
1

Database Design -- 1

VI. Database Design

Information System Lifecycle
Database Design

Conceptual, Logical and Physical Design
The Entity-Relationship Model

Entities, Relationships and Attributes
Cardinalities, Identifiers and Generalization

Documentation of E-R Diagrams and Business Rules

Database Design -- 2

Database Design

� Database design is just one of several activities in the
development of an information system within an
organization.

� it should therefore be presented within the wider
context of the information system lifecycle.

2

Database Design -- 3

Lifecycle of an
Information

System

Feasibility Study

Requirements
Analysis

Design

Implementation

Validation and
Testing

Operation and
Maintenance

Database Design -- 4

The Lifecycle of an Information System

� Feasibility study -- defines the costs of possible solutions,
and establishes criteria for selecting among them.

� Requirements analysis -- defines and studies the desired
properties and functionality of the new system.

� Design -- covers database design and application design.
� Implementation -- the system is created according to the

specification defined in the design.
� Validation and testing -- checks the functioning and quality

of the information system, to make sure it is consistent with
the design.

� Operation and maintenance. The system becomes
operational and performs the tasks for which it was originally
designed.

3

Database Design -- 5

The Lifecycle of an
Information System (cont’d)

� The process of developing an information system is
rarely strictly sequential, given that during any one of the
phases it is often necessary to reconsider decisions
made earlier.

� Sometimes it is also useful to rapidly create a simplified
version of the information system, which is used to test
its functionality. This is known as prototyping.

� The prototype is shown to users in order to verify that
the high-level requirements of the information system
were correctly collected and modelled.

Database Design -- 6

Information Systems and Databases

� The database constitutes only one of the components of
an information system, which also includes application
programs, user interfaces and other service programs.

� However, the central role that the data itself plays in an
information system more than justifies an independent
study of database design.

� For this reason, we deal with only those aspects of
information system development that are closely related
to databases, focusing on database design and related
activities.

4

Database Design -- 7

Methodologies for Database Design

� We follow a structured approach to database design that
can be regarded as a ‘design methodology’.

� As such, it is presented in terms of:
9a decomposition of the entire design activity in

successive, independent steps;
9a series of strategies to be followed during these steps

and some criteria for selecting among these
strategies;

9 some reference models that describe the inputs and
outputs of various phases.

Database Design -- 8

A Database Design Methodology

� Within the field of databases, a design methodology
has been consolidated over the years.

� It is based on a simple but highly efficient engineering
principle: separate the decisions relating to ‘what’ to
represent in the database, from those relating to ‘how’
to do it.

� This methodology is divided into three phases to be
carried out consecutively.

5

Database Design -- 9

Phases of
Database
Design

Logical
Design

Physical
Design

Application
Requirements

Conceptual
schema

Logical
schema

Physical
schema

Database structure
and documentation

Conceptual
Design

Database Design -- 10

Conceptual Design

� The purpose of this phase is to represent the informal
requirements of an application in terms of a conceptual
schema that refers to a conceptual data model.

� Conceptual models allow the description of the
organization of data at a high level of abstraction, without
taking into account implementation details.

� In this phase, the designer must try to represent the
information content of the database, without
considering either the means by which this information
will be implemented in the actual system, or the efficiency
of the programs that makes use of this information.

6

Database Design -- 11

Logical Design

� Logical design consists of the translation of the conceptual
schema defined in the preceding phase, into the logical
schema of the database that refers to a logical data model
(usually the relational model.)

� In this phase the designer must also take into account some
optimization criteria, based on the operations to be carried
out on the data.

� Formal techniques for verification of the quality of the logical
schema are often used. In the case of the relational data
model, the most commonly used techniques is that of
normalization.

Database Design -- 12

Physical Design

� During physical design. the logical schema is completed
with details of the physical implementation (file
organization and indexes) on a given DBMS. The result is
called the physical schema, and refers to a physical
data model.

� Physical design is primarily concerned with performance,
given information about operational requirements for the
database.

� For relational DBMSs, physical design is often reduced to
the identification of what indices to support for each
relation.

7

Database Design -- 13

Data and Operational Requirements

� Data requirements concern the contents of the database, and
operational requirements concern the use of the database.

� In conceptual design, data requirements provide most of the
information, whereas operational requirements are used only to
verify that the conceptual schema is complete (that is, it contains
the information necessary to carry out all the operations).

� In logical design the conceptual schema, given as input,
summarizes the data requirements; whereas the the operational
requirements, together with the predicted application load are
used to obtain a logical schema.

� In the physical design, the logical schema and the operational
requirements are used to optimize the performance of the
information system. In this phase, it is necessary to take into
account the characteristics of the particular DBMS used.

Database Design -- 14

Outputs of Database Design
� The results of the design process of a database is not only

the physical schema, but also the conceptual schema and
the logical schema.

� The conceptual schema provides a high-level
representation of the database, which can be very useful
for documentation purposes.

� The logical schema provides a description of the contents
of the database, that leaving aside the implementation
aspects, is useful as a reference for writing queries and
updates.

8

Database Design -- 15

The figure shows the products of
different phases in the design of a
relational database, assuming the use
of the best-known conceptual data
model, the Entity-Relationalship (E-R)
model.

An E-R schema is represented as a
diagram, This representation is then
traslated into a logical schema, made
up of a collection of tables. The
physical schema describes data from
a physical point of view (type and size
of the fields), and auxilliary structures,
such as indexes, are specified for
efficient access to data.

Conceptual
design

Logical
design

Physical
design

Database Design -- 16

The Entity Relationship Model

� The Entity-Relationship (E-R) model is a conceptual
data model, and as such provides a series of constructs
capable of describing the data requirements of an
application in a way that is easy to understand and is
independent of the criteria for the management and
organization of data on the system.

� For every construct, there is a corresponding graphical
representation. This representation allows us to define
an E-R schema diagrammatically.

9

Database Design -- 17

The Constructs
of the E-R Model

Entity

Relationship

Simple
attribute

Composite
attribute

Cardinality
attribute

Cardinality
relationship

Internal
identifier

External
identifier

Generalization

Subset

Database Design -- 18

Entities

� These represent classes of objects (facts, things, people,...) that
have properties in common and an autonomous existence.

� City, Department, Employee, Purchase and Sale are
examples of entities for a commercial organization.

� An instance of an entity is an object in the class represented by
the entity.

� Stockholm, Helsinki, are examples of instances of the entity
City, and the employees Peterson and Johanson are examples
of instances of the Employee entity.

� The E-R model is very different from the relational model in
which it is not possible to represent an object without knowing
its properties (an employee is represented by a tuple containing
the name, surname, age, and other attributes.)

10

Database Design -- 19

Examples of Entities

Database Design -- 20

Relationships
� They represent semantic links between two or more

entities.

� Residence is an example of a relationship that can exist
between the entities City and Employee; Exam is an
example of a relationship that can exist between the
entities Student and Course.

� An instance of a relationship is an n-tuple made up of
instances of entities, one for each of the entities involved.

� The pair of objects made up of the employee named
Johanssen and the city Stockholm, or the pair of objects
made from the employee Peterson and the city Oslo, are
examples of instances in the relationship Residence.

11

Database Design -- 21

Example of Instances for Exam

Exam

Database Design -- 22

Examples of Relationships

12

Database Design -- 23

Recursive Relationships

� Recursive relationships (i.e.,
relationships between an
entity and itself) are also
possible.

� Note in the second example
that the the relationship is
not symmetrical. In this case
it is necessary to indicate
explicitly the two roles the
entity plays in the
relationship.

Database Design -- 24

Ternary Relationships

Supply

13

Database Design -- 25

Attributes

� These describe the elementary properties of entities or
relationships.

� For example, Surname, Salary and Age are possible
attributes of the Employee entity, while Date and Mark are
possible attributes for the relationship Exam between
Student and Course.

� An attribute associates with each instance of an entity (or
relationship) a value belonging to a set known as the domain
of the attribute.

� The domain contains the admissible values for the attribute.

Database Design -- 26

Attribute Examples

14

Database Design -- 27

Composite Attributes

� It is sometimes convenient to group attributes of the same
entity or relationship that have closely connected meanings
or uses. Such groupings are called composite attributes.

Database Design -- 28

Schema with Attributes

15

Database Design -- 29

Cardinalities

� These are specified for each entity participating in a
relationship and describe the maximum and minimum
number of relationship occurrences in which an entity
occurrence can participate.

� Cardinalities state how many times can an entity instance
participate in instances of a given relationship.

Database Design -- 30

Cardinalities (cont’d)

� In principle, a cardinality is any pair of non-negative integers
(n,m) such that n�m. or a pair of the form (n,N) where N means
“any number”.

� If minimum cardinality is 0, we say that entity participation in a
relationship is optional. If minimum cardinality is 1, we say that
entity participation in a relationship is mandatory.

� If maximum cardinality is 1, each instance of the entity is
associated at most with a single instance of the relationship; if
maximum cardinality is N, then each instance of the entity is
associated with an arbitrary number of instances of the
relationship.

16

Database Design -- 31

Cardinality Examples

Database Design -- 32

Cardinalities of Attributes
� They are specified for the attributes of entities (or

relationships) and describe the minimum and maximum
number of values of the attribute associated with instances of
an entity or a relationship.

� In most cases, the cardinality of an attribute is equal to (1,1)
and is omitted (single-valued attributes)

� The value of a certain attribute however, may also be null, or
there may exist several values of a certain attribute for an
entity instance (multi-valued attributes)

17

Database Design -- 33

Cardinalities (cont’d)

� Multi-valued attributes should be used with great caution,
because they represent situations that can be modelled,
sometimes, with additional entities linked by one-to-
many (or many-to-many) relationships to the entity to
which they refer.

Person CarRegistrationOwns/
OwnedBy

Surname

License#

(0,N) (1,2)

Database Design -- 34

Identifiers

� These are specified for each entity of a schema and
describe the concepts (attributes and/or entities) of the
schema that allow the unambiguous identification of the
entity occurrences.

� In many cases, an identifier is formed by one or more
attributes of the entity itself: in this case we talk about an
internal identifier (also known as a key).

� Sometimes, however, the attributes of an entity are not
sufficient to identify its occurrences unambiguously and
other entities are involved in the identification.This is
called an external identifier.

18

Database Design -- 35

Examples of Identifiers

Database Design -- 36

General Observations on Identifiers
� An identifier can involve one or more attributes, provided

that each of them has (1,1) cardinality;
� An external identifier can involve one or more entities,

provided that each of them is member of a relationship to
which the entity to identify participates with cardinality
equal to (1,1);

� An external identifier may involve an entity that is in turn
identified externally, as long as cycles are not generated;

� Each entity must have one (internal or external) identifier,
but can have more than one. Actually, if there is more
than one identifier, then the attributes and entities involved
in an identification can be optional (minimum cardinality
equal to 0).

19

Database Design -- 37

A Course Database

� We want a database about the courses offered at the
University of Trento each year. For example, BDSI.1 was
given last year 1st term, and this year as well.

Does this make sense?

Course

Name
(1,1) Instr

Title

Time

Year

Term

(1,1)
(1,1)

(1,1) (1,1)
(1,1)

No, because a course
can be given more

than once!

Database Design -- 38

How About...

Course

Name
(1,1)

Instr

Title

Time

Year

Term

(1,1)
(1,1)

(1,1)
(1,1)

(1,1)

Course

Name
(1,1)

Instr

Title

Time

Year

Term

(1,1)
(1,1)

(1,1) (1,1)

(1,1)

Course

Name
(1,1)

Instr

Title

Time

Year

Term

(1,1)
(1,1)

(1,1)
(1,1)

(1,1)

No, because a course
can be given more than once
during a term, with different

instructors!

No, because an instructor
may teach a course

more than once!

This is OK, a course may be
taught several times during

a term, with different
instructors

20

Database Design -- 39

...a Few More...

Course

Name
(1,1)

Instr

Title

Time

Year

Term

(1,N)

(1,1)

(1,1)
(1,1)

(1,1)

Course

Name
(1,1) Instr

Title

Time

Year

Term

(1,1)
(1,1)

(1,N) (1,1)
(1,1)

Course

Name
(1,1) Instr

Title

Time

Year

Term

(1,N)

(1,1)

(1,N) (1,1)

(1,1)

Course

Name
(1,1)

Instr
Title

Offered

Year

Term

(1,1)

(1,1)

(1,N) (1,1)
(1,1)

OK, we can have a course
taught by several

instructors during a term!

No,this says that a course
will always be taught by

the same instructor!

No, you don’t know which
instructor corresponds to

which time!

OK, but it may make more
sense to split off Offered
and make it a separate

entity!

Database Design -- 40

Generalizations
� These represent logical links between an entity E, known

as parent entity, and one or more entities E1,...,En called
child entities, of which E is more general, in the sense
that it comprises them as a particular case.

� In this situation we say that E is a generalization of
E1,...,En and that the entities E1,...,En are specializations
of the E entity.

21

Database Design -- 41

Properties of Generalization

� Every instance of a child entity is also an instance of the
parent entity.

� Every property of the parent entity (attributes, identifiers,
relationships and other generalizations) is also a property
of a child entity. This property of generalizations is known
as inheritance.

Database Design -- 42

Types of Generalizations

� A generalization is total if every instance of the parent entity is
also an instance of one of its children, otherwise it is partial.

� A generalization is exclusive if every instance of the parent
entity is at most an instance of one of the children, otherwise it
is overlapping.

� The generalization Person, of Man and Woman is total (the
sets of men and the women constitute ‘all’ the people) and
exclusive (a person is either a man or a woman).

� The generalization Vehicle of Automobile and Bicycle is
partial and exclusive, because there are other types of vehicle
(for example, motor bike) that are neither cars nor bicycles.

� The generalization Person of Student and Employee is partial
and overlapping, because there are students who are also
employed.

22

Database Design -- 43

Generalization Hierarchies

� Total generalization is
usually represented by
a solid arrow.

� We have a hierarchy of
generalizations when
we have several levels
of generalizations.

Database Design -- 44

The E-R Model, as an E-R Diagram

23

Database Design -- 45

Documentation of E-R Schemas
� An Entity-Relationship schema is rarely sufficient by

itself to represent all the aspects of an application in
detail;

� It is therefore important to complement every E-R
schema with support documentation, which can
facilitate the interpretation of the schema itself and
describe properties of the data that cannot be
expressed directly by the constructs of the model;

� A widely-used documentation concept for conceptual
schemas is the business rule.

Database Design -- 46

Business Rules

� Business rules are used to describe the properties of an
application, e.g., the fact that an employee cannot earn more
than his or her manager.

� A business rule can be:

9 the description of a concept relevant to the application (also
known as a business object),

9an integrity constraint on the data of the application,

9a derivation rule, whereby information can be derived from
other information within a schema.

24

Database Design -- 47

Documentation Techniques

� Descriptive business rules can be organized as a data
dictionary. This is made up of two tables: the first
describes the entities of the schema, the others describes
the relationships.

� Business rules that describe constraints can be expressed
in the following form:

<concept> must/must not <expression on concepts>
� Business rules that describe derivations can be expressed

in the following form:
<concept> is obtained by <operations on concepts>

Database Design -- 48

Example of a Data Dictionary
Entity Description Attributes Identifier
EMPLOYEE Employee working in the

company.
Code, Surname,
Salary, Age

Code

PROJECT Company project on which
employees are working.

Name, Budget,
ReleaseDate

Name

....

Relationship Description Entities involved Attributes
MANAGEMENT Associate a manager with

a department.
Employee (0,1),
Department (1,1)

MEMBERSHIP Associate an employee
with a department.

Employee (0,1)
Department (1,N) StartDate

....

25

Database Design -- 49

Examples of Business Rules

Constraints
(BR1) The manager of a department must belong to that department.
(BR2) An employee must not have a salary greater than that of the manager
of the department to which he or she belongs.
(BR3) A department of the Rome branch must be managed by an employee
with more than 10 years’ employment with the company.
(BR4) An employee who does not belong to a particular department must not
participate in any project.
....

Derivations
(BR5) The budget for a project is obtained by multiplying the sum of the
salaries of the employees who are working on it by 3.
....

