
Introduction -- 1

I. Introduction to
Database Systems

Databases and DBMSs
Data Models and Data Independence

Concurrency Control and Database Transactions
Structure of a DBMS

DBMS Languages

Introduction -- 2

Databases and DBMSs

� Database: A very large, integrated collection of data.
� Examples: databases of customers, products,...
� There are huge databases out there, for satellite and

other scientific data, digitized movies,...; up to
hexabytes of data (i.e., 1018 bytes)

� A database usually models (some part of) a real-
world enterprise.
9 Entities (e.g., students, courses)
9 Relationships (e.g., Paolo is taking CS564)

� A Database Management System (DBMS) is a
software package designed to store and manage
databases.

Introduction -- 3

Why Use a DBMS?

� Data independence and efficient access -- You
don’t need to know the implementation of the
database to access data; queries are optimized.

� Reduced application development time -- Queries
can be expressed declaratively, programmer doesn’t
have to specify how they are evaluated.

� Data integrity and security -- (Certain) constraints
on the data are enforced automatically.

� Uniform data administration.
� Concurrent access, recovery from crashes --

Many users can access/update the database at the
same time without any interference.

Introduction -- 4

Why Study Databases??

� Shift from computation to information: Computers
were initially conceived as neat devices for doing
scientific calculations; more and more they are used
as data managers.

� Datasets increasing in diversity and volume: Digital
libraries, interactive video, Human Genome project,
EOS project
... need for DBMS technology is exploding!

� DBMS encompasses much of Computer Science:
OS, languages, theory, AI, multimedia, logic,...

?

Introduction -- 5

Data Models

� A data model is a collection of concepts for
describing data.

� A database schema is a description of the data that
are contained in a particular database.

� The relational model of data is the most widely
used data model today.
9 Main concept: relation, basically a table with

rows and columns.
9 A relation schema, describes the columns, or

attributes, or fields of a relation.

Introduction -- 6

Levels of Abstraction

Many views, single logical
schema and physical
schema.

� Views (also called external
schemas) describe how
users see the data.

� Logical schema* defines
logical structure

� Physical schema describes
the files and indexes used.

* Called conceptual schema back in the
old days.

Physical Schema

Logical Schema

View 1 View 2 View 3

Introduction -- 7

Example: University Database

� Logical schema:
Students(Sid:String,Name:String,Login:
String,Age:Integer,Gpa:Real)

Courses(Cid:String,Cname:String,Credits: Integer)

Enrolled(Sid:String,Cid:String,Grade:String)

� Physical schema:
9 Relations stored as unordered files.
9 Index on first column of Students.

� (One) External Schema (View):
CourseInfo(Cid:String,Enrollment:Integer)

Introduction -- 8

Tables Represent Relations

Students Sid Name Login Age
Gpa

00243 Paolo pg 21
4.0

01786 Maria mf 20
3.6

02699 Klaus klaus 19
3.4

02439 Eric eric19 3.1

Courses Cid Cname Credits
csc340 Databases 4
csc434 AI 6
ece268 PL 3

Introduction -- 9

Data Independence

Applications insulated from how data is structured and
stored: (See also 3-layer schema structure.)
9Logical data independence: Protection from

changes in the logical structure of data.
9Physical data independence: Protection from

changes in the physical structure of data.

☛ One of the most important benefits
of database technology!

Introduction -- 10

Concurrency Control

� Concurrent execution of user programs is essential for
good DBMS performance.
9 Because disk accesses are frequent, and relatively

slow, it is important to keep the CPU humming by
working on several user programs concurrently.

� Interleaving actions of different user programs can lead
to inconsistency: e.g., cheque is cleared while account
balance is being computed.

� DBMS ensures that such problems don’t arise: users
can pretend they are using a single-user system.

Introduction -- 11

Database Transactions

� Key concept is transaction, which is an atomic
sequence of database actions (reads/writes).

� Each transaction executed completely, must leave the
DB in a consistent state, if DB is consistent when the
transaction begins.

� Users can specify some simple integrity constraints on
the data, and the DBMS will enforce these constraints.

� Beyond this, the DBMS does not really understand the
semantics of the data. (e.g., it does not understand how
the interest on a bank account is computed).

� Thus, ensuring that a transaction (run alone) preserves
consistency is ultimately the user’s responsibility!

Introduction -- 12

Scheduling Concurrent Transactions

DBMS ensures that execution of {T1, ... , Tn} is equivalent
to some serial execution T1, ... ,Tn.

� Before reading/writing an object, a transaction requests
a lock on the object, and waits till the DBMS gives it the
lock. All locks are released at the end of the
transaction. (Strict 2-phase locking protocol.)

� Idea: If an action of Ti (say, writing X) affects Tk (which
perhaps reads X), one of them, say Ti, will obtain the
lock on X first and Tk is forced to wait until Ti completes;
this effectively orders the transactions.

� What if Tk already has a lock on Y and Ti later requests
a lock on Y? (Deadlock!) Ti or Tk is aborted and
restarted!

Introduction -- 13

Ensuring Atomicity

� DBMSs ensure atomicity (all-or-nothing property), even
if system crashes in the middle of a transaction.

� Idea: Keep a log (history) of all actions carried out by the
DBMS while executing a set of transactions:
9 Before a change is made to the database, the

corresponding log entry is forced to a safe location.
(WAL protocol; OS support for this is often
inadequate.)

9 After a crash, the effects of partially executed
transactions are undone using the log. (Thanks to
WAL, if log entry wasn’t saved before the crash,
corresponding change was not applied to database!)

Introduction -- 14

The Log

� The following actions are recorded in the log:
9 Ti writes an object: the old value and the new value;

log record must go to disk before the changed page!
9 Ti commits/aborts: a log record indicating this action.

� Log records chained together by transaction id, so it’s
easy to undo a specific transaction (e.g., to resolve a
deadlock).

� Log is often duplexed and archived on “stable” storage.
� All log related activities (and in fact, all CC-related

activities such as lock/unlock, dealing with deadlocks etc.)
are handled transparently by the DBMS.

Introduction -- 15

Databases Make Folks Happy...

� End users and DBMS vendors
� Database application programmers,

e.g. smart webmasters
� Database administrators (DBAs)

9 Design logical /physical schemas
9 Handle security and authorization
9 Data availability, crash recovery
9 Database tuning as needs evolve

Must understand how a DBMS works!

Introduction -- 16

Structure of a DBMS

� A typical DBMS has a
layered architecture.

� The figure does not show
the concurrency control
and recovery
components.

� This is one of several
possible architectures;
each system has its own
variation.

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

These layers
must consider
concurrency
control and
recovery

Introduction -- 17

Database Languages

� A DBMS supports several languages and several
modes of use:

� Interactive textual languages, such as SQL;
� Interactive commands embedded in a host

programming language (Pascal, C, Cobol, Java, etc.)
� Interactive commands embedded in a ad-hoc

development language, usually with additional
features (for the production of forms, menus, reports,
...)

� Form-oriented, non-textual user-friendly languages
such as QBE.

Introduction -- 18

SQL, an Interactive Language

SELECT Course, Room, Floor
FROM Rooms, Courses
WHERE Code = Room
AND Floor=”Ground"

Course Room Floor
Networks N3 Ground
Systems N3 Ground

ROOMS Code Building Floor
DS1 Ex-OMI Ground
N3 Ex-OMI Ground
G Science Third

COURSES

Introduction -- 19

SQL Embedded in Pascal
write(‘city name''?'); readln(city);

EXEC SQL DECLARE E CURSOR FOR

SELECT NAME, SALARY

FROM EMPLOYEES

WHERE CITY = :city ;

EXEC SQL OPEN E ;

EXEC SQL FETCH E INTO :name, :salary ;

while SQLCODE = 0 do begin

write(‘employee:', name, ‘raise?');

readln(raise);

EXEC SQL UPDATE PERSON SET SALARY=SALARY+:raise

WHERE CURRENT OF E

EXEC SQL FETCH E INTO :name, :salary

end;

EXEC SQL CLOSE CURSOR E

Introduction -- 20

SQL Embedded in ad-hoc
Language (Oracle PL/SQL)

declare Sal number;

begin

select Sal into Salary from Emp where Code='5788'

for update of Sal;

if Salary>30M then

update Emp set Sal=Salary*1.1 where Code='5788';

else

update Emp set Sal=Salary*1.2 where Code='5788';

end if;

com mit;

exception

when no_data_found then

insert into Errors

values(‘No employee has given code',sysdate);

end;

Introduction -- 21

Form-Based Interface
(in Access)

Introduction -- 22

DBMS Languages

Host Programming Language

DML DDL
4GL

DBMS

Database

DML -- data manipula-
tion language
DDL -- data definition
language (allows defini-
tion of database schema)
4GL -- fourth generation
language, useful for
declarative query proces-
sing, report generation

Introduction -- 23

DBMS Technology: Pros and Cons

Pros
� Data are handled as a common resource.
� Centralized management and economy of scale.
� Availability of integrated services, reduction of

redundancies and inconsistencies
� Data independence (useful for the development and

maintenance of applications)
Cons
� Costs of DBMS products (and associated tools), also

of data migration.
� Difficulty in separating features and services (with

potential lack of efficiency.)

Introduction -- 24

Conventional Files vs Databases

Files
Advantages -- many
already exist; good for
simple applications;
very efficient
Disadvantages -- data
duplication; hard to
evolve; hard to build for
complex applications

Databases
Advantages -- Good for
data integration; allow for
more flexible formats (not
just records)
Disadvantages -- high
cost; drawbacks in a
centralized facility

The future is with databases!

Introduction -- 25

Types of DBMSs

� Conventional -- relational, network, hierarchical,
consist of records of many different record types
(database looks like a collection of files)

� Object-Oriented -- database consists of objects (and
possibly associated programs); database schema
consists of classes (which can be objects too).

� Multimedia -- database can store formatted data (i.e.,
records) but also text, pictures,...

� Active databases -- database includes event-
condition-action rules

� Deductive databases* -- like large Prolog programs,
not available commercially

Introduction -- 26

The Hierarchical Data Model

Database consists of hierarchical record structures; a
field may have as value a list of records; every
record has at most one parent

B365

38 Elm

War & Peace $8.99

Toronto

Jan 28, 1994 Feb 24, 1994

parent

children

Book

Borrower

Borrowing

Introduction -- 27

The Network Data Model

A database now consists of records with pointers
(links) to other records. Offers a navigational view

of a database.
Customer

Part

Region

Order

Ordered
Part

Sales
History

cycles of links are allowed
1::n link

Introduction -- 28

Comparing Data Models

� The oldest DBMSs were hierarchical, dating back to the
mid-60s. IMS (IBM product) is the most popular among
them. Many old databases are hierarchical.

� The network data model came next (early ‘70s). Views
database programmer as “navigator”, chasing links
(pointers, actually) around a database.

� The network model was found to be too implementation-
oriented, not insulating sufficiently the programmer from
implementation features of network DBMSs.

� The relational model is the most recent arrival. Relational
databases are cleaner because they don’t allow
links/pointers (necessarily implementation-dependent).

� Even though the relational model was proposed in 1970,
it didn’t take over the database market till the 80s.

Introduction -- 29

Summary

� DBMSs used to maintain and query large datasets.
� Benefits include recovery from system crashes,

concurrent access, quick application development,
data integrity and security.

� Levels of abstraction give data independence.
� A DBMS typically has a layered architecture.
� DBAs hold responsible jobs and are well-paid!
� DBMS R&D is one of the broadest,

most exciting areas in CS.

