
1

Multidatabases -- 1

XIV. Multidatabases

Multidatabases
Parallel Database Systems

Replidated Databases
Research Directions

Multidatabases -- 2

Multidatabases
� Each participating database continues to be used by its 

respective users (programs or end users.)
� Systems are also accessed by modules, called mediators, 

which show only the portion of a database that is to be 
exported; mediators rely on a global manager, to carry out 
the integration.

� In general, data cannot be modified by the mediators, 
because each source system is autonomous.

� Features: 
9presents an integrated view to the users, as if the 

databases were integrated;
9provides a high level of transparency;
9 currency is also high, because data is accessed at source;



2

Multidatabases -- 3

A Multidatabase System

Multidatabases -- 4

Replicated Data Architectures

� They guarantee read-only access to secondary copies 
of a database.

� An example of replication is a data warehouse, which 
downloads periodically data extracted from various 
heterogeneous distributed systems for purposes of 
analysis and decision support.

� Key feature: offers a  high level of integration and 
transparency, but a reduced degree of currency.



3

Multidatabases -- 5

Systems Based on Replicated Data 

Multidatabases -- 6

Application-Level Data Integration
� Data integration is carried out explicitly by the 

application
� In the next example, three sources are integrated: an 

external database, a local database and a data 
warehouse, which in turn uses three sources of 
information

� Features:
9Low degree of transparency and integration, with a 

degree of currency that depends on specific 
demands



4

Multidatabases -- 7

Example of Application-Level Integration

Multidatabases -- 8

Parallel Databases
� Were developed in the nineties along with the spread of 

standard multiprocessor architectures, after the failure of 
specialized database architectures (the so-called database 
machines) during the eighties.

� Parallelism is possible with multiprocessor architectures 
both with and without shared memory.

� Parallelism in databases is useful because many data 
management operations are repetitive in nature, and can be 
carried out in parallel with great efficiency.

� For example, a complete scan of a large database can be 
done using n scans, each on a portion of the database. If 
the database is stored on n different disks managed by n 
different processors, resulting in a speedup of 
approximately 1/n of the time required for a serial scan,



5

Multidatabases -- 9

Inter-Query Parallelism
� Parallelism is called inter-query when it carries out 

several queries in parallel.
9The load imposed on the DBMS is typically 

characterized by simple and frequent transactions 
(up to thousands of transactions per second.)

9Parallelism is introduced by multiplying the 
number of servers and allocating an optimal 
number of requests to each server.

9 In many cases, the queries are redirected to 
servers by a dispatcher process.

9Useful for OLTP systems.

Multidatabases -- 10

Intra-Query Parallelism

� Parallelism is known as intra-query when it executes 
parts of the same query in parallel:
9The load on the DBMS is characterized by a few 

extremely complex queries, which are 
decomposed into various partial sub-queries, to be 
executed in parallel.

9 In general, queries are carried out one after 
another, using the entire multi-processor system 
for each query.

9Useful for OLAP systems.



6

Multidatabases -- 11

Parallelism and Data Fragmentation

� Parallelism for databases requires some form of data 
fragmentation: the fragments are distributed among 
many processors and allocated to distinct secondary 
memory devices.

� Consider:
ACCOUNT(AccNum, Name, Balance)

TRANSACTION(AccNum,Date,SerialNumber,
TransType,Amount)

Fragmentation based on predefined intervals of 
account number

Multidatabases -- 12

Example of a Typical OLTP Query 

� A typical OLTP query with inter-query parallelism:
procedure Query5(:acc-num, :total);

select Balance into :total

from Account

where AccNum = :acc-num;

end procedure;

� Directed towards specific fragments depending on their 
selection predicates



7

Multidatabases -- 13

Example of a Typical OLAP Query 
� A typical OLAP query with intra-query parallelism:

procedure Query6();

select AccNum, sum(Amount)

from Account join Transaction

on Account.AccNum = Transaction.AccNum

where Date >= 1.1.1998 

and Date < 1.1.1999 group by AccNum

having sum(Amount) > 100000;

end procedure;

� Carried out on all of the fragments in parallel

Multidatabases -- 14

Distributed Joins

� The join of pairs of fragments corresponding to the 
same account number interval; the joins between the 
matching fragments can be carried out in parallel.

� Essential for intra-query parallelism: The parallel 
execution of n joins on fragments of dimension (1/n) 
is obviously preferable to the execution of a single 
join that involves the entire table

� In general, when the initial fragmentation does not 
allow the distributed execution of the joins present in 
the query, data is dynamically redistributed to support 
distributed joins.



8

Multidatabases -- 15

Speed-Up and Scale-Up
� The speed-up curve characterizes only inter-query 

parallelism and measures the increase of services, 
measured in tps (transactions per second), against the 
increase in the number of processors; In the ideal 
situation, services increase almost linearly against the 
increase in processors.

� The scale-up curve characterizes both inter-query 
parallelism and intra-query parallelism, and measures the 
average cost of a single transaction against the increase 
of the number of processors; In the ideal situation, the 
average costs remain almost constant with an increase in 
processors. In such cases, we say that the system ‘scales 
well’.

Multidatabases -- 16

A Typical Speed-Up Curve



9

Multidatabases -- 17

A Typical Scale-Up Curve

Multidatabases -- 18

Transaction Benchmarks
� Specific tests for measuring the efficiency of (possibly parallel) 

DBMS; used to produce speed-up and scale-up curves under 
standard workload conditions.

� Standardized by TPC (Transaction Processing Performance 
Council), a committee of about thirty suppliers of DBMSs and 
transaction systems

� Three main benchmarks (TPC-A, TPC-B and TPC-C) 
respectively for OLTP, mixed, and OLAP applications. Can refer 
to a mainframe-based, client-server, or parallel architecture

� Parameters of benchmarks: transaction code, size of the 
database, the method used for generating data, the distribution 
of the arrivals of transactions, also the techniques for 
measuring and auditing the benchmark



10

Multidatabases -- 19

Replicated Databases

� Data replication is an essential service for the creation of 
many distributed applications

� Provided by products called data replicators, whose function 
is to maintain consistency among copies. They operate 
transparently to applications running on the DBMS server

� In general, there is one main copy and various secondary 
copies, and updates are propagated asynchronously 
(without the two-phase commit protocol)

� Propagation is incremental when it is based on data 
variations, sent from the main copy to the secondary copy

� The use of replication makes a system less sensitive to 
failure, because if the main copy is unavailable it is possible 
to use one of its copies

Multidatabases -- 20

Typical Architecture for Data Replication



11

Multidatabases -- 21

Discussion of the Architecture
� The architecture has two identical sites, each managing the 

entire database; half is the main copy and the other half is the
secondary copy.

� All transactions are sent to the main copy and then possibly 
redirected to the secondary copy.

� Each ‘access point’ to the system is connected to both sites.
� In the case of a failure for one site, the system commutes 

almost instantly all the transactions to the other site, which is 
powerful enough to sustain the entire load.

� When the  problem is resolved, the replication manager 
restores the data transparently and then resets the two sites to
normal operations.

� Specialized for high availability.

Multidatabases -- 22

Example Architecture for Data Replication



12

Multidatabases -- 23

The Tandem Information System
� An application created by Tandem in the mid-eighties; had 

ten factories in various parts of the world, each responsible 
for the production of a specific part of the architecture of a 
computer. 

� Tables representing the available parts in the company 
were fragmented to reflect the physical distribution of the 
parts, and then allocated to the nodes, co-located with a 
factory, in a redundant way: the main copy of each 
fragment was on the node responsible for the production 
process of the parts described in that fragment, while 
secondary copies were replicated in all other nodes

� The replication manager acted periodically, by collecting a 
batch of modifications on a given fragment and applying 
them asynchronously to all the other fragments

Multidatabases -- 24

Advanced Replication Mechanisms
� Symmetrical replication allows modifications on any copy, 

with a ‘peer-to-peer’ situation among the copies: 
9 It is possible to introduce conflicts, in that two copies of the

same information are managed in a concurrent way without 
concurrency control;

9Techniques are capable of revealing inconsistencies after 
their occurrence; repair is application-specific.

� Disconnected replication: used with mobile systems, in which 
the connection with the database can be broken; for example, 
a salesperson can connect to the database in order to 
download data on merchandise and upload orders received. 
The salesperson is normally disconnected from the database 
and accepts transactions on the copy; the copy is ‘reconciled’ 
with the main copy at the end of the sale activity.



13

Multidatabases -- 25

Research Directions for
Multidatabases

� Consider a company database:
Cust(name,addr,phone)

Sales(custName,prod#,price,amount,date)

Prod(prod#,name,price,inStock)

� Each salesperson leaving for a trip downloads parts of the 
Prod, Sales and Cust relations. On their trip, they update 
customer, and sales information.

� Each of these databases evolves autonomously from the 
original, and there is no global manager. However, we’d 
like to enforce coordination rules, such as:
“Updates to a customer address must be propagated to 
other databases”

Multidatabases -- 26

Coordination Rules

� These are inter-database soft constraints. They are checked 
every time there is an updated to one of the relevant 
databases, and are enforced through some protocol.

� Examples:
9Master:Cust(n,x) and SalesN:Cust(n,y) 

--> x=y) propagate last

/* the latest addr is propagated to the other database */
9Master:Prod(p#,p) and SalesN:Prod(p#,p’) 

--> p=p’)  propagate (Master->SalesN)

/* the Master copy prices are always propagated to the 
other databases, not the other way around */



14

Multidatabases -- 27

More Coordination Rules

9Maria:TravelB=x and Paolo:TravelB=y and
Fausto:TravelB=z --> x+y+z�15MLit

equi-distribute

/* if their total budget is x > 15MLit, reduce each budget 
by (x - 15ML)/3 */

9Master:Prod(p#,n) and SalesN:Prod(p#,n’) 
undo

/* no updates allowed to product names */
9Master:Prod(p#,.) == SalesN:Prod(p#,.) 

propagate (Master->SalesN)

/* propagate added or deleted Product tuples in the 
Master database */

Multidatabases -- 28

Compatibility Rules

� They define correspondences between different 
databases at two levels:
9Constant to constant, e.g., ‘one’ --‘uno’;
9Relational signature to relational signature, e.g., 

Cust(name,addr) -- Customer(nm,ad)

� Of course, such correspondences can be one-to-one, 
one-to-many or many-to-many.



15

Multidatabases -- 29

A Data Model for Multidatabases
� A Multidatabase system consists of one or more databases 

and a set of coordination rules.
� Operations that can be performed on the system include:
9Add or delete a database;
9Update or query a database;
9Add, delete or update a coordination rule.

� Each database ‘knows’ (‘is acquainted with’) only with 
databases it shares coordination and compatibility rules.

� Queries are local; global queries can be expressed by using 
compatibility rules:

“Give me all customers in all acquainted databases”
fetches customers from all databases in the transitive 
closure of the aquaintaince relation wrt  this database.

Multidatabases -- 30

Research Problems

� A formal semantics to the Multidatabase Model (note: 
hard problem, standard Logic techniques assume a global 
model which serves as interpretation of whatever you are 
trying to formalize.)

� Efficient global query processing techniques (possibly 
exploiting parallelism.)

� A formal transaction model for coordination rules, 
supporting ‘soft’ enforcement mechanisms.

� Efficient implementation techniques for coordination rule 
enforcement.

� …more...


