Basi di Dati e
Sistemi Informativi |

SQL

SQL queries

Giorgini —A.A. 2001-2002 — DB&IS 1

SQL as a query language

* SQL expresses queries in declarative way

— gueries specify the properties of the result, not the
way to obtain it

* Queries are translated by the query optimizer into the
procedural language internal to the DBMS

» The programmer should focus on readability, not on
efficiency

Giorgini —A.A. 2001-2002 — DB&IS 2

=



SQL queries

SQL queries are expressed by the select statement

Syntax:
sel ect AttrExpr [[ as ] Alias ] {, AttrExpr [[ as ] Alias ] }
fromTable [[as JAlias]{, [[as ] Alias]}
[ wher e Condition ]

The three parts of the query are usually called:
— target list

— fromclause

— wher e clause

The query considers the cartesian product of the tables in the
f r omclause, considers only the rows that satisfy the condition
in the wher e clause and for each row evaluates the attribute

expressions in the target list

Giorgini —A.A. 2001-2002 — DB&IS 3

Example database

FirstName Surname Dept Office Salary City
Mary Brown Administration

Charles White Production

Gus Green Administration

Jackson Neri Distribution

Charles Brown

Laurence  Chen

Jackson Production

DeptName Address

Administration Bond Street London
Production Rue Victor Hugo Toulouse
Distribution Pond Road Brighton
Planning Bond Street London
Research Sunset Street San José

Giorgini —A.A. 2001-2002 — DB&IS 4

N



Simple SQL query

Find the salaries of employees named Brown:
sel ect Salary as Renuneration

from Enpl oyee
wher e Surnanme = ‘ Brown’

Result:

Remuneration

45
80

Giorgini —A.A. 2001-2002 — DB&IS

*in the target list

« Find all the information relating to employees named Brown;

sel ect *
from Enpl oyee
where Surnanme = ‘ Brown’

Office Salary City

Administration

Planning

Giorgini —A.A. 2001-2002 — DB&IS

W



Attribute expressions

« Find the monthly salary of the employees named White:
select Salary / 12 as MonthlySal ary
from Enpl oyee
where Surname = ‘\Wite’

e Result:

MonthlySalary

Giorgini —A.A. 2001-2002 — DB&IS 7

Simple join query

« Find the names of the employees and the cities in which they
work:
sel ect Enpl oyee. Fi rst Nane, Enpl oyee. Sur nane,
Department. City
from Enpl oyee, Depart nent
wher e Enpl oyee. Dept = Depart nent. Dept Nane

FirstName Surname City

e Result: Mary Broyvn London
Charles White Toulouse
Gus Green London

Jackson Neri Brighton
Charles Brown London
Laurence Chen London
Pauline Bradshaw London
Alice Jackson  Toulouse

Giorgini —A.A. 2001-2002 — DB&IS 8

I~



Table aliases

« Find the names of the employees and the cities in which they
work (using an alias):
sel ect FirstNane, Surnane, D.Cty
from Enpl oyee, Departnment D
where Dept = Dept Name

FirstName Surname City

* Result: VEW Brown London
Charles White Toulouse

Gus Green London

Jackson Neri Brighton
Charles Brown London
Laurence  Chen London
Pauline Bradshaw London
Alice Jackson  Toulouse

Giorgini —A.A. 2001-2002 — DB&IS 9

Predicate conjunction

« Find the first names and surnames of the employees who work
in office number 20 of the Administration department:
sel ect FirstNanme, Surnane
from Enpl oyee
where Ofice = *20" and
Dept = ‘ Admi nistration’

* Result:
FirstName Surname
Gus Green
Giorgini — A.A. 2001-2002 — DB&IS 10

(63



Predicate disjunction

» Find the first names and surnames of the employees who work
in either the Administration or the Production department:
sel ect FirstNanme, Surnane
from Enpl oyee
where Dept = ‘Adninistration or
Dept = ‘ Production’

e Result:

FirstName Surname

Mary Brown
Charles White

Gus Green
Pauline Bradshaw
Alice Jackson

Giorgini — A.A. 2001-2002 — DB&IS 11

Complex logical expression

« Find the first names of the employees named Brown who work
in the Administration department or the Production department:;
sel ect FirstNane
from Enpl oyee

where Surnanme = ‘ Brown’ and
(Dept = ‘Administration’ or
Dept = ‘ Production’)
e Result:
FirstName
VETY

Giorgini — A.A. 2001-2002 — DB&IS 12

[e)



Operator | i ke

« Find the employees with surnames that have ‘r' as the second
letter and end in ‘n";
sel ect *
from Enpl oyee
where Surnane like ‘' _rom’
e _ : arbitrary character;
* % a string (possibly empty) of arbitrary characters
* Result:

FirstName Surname Dept Office Salary City
Mary Brown Administration

Gus Green Administration
Charles Brown

Giorgini — A.A. 2001-2002 — DB&IS 13

Management of null values

e Null values may mean that:

— avalue is not applicable

— avalue is applicable but unknown

— itis unknown if a value is applicable or not
e SQL-89 uses a two-valued logic

— a comparison with null returns FALSE
e SQL-2 uses a three-valued logic

— a comparison with null returns UNKNOWN
» To test for null values:

Attribute i s [ not ] nul |

Giorgini — A.A. 2001-2002 — DB&IS 14

I~



Algebraic interpretation of SQL queries
« The generic query:

sel ect T_1.Attribute_11, ..., T_h.Attribute_hm
fromTable_1T 1, ..., Table nT_n
wher e Condition

« corresponds to the relational algebra query:

T[Tfl.Anributefll,...,Tfh.Anributefhm (0 Condition (Table_lN NTable_n))

Giorgini — A.A. 2001-2002 — DB&IS 15

Duplicates

» Inrelational algebra and calculus the results of queries do not contain
duplicates

* In SQL, tables may have identical rows

» Duplicates can be removed using the keyword di st i nct

select City select distinct Gty
from Depart nment from Depart nment

City
London
Toulouse

City
London
Toulouse
Brighton
London
San José

Brighton
San José

Giorgini — A.A. 2001-2002 — DB&IS 16

100



Joins in SQL-2

e SQL-2 introduced an alternative syntax for the representation of
joins, representing them explicitly in the f r omclause:

sel ect AttrExpr [[ as ] Alias ] {, AttrExpr [[ as ] Alias ] }
fromTable [[ as ] Alias ]

{[JoinType] j oi n Table [[ as ] Alias ] on JoinConditions }
[ wher e OtherCondition ]

« JoinType can be any of i nner, ri ght [outer ],1 eft [outer]
or ful | [outer ], permitting the representation of outer joins

« The keyword nat ur al may precede JoinType (rarely
implemented)

Giorgini — A.A. 2001-2002 — DB&IS 17

Inner join in SQL-2

* Find the names of the employees and the cities in which they
work:
select FirstNane, Surnane, D.Cty
from Enpl oyee inner join Departnent as D
on Dept = Dept Nane

FirstName | Surname | City
* Result: Mary Brown London
Charles White Toulouse
Gus Green London
Jackson Neri Brighton
Charles Brown London
Laurence |Chen London
Pauline Bradshaw |London
Alice Jackson | Toulouse
Giorgini — A.A. 2001-2002 — DB&IS 18

[<e)



Example database, drivers and cars

DRIVER | FirstName | Surname |DriverID

Mary Brown VR 2030020Y

Charles White PZ 1012436B

Marco Neri AP 4544442R

AUTOMOBILE | CarRegNo | Make Model DriverID

ABC 123 BMW 323 VR 2030020Y
DEF 456 BMW Z3 VR 2030020Y
GHI 789 Lancia Delta PZ 1012436B
BBB 421 BMW 316 MI 2020030U

Giorgini — A.A. 2001-2002 — DB&IS 19

Left join

» Find the drivers with their cars, including the drivers without
cars:
sel ect FirstNane, Surname, Driver.DriverlD
Car RegNo, Make, Mbdel
fromDriver left join Autonobile on
(Driver.Driverl D = Autonobile.DriverlD)

* Result:
FirstName | Surname | DriverlD CarRegNo |Make Model
Mary Brown VR 2030020Y |ABC 123 |BMW 323
Mary Brown VR 2030020Y |DEF 456 BMW Z3
Charles White PZ 1012436B |GHI 789 Lancia |Delta
Marco Neri AP 4544442R | NULL NULL NULL

Giorgini — A.A. 2001-2002 — DB&IS 20




Full join

« Find all the drivers and all the cars, showing the possible
relationships between them:
sel ect FirstNane, Surnane, Driver.DriverlD
Car RegNo, Make, Mbdel
fromDriver full join Autonobile on
(Driver.Driverl D = Autonobile.DriverlD)

* Result:
FirstName | Surname | DriverID CarRegNo |Make Model
Mary Brown VR 2030020Y |ABC 123 |BMW 323
Mary Brown VR 2030020Y |DEF 456 BMW Z3
Charles White PZ 1012436B |GHI 789 Lancia |Delta
Marco Neri AP 4544442R | NULL NULL NULL
NULL NULL NULL BBB 421 BMW 316

Giorgini — A.A. 2001-2002 — DB&IS 21

Table variables

» Table aliases may be interpreted as table variables

« They correspond to the renaming operator p of relational
algebra
« Find all the same surname (but different first names) of an
employee belonging to the Administration department:
sel ect EL.FirstName, EL. Surnane
from Enpl oyee E1, Enpl oyee E2
where E1. Surnanme = E2. Surnanme and
El. First Nane <> E2. FirstNane and
E2. Dept = ‘ Adm nistration’

* Result:

FirstName | Surname
Charles Brown

Giorgini — A.A. 2001-2002 — DB&IS 22




Ordering

The or der by clause, at the end of the query, orders the rows
of the result; syntax:
or der by OrderingAttribute [ asc | desc ]
{, OrderingAttribute [ asc | desc ] }

Extract the content of the AUTOMOBILE table in descending order
of make and model:

sel ect *

from Aut onobi | e

order by Make desc, Mdel desc

* Result: CarRegNo | Make Model DriverID
GHI 789 Lancia Delta PZ 1012436B
DEF 456 BMW Z3 VR 2030020Y
ABC 123 BMW 323 VR 2030020Y
BBB 421 BMW 316 MI 2020030U
Giorgini — A.A. 2001-2002 — DB&IS 23

Aggregate queries

Aggregate queries cannot be represented in relational algebra

The result of an aggregate query depends on the consideration
of sets of rows

SQL-2 offers five aggregate operators:
— count

— sum
— nmax
- nn
— avg

Giorgini — A.A. 2001-2002 — DB&IS 24




Operator count

count returns the number of rows or distinct values; syntax:
count (<* |[distinct |all ]AttributeList >)
(*) returns the number os rows; di sti nct returns the the number of
different values for the AttributeList; al | returns the number of rows
that possess values different from the null value for the AttributeList.
Find the number of employees:

sel ect count (*)

from Enpl oyee
Find the number of different values on the attribute Salary for all the rows
in EMPLOYEE:

sel ect count (distinct Salary)

from Enpl oyee
Find the number of rows of EMPLOYEE having a not null value on the
attribute Salary:

select count(all Salary)

from Enpl oyee

Giorgini — A.A. 2001-2002 — DB&IS 25

Sum, average, maximum and minimum

e Syntax:
<sum|max |mn|avg > ([distinct |all ]AttributeExpr)
« Distinct ignores duplicates, while al | leaves out only null
values

* Find the sum of the salaries of the Administration department;

sel ect sun(Salary) as Sunftal ary
from Enpl oyee
where Dept = ‘Adnministration’

* Result:
SumSalary
125
Giorgini — A.A. 2001-2002 — DB&IS 26




Aggregate queries with join

* Find the maximum salary among the employees who work in a

department based in London:
sel ect max(Sal ary) as MaxLondonSal
from Enpl oyee, Depart nent
where Dept = Dept Nanme and
Department.City = ‘London’

e Result: MaxLondonSal
80

Giorgini — A.A. 2001-2002 — DB&IS 27

Aggregate queries and target list

Incorrect query:
sel ect FirstNane, Surnanme, max(Sal ary)
from Enpl oyee, Depart nent
where Dept = Dept Nane and
Department.City = ‘ London’

* Whose name? The target list must be homogeneous

sel ect max(Sal ary) as MaxSal ,
m n(Sal ary) as M nSal
from Enpl oyee

* Result: MaxSal |MinSal
80 36

Giorgini — A.A. 2001-2002 — DB&IS 28

Find the maximum and minimum salaries of all employees:




Group by queries

* Queries may apply aggregate operators to subsets of rows
» Find the sum of salaries of all the employees of the same
department:
sel ect Dept, sum(Sal ary)as Tot Sal
from Enpl oyee
group by Dept

¢ Result: Dept TotSal
Administration 125
Distribution 45
Planning 153
Production 82

Giorgini — A.A. 2001-2002 — DB&IS 29

Semantics of group by queries, 1

 First, the query is executed without gr oup by and without
aggregate operators:
sel ect Dept, Salary
from Enpl oyee

Dept Salary
Administration 45
Production 36
Administration 40
Distribution 45
Planning 80
Planning 73
Administration 40
Production 46

Giorgini — A.A. 2001-2002 — DB&IS 30




Semantics of group by queries, 2

« ... then the query result is divided in subsets characterized by
the same values for the attributes appearing as argument of the
group by clause (in this case attribute Dept):

« Finally, the aggregate operator is applied separately to each
subset

Dept Salary
Administration 45
Administration 40 Dept TotSal
Administration 40 A(_im!nlst_ratlon 125
Distribution 45 gllstrlt?utlon 1455;’
Planning 80 anning
Planning 73 Production 82
Production 36
Production 46

Giorgini — A.A. 2001-2002 — DB&IS 31

Group by queries and target list

 Incorrect query:
select Ofice
from Enpl oyee
group by Dept

» This query is incorrect, in that a number of values of the Office
attribute will correspond to each value of the Dept attribute.
Instead, after the grouping has been carried out, each sub-group
of rows must correspond to a single row in the table resulting
from the query.

Giorgini — A.A. 2001-2002 — DB&IS 32




Giorgini —A.A. 2001-2002 — DB&IS

Group by queries and target list

Incorrect query:
sel ect DeptNanme, count(*), D.Cty
from Enpl oyee E join Departnent D
on (E. Dept = D. Dept Nane)
group by Dept Name

This query should return the department name, the number of
employees of each department, and the city in which the
department is based. Given that the attribute DeptName is the
key of DEPARTMENT, a particular value of City corresponds to
each value of DetpName. The system could therefore provide a
correct response, but SQL prohibits queries of this nature.

33

Giorgini —A.A. 2001-2002 — DB&IS

Group by queries and target list

Correct query:
sel ect DeptNane, count(*), D.Cty
from Enpl oyee E join Departnent D
on (E. Dept = D. Dept Nane)
group by DeptNane, D.Cty

34




Group predicates

When conditions are on the result of an aggregate operator, it is
necessary to use the havi ng clause
Find which departments spend more than 100 on salaries:
sel ect Dept
from Enpl oyee
group by Dept
havi ng sum(Sal ary) > 100
Result:

Dept
Administration
Planning

Giorgini — A.A. 2001-2002 — DB&IS 35

wher e or havi ng?

Only predicates containing aggregate operators should appear
in the argument of the havi ng clause

Find the departments in which the average salary of employees
working in office number 20 is higher than 25:

sel ect Dept

from Enpl oyee

where Ofice = ' 20
group by Dept

havi ng avg(Sal ary) > 25

Giorgini — A.A. 2001-2002 — DB&IS 36




Syntax of an SQL query
» Considering all the described clauses, the syntax is:

sel ect TargetList

f romTableList

[ wher e Condition ]

[ gr oup by GroupingAttributeList ]
[ havi ng AggregateCondition ]

[ order by OrderingAttributeList ]

Giorgini — A.A. 2001-2002 — DB&IS 37

Set queries

e SQL also provides set operators, similar to those we saw in
relation algebra: uni on, i ntersect,except orm nus

e Syntax:
SelectSQL {<uni on |intersect |except >[all ] SelectSQL }

» Find the first names and surnames of the employees:
sel ect FirstNane as Nane
from Enpl oyee
uni on
sel ect Surnane
from Enpl oyee

« Duplicates are removed (unless the al | option is used)

Giorgini — A.A. 2001-2002 — DB&IS 38




Intersection

» Find the surnames of employees that are also first names:
sel ect FirstNane as Nane
from Enpl oyee
i ntersect
sel ect Surnane
from Enpl oyee

e equivalent to:
sel ect E1.FirstNane as Nane
from Enpl oyee E1, Enpl oyee E2
where E1. FirstNane = E2. Sur nane

Giorgini — A.A. 2001-2002 — DB&IS 39

Difference

» Find the surnames of employees that are not also first names:

sel ect FirstNane as Nane
from Enpl oyee
except
sel ect Surnane
from Enpl oyee

» Can be represented with a nested query (see later)

Giorgini — A.A. 2001-2002 — DB&IS 40




Nested queries

* Inthe wher e clause may appear predicates that:
— compare an attribute (or attribute expression) with the result
of an SQL query; syntax:
ScalarValue Operator < any |al | > SelectSQL
» any: the predicate is true if at least one row returned by
SelectSQL satisfies the comparison
 al | : the predicate is true if all the rows returned by
SelectSQL satisfy the comparison
— use the existential quantifier on an SQL query; syntax:
exi st's SelectSQL
« the predicate is true if SelectSQL returns a non-empty
result
« The query appearing in the wher e clause is called nested query

Giorgini — A.A. 2001-2002 — DB&IS 41

Simple nested queries, 1

» Find the employees who work in departments in London:

sel ect FirstNane, Surnane
from Enpl oyee
where Dept = any (sel ect Dept Nane
from Depart nent
where City = ‘London’)

« Equivalent to (without nested query):
sel ect FirstNane, Surnane
from Enpl oyee, Departnent D
where Dept = Dept Nanme and

D.City = ‘London’

Giorgini — A.A. 2001-2002 — DB&IS 42




Simple nested queries, 2

« Find the employees of the Planning department, having the
same first name as a member of the Production department:

— without nested queries:
sel ect E1. FirstNanme, EL. Surnane
from Enpl oyee E1, Enpl oyee E2
where E1. FirstName = E2.FirstNane and
E2. Dept = ‘ Production’ and
El. Dept = ‘Pl anning’
— with a nested query:
sel ect FirstNane, Surnane
from Enpl oyee
where Dept = ‘Pl anning’ and
First Name = any
(sel ect FirstNane
from Enpl oyee
where Dept = ‘Production’)

Giorgini — A.A. 2001-2002 — DB&IS 43

Negation with nested queries

* Find the departments in which there is no one named Brown;
sel ect Dept Nane
from Depart nent
where DeptNanme <> all (sel ect Dept
from Enpl oyee
where Surnanme = ‘Brown')

« Alternatively:
sel ect Dept Nane
from Depart nent
except
sel ect Dept
from Enpl oyee
where Surname = ‘ Brown’

Giorgini — A.A. 2001-2002 — DB&IS 44




Operatorsinand not in

e Operator i nis a shorthand for = any

sel ect FirstNane, Surnane
from Enpl oyee
where Dept in (sel ect DeptName
from Depart nent
where City = ‘London’)

e Operator not i nis a shorthand for <> al |
sel ect Dept Nare
from Depart nent
where DeptNane not in (select Dept
from Enpl oyee
where Surnanme = ‘Brown')

Giorgini — A.A. 2001-2002 — DB&IS 45

max and m n with a nested query

« Queries using the aggregate operators max and m n can be
expressed with nested queries
» Find the department of the employee earning the highest salary
— with max:
sel ect Dept
from Enpl oyee
where Salary in (select nax(Sal ary)
from Enpl oyee

— with a nested query:

sel ect Dept

from Enpl oyee

where Salary >= all (select Salary
from Enpl oyee

Giorgini — A.A. 2001-2002 — DB&IS 46




Complex nested queries, 1

With regard to the visibility (or scope) of SQL variables, there is a
restriction on the use of a variable: a variable can be used only within
the query where in which it is defined or within a query that recursively
nested in the query where it is defined. The nested query may use
variables of the external query (‘transfer of bindings’)

Incorrect query:
sel ect *
from Enpl oyee
where Dept in
(sel ect Dept Nane
from Departnent D1
where DeptNanme = ‘ Production’) or
Dept in (select DeptName
from Departnent D2
where D2.City = D1.City)

The query is incorrect because variable D1 is not visible in the second
nested query

Giorgini — A.A. 2001-2002 — DB&IS 47

Complex nested queries, 2

« Semantics: the nested query is evaluated for each row of the
external query

« Find all the homonyms, i.e., persons who have the same first
name and surname, but different tax codes:
sel ect *
from Person P
where exists (select *
from Person P1
where P1. FirstNane = P. First Nane
and Pl. Surnane = P. Surnane
and P1l. TaxCode <> P. TaxCode)

Giorgini — A.A. 2001-2002 — DB&IS 48




Complex nested queries, 3

« Find all the persons who do not have homonymes:
sel ect *
from Person P
where not exists
(sel ect *
from Person P1
where P1. FirstNane = P. First Nane
and Pl. Surnane = P. Surnane
and P1. TaxCode <> P. TaxCode)

Giorgini — A.A. 2001-2002 — DB&IS 49

Tuple constructor

» The comparison with the nested query may involve more than

one attribute

» The attributes must be enclosed within a pair of curved brackets

(tuple constructor)
» The previous query can be expressed in this way:

sel ect *

from Person P

where (FirstNane, Surnane) not in
(sel ect FirstNane, Surnamne
from Person P1
where P1. TaxCode <> P. TaxCode)

Giorgini — A.A. 2001-2002 — DB&IS 50




Comments on nested queries

» The use of nested queries may produce ‘less declarative’
queries, but they often improve readability

« Complex queries can become very difficult to understand
» The use of variables must respect visibility rules

— avariable can be used only within the query where it is
defined or within a query that is recursively nested in the
query where it is defined

Giorgini — A.A. 2001-2002 — DB&IS 51




