuples is dictated by their order of entry.

� In an array organization, the tuples are arranged as
in an array, and their positions depend on the values
of an index (or indexes.)

� In a sequentially ordered organization, the
sequence of the tuples depends on the value
assumed by a field in each tuple that controls the
ordering, known as a key field.

18

DB Technology -- 35

Entry-Sequenced Sequential
Structure

� This is optimal for carrying out sequential reading
and writing operations.

� Uses all the blocks available in a file and all spaces
within each block.

� Primitives:
9Access with sequential scan operation;
9Data loading and insertion happen at the end of

the file and in sequence;
9Deletes are normally implemented by leaving

space unused;
9Updates can cause problems because they

increase the file size.

DB Technology -- 36

Array Sequential Structure

� This is useful only when the tuples are of fixed length.
� An array sequential structure consists of n adjacent

blocks, each block with m available tuple slots.
� Each tuple is assigned a numeric index i and is

placed in the i-th position of the array.
� Primitives:
9Accessed via read-ind (at a given index value).

9 Insertions always happen at the end of the file
(indices are obtained simply by increasing a
counter);

9Deletions create free slots;
9Updates are done in place.

19

DB Technology -- 37

Ordered Sequential Structure

� Each tuple has a position based on its key value.
� Historically, ordered sequential structures were used

on sequential devices (tapes) by batch processes;
data were located into the main file, modifications
were collected in differential files, and files were
periodically merged (this practice no longer applies.)

� Key problem: insertions or updates that increase
physical space require reordering the whole file.

� Options to avoid global reorderings:
9Leave some free slots at the time of first loading.

This is followed by ‘local reordering’ operations;
9Use an overflow file, where new tuples are

inserted into blocks linked to form an overflow
chain.

DB Technology -- 38

Hash-Based Structures

� Ensure efficient associative access to data, based on
the value of a key field, composed of an arbitrary
number of attributes of a given table.

� A hash-based structure has B blocks (often adjacent.)
� The access method makes use of a hash algorithm,

which, once applied to the key, returns a value
between zero and B-1.

� This value is interpreted as the position of the block in
the file, and used both for reading and writing tuples
to the file

� This is the most efficient technique for queries with
equality predicates, but inefficient for queries with
interval predicates. (...why?)

20

DB Technology -- 39

Details on Hash-Based Structures

� Primitive interface: hash(fileId,key):BlockId
� The implementation of hash consists of two parts
9 folding, transforms the key values into positive

integers, uniformly distributed over a large range;
9hashing, transforms the positive integer into a

number between 0 and B - 1.
� This technique works best if the file is made larger

than necessary. Let:
9T the number of tuples expected for the file;
9F the average number of tuples in each page;
then a good choice for B is T/(0.8 x F), using only

80% of the available space in the file.

DB Technology -- 40

Collisions
� Occur when the same block number is returned by

the algorithm to several different keys.
� Collisions are addressed by adding an overflow chain

to each page. There are extra costs in scanning the
chain.

� The following table computes the length of the
overflow chain:

1 2 3 5 10 (F)
.5 0.5 0.177 0.087 0.031 0.005
.6 0.75 0.293 0.158 0.066 0.015
.7 1.167 0.494 0.286 0.136 0.042
.8 2.0 0.903 0.554 0.289 0.110
.9 4.495 2.146 1.377 0.777 0.345

T/(F xB)

21

DB Technology -- 41

Tree Structures (B Trees)

� These are the most frequently used physical storage
structures for relational DBMSs.

� Tree structures give associative access (based on a
value of a key, consisting of one or more attributes)
without constraints on the physical location of the
tuples.

� Note that the primary key of a relation and the key of
a tree structure storing this relation need not be the
same.

DB Technology -- 42

Tree Structure Organization
� Each tree has a single root node, a number of

intermediate nodes, and a number of leaf nodes.
� The links between nodes are defined by pointers.
� Each node coincides with a page or block of the file

system and buffer manager levels.
� In general, each node has a large number of

descendants (fan out), and therefore the majority of
pages are leaf nodes.

� In a balanced tree, the lengths of the paths from the
root node to the leaf nodes are (almost) equal; this way,
the access times to the information contained in the
tree are almost constant (and optimal.)

22

DB Technology -- 43

Tree Structure Organization

DB Technology -- 44

Node Contents
� Each intermediate node contains F keys (in

lexicographic order) and F + 1 pointers.
� Each key Kj , 1 ≤ j ≤ F, is followed by a pointer Pj; K1 is

preceded by a pointer P0

� Each pointer addresses a sub-tree:
9P0 addresses the sub-tree with keys less than K1;
9PF addresses the sub-tree with keys greater than or

equal to KF ;

9Pj, 0 < j < F, addresses the sub-tree with keys
included in the interval Kj ≤ K < Kj+1 .

� The value F + 1 is called the fan-out of the tree.

23

DB Technology -- 45

Search Technique
� Assume that we are looking for the tuple with key V.
� At each intermediate node, if V < K1 follow the pointer P0,

else if V � KF follow the pointer PF, otherwise, follow the
pointer Pj such that Kj £ V < Kj+1

� The leaf nodes of the tree can be organized in two ways:
9 In key-sequenced trees the tuples are contained in the

leaves of the tree;
9 In indirect trees leaf nodes contain pointers to the

tuples, that can be allocated by means of any other
‘primary’ mechanism (e.g.,, entry-sequenced or hash.)

� Sometimes the index structure is sparse; you may then
locate a key value close to the value being sought, then
carry out a sequential search.

DB Technology -- 46

Tuple Insertion Operations

� An insertion operation searches up to a leaf page.
� When there is no free space on a page during an

insertion, a split operation is necessary, allocating
two leaf nodes in place of one.

� A split causes an increment in the number of
pointers on the next (higher) level in the tree; this
may cause further split operations.

24

DB Technology -- 47

Tuple Deletion Operations

� A deletion operation can always be carried out.
� When the key of a to-be-deleted tuple is in an

intermediate node, it is best to recover the next
key and substitute for it.

� When a deletion operation leaves two adjacent
pages underused, they are conbined into a
single page through a merge operation.

� A merge causes a decrement in the number of
pointers on the next (higher) level in the tree and
may cause further merges higher up in the tree.

DB Technology -- 48

Split and Merge Operations

� The update of the value of a key field is treated as
the deletion of its initial value followed by the
insertion of a new value.

� The careful use of split and merge operations makes
it possible to maintain the tree balanced, with an
average occupancy of each node higher than 50%.

25

DB Technology -- 49

Split
and

Merge
Operations

DB Technology -- 50

B and B+ Trees
� B+ trees are B trees, but their leaf nodes are linked into

a chain, which connects them in the order imposed by
the key.

� B+-trees support interval queries efficiently, and are
widely used to implement relational DBMSs.

� On the other hand, B trees don’t support sequential
access method of leaf nodes.

� For B-trees, Intermediate nodes use two pointers for
each key value Ki:

9One points directly to the block that contains the
tuple corresponding to Ki;
9The other points to a subtree with keys greater

than Ki and less than Ki+1.

26

DB Technology -- 51

Example of B+ Tree

DB Technology -- 52

Example
of B Tree

27

DB Technology -- 53

Query Optimization

� A query optimizer is an important component of a
DBMS architecture. An optimizer takes as input an
SQL query and produces an access plan in ‘object’
or ‘internal’ format.

� Optimization steps:
9Lexical, syntactic and semantic analysis, using the

data dictionary;
9Translation into an internal, algebraic form;
9Algebraic optimization through transformations;
9Cost-based optimization;
9Code generation using the physical data access

methods provided by the DBMS.

DB Technology -- 54

Approaches to Query Compilation

� Queries are often used multiple times.
� Compile and store -- the query is compiled once and

carried out many times;
9The internal code is stored in the database,

together with an indication of the dependencies of
the code on the particular versions of tables and
indexes of the database.

9On changes (e.g., new index), the compilation of
the query is invalidated and needs to be redone.

� Compile and go -- involves compilation for immediate
execution, with no storage of the compiled query.

28

DB Technology -- 55

Relation Profiles
� A profile contains quantitative information about a table

and is stored in the data dictionary:
9 the cardinality (number of tuples) of each table T;
9 the size in bytes of each tuple of T;
9 the size in bytes of each attribute Aj in T;
9 the number of distinct values of each attribute Aj in T;
9 the minimum and maximum values of each attribute Aj

in T;
� A profile is periodically recomputed through appropriate

system primitives (e.g., update statistics).
� Profiles are used in cost-based optimization to estimate

the size of intermediate results produced by the query
execution plan.

DB Technology -- 56

Internal Representation of Queries

� Queries are internally represented as trees whose:
9Leaves correspond to physical data structures

(tables, indexes, files)
9 Intermediate nodes represent data access

operations that are supported by the physical
structures

� These operations include sequential scans,
orderings, indexed accesses and various types of
join.

29

DB Technology -- 57

Scan Operation

� Performs a sequential access of all the tuples in a
table, and performs on each tuple various operations
of an algebraic or other nature:
9Projection of a set of attributes;
9Selection on a predicate (e.g., Ai = v);
9Sort (ordering);
9 Insertions, deletions, and updates of the tuples that

are being accessed during the scan.
� Primitives:

open, next, read, modify, insert, delete, close

DB Technology -- 58

Sort operation

� Various methods for ordering the data contained in
the main memory, typically represented by means of
a record array.

� DBMSs typically cannot load all data in the buffer;
thus, they separately order and then merge data
sets, using available buffer space.

30

DB Technology -- 59

Indexed Access
� Indexes are created by the database administrator to

favor queries when they include:
9 simple predicates (of the type Ai = v)
9 interval predicates (of the type v1 ≤ Ai ≤ v2)
These predicates are supported by the index.

� For a conjunction of predicates the DBMS chooses
the most selective supported predicate for primary
access, and evaluates the other predicates in main
memory.

� For a disjunction of predicates, a scan is needed if
any of them are not supported; if they are all
supported, indexes can be used only with duplicate
elimination.

DB Technology -- 60

Join Methods

� Joins are the most costly operation for a DBMS.
� There are various methods for join evaluation,

among them we note nested-loop, merge-scan and
hashed join operations.

31

DB Technology -- 61

Nested-Loop Join
Join attribute

DB Technology -- 62

Merge-Scan Join
Both table must be ordered according to the join

attribute

32

DB Technology -- 63

Hashed Join

� A hashing function h on the join attributes is used to
store both tables

DB Technology -- 64

Cost-Based Optimization

� This is an optimization problem, whose decisions are:
9The data access operations to execute, e.g., scan

vs index access;
9The order of operations, e.g., the order of join

operations;
9Options to be assigned to each operation, e.g.,,

choosing a join method;
9Use of parallelism and pipelining to improve

performance.
� Further options are available in selecting a plan for

distributed database query processing.

33

DB Technology -- 65

Approaches to Query Optimization

� The approach often used includes the following:
9Make use of approximate cost formulas;
9Construct a decision tree, where each node

corresponds to a choice; each leaf node
corresponds to a specific execution plan ;

9Assign to each plan a cost:
Ctotal = CI/Ox nI/O + Ccpu x ncpu

9Choose the one with the lowest cost, based on
operations research (branch and bound.)

� The optimizers should obtain good solutions, where
cost is near that of an optimal solution.

DB Technology -- 66

Example
of

Decision
Tree

34

DB Technology -- 67

Physical Database Design

� The final phase of the database design process.
� This phase takes as input the logical schema of a

database along with predictions for the application
load.

� The phase produces as output a physical schema,
made up of the definitions of the relations and of the
physical access structures used, along with related
parameters.

� Depends on the features that are supported by the
underlying DBMS.

DB Technology -- 68

Physical Design
for Relational DBMSs

� Most relational DBMSs support index and tuple
clustering.

� Physical design can be reduced to the activity of
identifying indices for each relation.

� The key of a relation is usually involved in selection or
join operations; for this reason, each relation normally
supports a unique index on the primary key.

� Other indices are added to support frequent queries.
� If the performance is unsatisfactory, we can tune the

system by adding or dropping indices.
� It is useful to check how indices are used by queries, by

using the show plan command.

35

DB Technology -- 69

Indices in SQL

� Commands for creating or dropping an index are not
part of standard SQL, but their syntax is rather
similar in all DBMSs.

� Syntax of the commands for the creation and
dropping of an index:
9create [unique] index IndexName on

TableName(AttributeList)
9drop index IndexName

