
1

Normalization -- 1

IX. Normalization

Database Redundancies and Anomalies
Functional Dependencies

The Boyce-Codd Normal Form
Lossless Decompositions
Preserving Dependencies

The Third Normal Form
Normal Forms and Database Design

Normalization -- 2

Seminar on Databases

Martedi, 16 Ottobre, ore 11.30
Aula Seminari di Matematica

Klaus R. Dittrich, University of Zurich,
Switzerland

SINGAPORE:
Towards flexible querying

of heterogeneous data sources

2

Normalization -- 3

Normal Forms and Normalization

� A normal form is a property of a database schema.
� When a database schema is un-normalized (that is, does

not satisfy a normal form), it allows redundancies of
various types which can lead to anomalies and
inconsistencies.

� Normal forms can serve as basis in order to carry out
quality analysis for a given database schema and
constitutes a useful tool for database design.

� Normalization is a procedure that transforms an un-
normalized schema into a normalized one.

Normalization -- 4

Example of Redundancies

Employee Salary Project Budget Function
Brown 20 Mars 2 technician
Green 35 Jupiter 15 designer
Green 35 Venus 15 designer

Hoskins 55 Venus 15 manager
Hoskins 55 Jupiter 15 consultant
Hoskins 55 Mars 2 consultant
Moore 48 Mars 2 manager
Moore 48 Venus 15 designer
Kemp 48 Venus 15 designer
Kemp 48 Jupiter 15 manager

3

Normalization -- 5

Anomalies

The value of the salary of an employee is repeated in every
tuple where the employee is mentioned, leading to a
redundancy. Redundancies lead to anomalies:

� If the salary of an employee changes, we have to modify
the value in all the corresponding tuples (update
anomaly.)

� If an employee ceases to work in projects but does not
leave the company, all the corresponding tuples are
deleted, leading to loss of information (deletion anomaly.)

� A new employee cannot be inserted in the relation it until
the employee is assigned to a project (insertion anomaly.)

Normalization -- 6

What’s Wrong???

� We are using a single relation to represent data of very
different types.

� In particular, we are using a single relation to store the
following types of entities, relationships and attributes:
9Employees and their salaries;
9Projects and their budgets;
9Participation of employees in projects, along with their

functions.
� To set the problem on a formal footing, we introduce the

notion of functional dependency.

4

Normalization -- 7

Functional Dependencies
in the Example

� Each employee has a unique salary. We represent this
dependency as

Employee → Salary

and we say that Salary functionally depends Employee.
� This means that there exists a function that takes an

Employee atrribute value and returns a (single) value for
the attribute Salary.

� Likewise,

Project → Budget

i.e., each project has a unique budget; or, Budget
functionally depends on Project.

Normalization -- 8

Functional Dependencies

� Given a schema R(X) and two non-empty subsets Y and Z
of the attributes X, we say that there is a functional
dependency between Y and Z (Y→Z), if for every relation
instance r of R(X) and every pair of tuples t1 and t2 of r
such that t1.Y = t2 .Y, it is the case that t1.Z = t2 .Z.

� A functional dependency is a statement about all
allowable relations for a given schema.

� Functional dependencies have to be identified by
understanding the semantics of the application.

� Given a particular relation r0 of R(X), we can tell if a
dependency holds or not; but just because it holds for r0,
doesn’t mean that it also holds for R(X)!

5

Normalization -- 9

Non-Trivial Dependencies

� A functional dependency Y→Z is non-trivial if no attribute in Z
appears among the attributes of Y, e.g.,

9Employee → Salary is non-trivial;

9Employee Project →Project is trivial.
� In our example, anomalies arise precisely for the attributes

which are involved in functional dependencies; specifically

9Employee → Salary;

9Project → Budget.
� Moreover, note that the example includes another functional

dependency:

9Employee, Project → Function.

Normalization -- 10

Dependencies Cause Anomalies,
...Sometimes!

� The first two dependencies cause undesirable
redundancies and anomalies.

� The third dependency, however, does not cause
redundancies because {Employee, Project} constitute a
key of the relation (...and a relation cannot contain two
tuples with the same values of these attributes.)

Dependencies on keys are OK,
other dependencies are not!

6

Normalization -- 11

Boyce–Codd Normal Form (BCNF)

� A relation r is in Boyce–Codd Normal Form if for every
(non-trivial) functional dependency X → Y defined on it, X
contains a key K of r. That is, X is a superkey for r.

� Anomalies and redundancies, as discussed above, do not
occur in databases with relations in Boyce–Codd normal
form.

Normalization -- 12

Normalization Through
Decomposition

� A relation that is not in Boyce–Codd normal form, can be
replaced with one or more normalized relations using a
process called normalization.

� We can eliminate redundancies and anomalies for the
example relation if we replace it with the three relations,
obtained by projections on the sets of attributes
corresponding to the three functional dependencies.

� The keys of the relations we obtain are the left hand side
of a functional dependency: the satisfaction of the Boyce–
Codd normal form is therefore guaranteed for the new
relations..

7

Normalization -- 13

Example of Normalization

Employee Salary
Brown 20
Green 35

Hoskins 55
Moore 48
Kemp 48

Employee Project Function
Brown Mars technician
Green Jupiter designer
Green Venus designer

Hoskins Venus manage r
Hoskins Jupiter consultant
Hoskins Mars consultant
Moore Mars manage r
Moore Venus designer
Kemp Venus designer
Kemp Jupiter manage r

Project Budget
Mars 2

Jupiter 15
Venus 15

Normalization -- 14

Another Example

Employee Project Branch
Brown Mars Chicago
Green Jupiter Birmingham
Green Venus Birmingham

Hoskins Saturn Birmingham
Hoskins Venus Birmingham

This relation satisfies the functional dependencies:
9 Employee → Branch
9 Project → Branch

8

Normalization -- 15

A Possible Decomposition

Employee Branch
Brown Chicago
Green Birmingham

Hoskins Birmingham

Project Branch
Mars Chicago

Jupiter Birmingham
Saturn Birmingham
Venus Birmingham

Normalization -- 16

The Join of the Projections

Employee Project Branch
Brown Mars Chicago
Green Jupiter Birmingham
Green Venus Birmingham

Hoskins Saturn Birmingham
Hoskins Venus Birmingham
Green Saturn Birmingham

Hoskins Jupiter Birmingham

The result of the join is different from the original relation.

We lost some information
during the decomposition!

9

Normalization -- 17

Lossless Decomposition

� The decomposition of a relation r on X1 and X2 is lossless
if the join of the projections of r on X1 and X2 is equal to r
itself (that is, does not contain spurious tuples).

� It is clearly desirable to allow only lossless
decompositions during normalization.

Normalization -- 18

A Condition for Lossless
Decomposition

� Let r be a relation on X and let X1 and X2 be two subsets
of X such that X1 ∪ X2 = X. Furthermore, let X0 = X1 ϒ X2.

� If r satisfies the functional dependency X0 → X1 or the
functional dependency X0 → X2, then the decomposition
of r on X1 and X2 is lossless.

� In other words, r has a lossless decomposition on two
relations if the set of attributes common to the relations is
a key for at least one of the decomposed relations.

10

Normalization -- 19

A Lossless Decomposition

Employee Branch
Brown Chicago
Green Birmingham

Hoskins Birmingham

Employee Project
Brown Mars
Green Jupiter
Green Venus

Hoskins Saturn
Hoskins Venus

Normalization -- 20

Another Problem...

� Assume we wish to insert a new tuple that specifies that
employee Armstrong works in Birmingham and
participates in project Mars.

� In the original relation an update of this kind would be
immediately identified as illegal, because it would cause a
violation of the Project → Branch dependency.

� For the decomposed relations, however, this is not
possible because the two attributes Project and Branch
have been moved in different relations.

11

Normalization -- 21

Preserving Dependencies

� A decomposition preserves dependencies if each of the
functional dependencies of the original relation schema
involves attributes that appear together in one of the
decomposed relation schemas.

� It is clearly desirable that a decomposition preserves
dependencies because then it is possible to ensure that the
decomposed schema satisfies the same constraints as the
original schema.

Normalization -- 22

Desirable Qualities for
Decompositions

� Decompositions should always satisfy the properties of
lossless decomposition and dependency preservation:
9Lossless decomposition ensures that the information

in the original relation can be accurately reconstructed
based on the information represented in the
decomposed relations.

9Dependency preservation ensures that the
decomposed relations have the same capacity to
represent the integrity constraints as the original
relations and therefore to reveal illegal updates.

12

Normalization -- 23

Assume the following dependencies:
� Manager → Branch -- each manager works in a particular

branch;
� Project, Branch → Manager -- each project has several

managers, and runs on several branches; however, a
project has a unique manager for each branch.

A Relation not in BCNF

Manager Project Branch
Brown Mars Chicago
Green Jupiter Birmingham
Green Mars Birmingham

Hoskins Saturn Birmingham
Hoskins Venus Birmingham

Normalization -- 24

A Problematic Decomposition

� The relation is not in Boyce–Codd normal form because
the left hand side of the first dependency is not a
superkey.

� At the same time, no good decomposition of this relation
is possible: the dependency Project Branch → Manager
involves all the attributes and thus no decomposition is
able to preserve it.

� We conclude that sometimes Boyce–Codd normal form
cannot be achieved for a particular relation and set of
functional dependencies without violating the principles of
lossless decomposition and dependency preservation.

13

Normalization -- 25

A New Normal Form

� A relation r is in third normal form (3NF) if, for each (non-
trivial) functional dependency X → Y, at least one of the
following is true:
9X contains a key K of r;
9Each attribute in Y is contained in at least one key of r.

Normalization -- 26

BCNF and 3NF

� The previous schema is not in Boyce–Codd normal form,
but it is in third normal form.

� In particular, the Project, Branch → Manager dependency
has as its left hand side a key, while Manager → Branch
has a unique attribute for the right hand side, which is part
of the {Project, Branch} key.

� The third normal form is less restrictive than the Boyce–
Codd normal form and for this reason does not offer the
same guarantees of quality for a relation; it has the
advantage however, of always being achievable.

14

Normalization -- 27

In 3NF,
Some Redundancies are Tolerated

Manager Project Branch
Brown Mars Chicago
Green Jupiter Birmingham
Green Mars Birmingham

Hoskins Saturn Birmingham
Hoskins Venus Birmingham!!

Normalization -- 28

Decomposition into 3NF

� Decomposition into 3NF can proceed as follows.

9For each functional dependency of the form X → Y,
where X contains a subset of a key K of r, create a
projection on all the attributes X, Y (2NF).

9 For each dependency of the form X → Y, where X,
doesn’t contain any key attributes, and not all attributes
of Y are key attributes, create a projection on all the
attributes X, Y (3NF).

� The new relations only include dependencies X → Y,
where X contains a key K of r, or Y contains only key
attributes.

15

Normalization -- 29

Functional dependencies:

� Manager → Branch, Division -- each manager works at one
branch and manages one division;

� Branch, Division → Manager -- for each branch and division
there is a single manager;

� Project, Branch → Division -- for each branch, a project is
allocated to a single division and has a sole manager
responsible.

A Revised Example
Manager Project Branch Division

Brown Mars Chicago 1
Green Jupiter Birmingham 1
Green Mars Birmingham 1

Hoskins Saturn Birmingham 2
Hoskins Venus Birmingham 2

Normalization -- 30

A Good Decomposition

Manager Branch Division
Brown Chicago 1
Green Birmingham 1

Hoskins Birmingham 2

Project Branch Division
Mars Chicago 1

Jupiter Birmingham 1
Mars Birmingham 1

Saturn Birmingham 2
Venus Birmingham 2

� The decomposition is in 3NF but not in BCNF; moreover, it
is lossless and dependencies are preserved.

� This example demonstrates that Boyce–Codd normal form
is too strong a condition to impose on a relational schema.

16

Normalization -- 31

Database Design and Normalization

� The theory of normalization can be used as a basis for
quality control operations on schemas, during both
conceptual and logical design.

� Analysis of the relations obtained during the logical design
phase can identify places where the conceptual design
was inaccurate: such a validation of the design is usually
relatively easy.

� Normalization can also be used during conceptual design
for quality control of each element of a conceptual schema
(entity or relationship).

Normalization -- 32

Analysis of an Entity

� The functional dependency

SupplierCode → Supplier, Address

is verified on the attributes of the entity: all the properties
of each supplier are identified by its SupplierCode.

� The entity violates the third normal form since this
dependency has a left hand side that does not contain the
identifier and a right hand side made up of attributes that
are not part of the key.

17

Normalization -- 33

Decomposing Product
� Supplier is (or should be) an independent entity, with its

own attributes (code, surname and address)
� If Product and Supplier are distinct entities, they should be

linked through a releationship.
� Since there is a functioanal dependency from Code to

SupplierCode, we are sure that each product has at most
one supplier (maximum cardinality 1).

� Since there is no dependency from SupplierCode to Code,
we have an unrestricted maximum cardinality (N) for
Supplier in the relationship.

Normalization -- 34

Decomposing Product

� This decomposition satisfies the two fundamental properties:
9 It is a lossless decomposition, because of the one-to-many

relationship which allows us to recostruct the values of the
attributes of the original entity;

9Moreover, It preserves the dependencies, because each of
the dependencies is embedded in one of the entities or
can be reconstructed from them.

18

Normalization -- 35

Analysis of a Relationship

� It is easy to check whether a binary relation is in 3NF (or in
BCNF), the verification of normalization need only be carried
out on n-ary relationships for n��� VLQFH ELQDU\ UHODWLRQVKLSV

can’t be decomposed.
� Consider

Normalization -- 36

Some Functional Dependencies

9Student → DegreeProgramme (each student is enrolled in
one degree programme)

9Student → Professor (each student writes a thesis under the
supervision of a single professor)

9Professor → Department (each professor is associated with
a single department and the students under her supervision
are students in that department)

� The (unique) key of the relationship is Student (given a student,
the degree programme, the professor and the department are
identified uniquely)

� The third functional dependency causes a violation of 3NF.

19

Normalization -- 37

Decomposing Thesis

� The following is a decomposition of Thesis where the two
decomposed relationships are both in 3NF(also in BCNF)

Normalization -- 38

More Observations...

� The relationship Thesis is in 3NF, because its key is
made up of the Student entity, and its dependencies all
have this entity on the left hand side.

� However, not all students write theses, therefore not all
students have supervisors.

� From a normal form point of view, this is not a problem.
� However, our conceptual schema should reflect the fact

that being in a degree programme and having a
supervisor are independent facts.

20

Normalization -- 39

Another Decomposition

