
1

1Giorgini – A.A. 2001-2002 – DB&IS

%DVL GL 'DWL H

6LVWHPL ,QIRUPDWLYL ,

64/
64/ TXHULHV

2Giorgini – A.A. 2001-2002 – DB&IS

SQL as a query language

• SQL expresses queries in declarative way
– queries specify the properties of the result, not the

way to obtain it
• Queries are translated by the query optimizer into the

procedural language internal to the DBMS
• The programmer should focus on readability, not on

efficiency

2

3Giorgini – A.A. 2001-2002 – DB&IS

SQL queries

• SQL queries are expressed by the select statement
• Syntax:

select AttrExpr [[as] Alias] {, AttrExpr [[as] Alias] }
from Table [[as] Alias] {, [[as] Alias] }
[where Condition]

• The three parts of the query are usually called:
– target list
– from clause
– where clause

• The query considers the cartesian product of the tables in the
from clause, considers only the rows that satisfy the condition
in the where clause and for each row evaluates the attribute
expressions in the target list

4Giorgini – A.A. 2001-2002 – DB&IS

Example database

EMPLOYEE FirstName Surname Dept Office Salary City
Mary Brown Administration 10 45 London
Charles White Production 20 36 Toulouse
Gus Green Administration 20 40 Oxford
Jackson Neri Distribution 16 45 Dover
Charles Brown Planning 14 80 London
Laurence Chen Planning 7 73 Worthing
Pauline Bradshaw Administration 75 40 Brighton
Alice Jackson Production 20 46 Toulouse

DEPARTMENT DeptName Address City
 Administration Bond Street London
 Production Rue Victor Hugo Toulouse
 Distribution Pond Road Brighton
 Planning Bond Street London
 Research Sunset Street San José

3

5Giorgini – A.A. 2001-2002 – DB&IS

Simple SQL query

• Find the salaries of employees named Brown:
select Salary as Remuneration
from Employee
where Surname = ‘Brown’

• Result:
Remuneration

45
80

6Giorgini – A.A. 2001-2002 – DB&IS

* in the target list

• Find all the information relating to employees named Brown:
select *
from Employee
where Surname = ‘Brown’

• Result:

FirstName Surname Dept Office Salary City
Mary Brown Administration 10 45 London
Charles Brown Planning 14 80 London

4

7Giorgini – A.A. 2001-2002 – DB&IS

Attribute expressions

• Find the monthly salary of the employees named White:
select Salary / 12 as MonthlySalary
from Employee
where Surname = ‘White’

• Result:
MonthlySalary

3.00

8Giorgini – A.A. 2001-2002 – DB&IS

Simple join query

• Find the names of the employees and the cities in which they
work:
select Employee.FirstName, Employee.Surname,

Department.City
from Employee, Department
where Employee.Dept = Department.DeptName

• Result:
FirstName Surname City
Mary Brown London
Charles White Toulouse
Gus Green London
Jackson Neri Brighton
Charles Brown London
Laurence Chen London
Pauline Bradshaw London
Alice Jackson Toulouse

5

9Giorgini – A.A. 2001-2002 – DB&IS

Table aliases

• Find the names of the employees and the cities in which they
work (using an alias):
select FirstName, Surname, D.City
from Employee, Department D
where Dept = DeptName

• Result:
FirstName Surname City
Mary Brown London
Charles White Toulouse
Gus Green London
Jackson Neri Brighton
Charles Brown London
Laurence Chen London
Pauline Bradshaw London
Alice Jackson Toulouse

10Giorgini – A.A. 2001-2002 – DB&IS

Predicate conjunction

• Find the first names and surnames of the employees who work
in office number 20 of the Administration department:

select FirstName, Surname
from Employee
where Office = ‘20’ and

Dept = ‘Administration’

• Result:

FirstName Surname
Gus Green

6

11Giorgini – A.A. 2001-2002 – DB&IS

Predicate disjunction

• Find the first names and surnames of the employees who work
in either the Administration or the Production department:

select FirstName, Surname
from Employee
where Dept = ‘Administration’ or

Dept = ‘Production’

• Result:
FirstName Surname
Mary Brown
Charles White
Gus Green
Pauline Bradshaw
Alice Jackson

12Giorgini – A.A. 2001-2002 – DB&IS

Complex logical expression

• Find the first names of the employees named Brown who work
in the Administration department or the Production department:

select FirstName
from Employee
where Surname = ‘Brown’ and

(Dept = ‘Administration’ or
Dept = ‘Production’)

• Result:

FirstName
Mary

7

13Giorgini – A.A. 2001-2002 – DB&IS

Operator like

• Find the employees with surnames that have ‘r’ as the second
letter and end in ‘n’:

select *
from Employee
where Surname like ‘_r%n’

• _ : arbitrary character;
• % : a string (possibly empty) of arbitrary characters
• Result:

FirstName Surname Dept Office Salary City
Mary Brown Administration 10 45 London
Gus Green Administration 20 40 Oxford
Charles Brown Planning 14 80 London

14Giorgini – A.A. 2001-2002 – DB&IS

Management of null values

• Null values may mean that:
– a value is not applicable
– a value is applicable but unknown
– it is unknown if a value is applicable or not

• SQL-89 uses a two-valued logic
– a comparison with null returns FALSE

• SQL-2 uses a three-valued logic
– a comparison with null returns UNKNOWN

• To test for null values:
Attribute is [not] null

8

15Giorgini – A.A. 2001-2002 – DB&IS

Algebraic interpretation of SQL queries

• The generic query:

select T_1.Attribute_11, …, T_h.Attribute_hm
from Table_1 T_1, …, Table_n T_n
where Condition

• corresponds to the relational algebra query:

π T_1.Attribute_11,…,T_h.Attribute_hm (σ Condition (Table_1� … �Table_n))

16Giorgini – A.A. 2001-2002 – DB&IS

Duplicates

• In relational algebra and calculus the results of queries do not contain
duplicates

• In SQL, tables may have identical rows
• Duplicates can be removed using the keyword distinct

select City select distinct City
from Department from Department

City
London
Toulouse
Brighton
London
San José

City
London
Toulouse
Brighton
San José

9

17Giorgini – A.A. 2001-2002 – DB&IS

Joins in SQL-2

• SQL-2 introduced an alternative syntax for the representation of
joins, representing them explicitly in the from clause:

select AttrExpr [[as] Alias] {, AttrExpr [[as] Alias] }
from Table [[as] Alias]

{ [JoinType] join Table [[as] Alias] on JoinConditions }
[where OtherCondition]

• JoinType can be any of inner, right [outer], left [outer]
or full [outer], permitting the representation of outer joins

• The keyword natural may precede JoinType (rarely
implemented)

18Giorgini – A.A. 2001-2002 – DB&IS

Inner join in SQL-2

• Find the names of the employees and the cities in which they
work:

select FirstName, Surname, D.City
from Employee inner join Department as D

on Dept = DeptName

• Result:
FirstName Surname City
Mary Brown London
Charles White Toulouse
Gus Green London
Jackson Neri Brighton
Charles Brown London
Laurence Chen London
Pauline Bradshaw London
Alice Jackson Toulouse

10

19Giorgini – A.A. 2001-2002 – DB&IS

Example database, drivers and cars

DRIVER FirstName Surname DriverID
Mary Brown VR 2030020Y
Charles White PZ 1012436B
Marco Neri AP 4544442R

AUTOMOBILE CarRegNo Make Model DriverID
ABC 123 BMW 323 VR 2030020Y
DEF 456 BMW Z3 VR 2030020Y
GHI 789 Lancia Delta PZ 1012436B
BBB 421 BMW 316 MI 2020030U

20Giorgini – A.A. 2001-2002 – DB&IS

Left join

• Find the drivers with their cars, including the drivers without
cars:

select FirstName, Surname, Driver.DriverID
CarRegNo, Make, Model

from Driver left join Automobile on
(Driver.DriverID = Automobile.DriverID)

• Result:

FirstName Surname DriverID CarRegNo Make Model
Mary Brown VR 2030020Y ABC 123 BMW 323
Mary Brown VR 2030020Y DEF 456 BMW Z3
Charles White PZ 1012436B GHI 789 Lancia Delta
Marco Neri AP 4544442R NULL NULL NULL

11

21Giorgini – A.A. 2001-2002 – DB&IS

Full join

• Find all the drivers and all the cars, showing the possible
relationships between them:

select FirstName, Surname, Driver.DriverID
CarRegNo, Make, Model

from Driver full join Automobile on
(Driver.DriverID = Automobile.DriverID)

• Result:

FirstName Surname DriverID CarRegNo Make Model
Mary Brown VR 2030020Y ABC 123 BMW 323
Mary Brown VR 2030020Y DEF 456 BMW Z3
Charles White PZ 1012436B GHI 789 Lancia Delta
Marco Neri AP 4544442R NULL NULL NULL

NULL NULL NULL BBB 421 BMW 316

22Giorgini – A.A. 2001-2002 – DB&IS

Table variables

• Table aliases may be interpreted as table variables
• They correspond to the renaming operator ρ of relational

algebra
• Find all the same surname (but different first names) of an

employee belonging to the Administration department:
select E1.FirstName, E1.Surname
from Employee E1, Employee E2
where E1.Surname = E2.Surname and

E1.FirstName <> E2.FirstName and
E2.Dept = ‘Administration’

• Result:
FirstName Surname
Charles Brown

12

23Giorgini – A.A. 2001-2002 – DB&IS

Ordering

• The order by clause, at the end of the query, orders the rows
of the result; syntax:

order by OrderingAttribute [asc | desc]
{, OrderingAttribute [asc | desc] }

• Extract the content of the AUTOMOBILE table in descending order
of make and model:
select *
from Automobile
order by Make desc, Model desc

• Result: CarRegNo Make Model DriverID
GHI 789 Lancia Delta PZ 1012436B
DEF 456 BMW Z3 VR 2030020Y
ABC 123 BMW 323 VR 2030020Y
BBB 421 BMW 316 MI 2020030U

24Giorgini – A.A. 2001-2002 – DB&IS

Aggregate queries

• Aggregate queries cannot be represented in relational algebra
• The result of an aggregate query depends on the consideration

of sets of rows
• SQL-2 offers five aggregate operators:

– count

– sum

– max

– min

– avg

13

25Giorgini – A.A. 2001-2002 – DB&IS

Operator count

• count returns the number of rows or distinct values; syntax:
count(< * | [distinct | all] AttributeList >)

(*) returns the number os rows; distinct returns the the number of
different values for the AttributeList; all returns the number of rows
that possess values different from the null value for the AttributeList.

• Find the number of employees:
select count(*)
from Employee

• Find the number of different values on the attribute Salary for all the rows
in EMPLOYEE:

select count(distinct Salary)
from Employee

• Find the number of rows of EMPLOYEE having a not null value on the
attribute Salary:

select count(all Salary)
from Employee

26Giorgini – A.A. 2001-2002 – DB&IS

Sum, average, maximum and minimum

• Syntax:
< sum | max | min | avg > ([distinct | all] AttributeExpr)

• Distinct ignores duplicates, while all leaves out only null
values

• Find the sum of the salaries of the Administration department:

select sum(Salary) as SumSalary
from Employee
where Dept = ‘Administration’

• Result:
SumSalary

125

14

27Giorgini – A.A. 2001-2002 – DB&IS

Aggregate queries with join

• Find the maximum salary among the employees who work in a
department based in London:

select max(Salary) as MaxLondonSal
from Employee, Department
where Dept = DeptName and

Department.City = ‘London’

• Result: MaxLondonSal
80

28Giorgini – A.A. 2001-2002 – DB&IS

Aggregate queries and target list

• Incorrect query:
select FirstName, Surname, max(Salary)
from Employee, Department
where Dept = DeptName and

Department.City = ‘London’

• Whose name? The target list must be homogeneous

• Find the maximum and minimum salaries of all employees:
select max(Salary) as MaxSal,

min(Salary) as MinSal
from Employee

• Result: MaxSal MinSal
80 36

15

29Giorgini – A.A. 2001-2002 – DB&IS

Group by queries

• Queries may apply aggregate operators to subsets of rows
• Find the sum of salaries of all the employees of the same

department:
select Dept, sum(Salary)as TotSal
from Employee
group by Dept

• Result: Dept TotSal
Administration 125
Distribution 45
Planning 153
Production 82

30Giorgini – A.A. 2001-2002 – DB&IS

Semantics of group by queries, 1

• First, the query is executed without group by and without
aggregate operators:

select Dept, Salary
from Employee

Dept Salary
Administration 45
Production 36
Administration 40
Distribution 45
Planning 80
Planning 73
Administration 40
Production 46

16

31Giorgini – A.A. 2001-2002 – DB&IS

Semantics of group by queries, 2

• … then the query result is divided in subsets characterized by
the same values for the attributes appearing as argument of the
group by clause (in this case attribute Dept):

• Finally, the aggregate operator is applied separately to each
subset

Dept Salary
Administration 45
Administration 40
Administration 40
Distribution 45
Planning 80
Planning 73
Production 36
Production 46

Dept TotSal
Administration 125
Distribution 45
Planning 153
Production 82

32Giorgini – A.A. 2001-2002 – DB&IS

Group by queries and target list

• Incorrect query:
select Office
from Employee
group by Dept

• This query is incorrect, in that a number of values of the Office
attribute will correspond to each value of the Dept attribute.
Instead, after the grouping has been carried out, each sub-group
of rows must correspond to a single row in the table resulting
from the query.

17

33Giorgini – A.A. 2001-2002 – DB&IS

Group by queries and target list

• Incorrect query:
select DeptName, count(*), D.City
from Employee E join Department D

on (E.Dept = D.DeptName)
group by DeptName

• This query should return the department name, the number of
employees of each department, and the city in which the
department is based. Given that the attribute DeptName is the
key of DEPARTMENT, a particular value of City corresponds to
each value of DetpName. The system could therefore provide a
correct response, but SQL prohibits queries of this nature.

34Giorgini – A.A. 2001-2002 – DB&IS

Group by queries and target list

• Correct query:
select DeptName, count(*), D.City
from Employee E join Department D

on (E.Dept = D.DeptName)
group by DeptName, D.City

18

35Giorgini – A.A. 2001-2002 – DB&IS

Group predicates

• When conditions are on the result of an aggregate operator, it is
necessary to use the having clause

• Find which departments spend more than 100 on salaries:
select Dept
from Employee
group by Dept
having sum(Salary) > 100

• Result:
Dept
Administration
Planning

36Giorgini – A.A. 2001-2002 – DB&IS

where or having?

• Only predicates containing aggregate operators should appear
in the argument of the having clause

• Find the departments in which the average salary of employees
working in office number 20 is higher than 25:

select Dept
from Employee
where Office = ‘20’
group by Dept
having avg(Salary) > 25

19

37Giorgini – A.A. 2001-2002 – DB&IS

Syntax of an SQL query

• Considering all the described clauses, the syntax is:

select TargetList
from TableList
[where Condition]
[group by GroupingAttributeList]
[having AggregateCondition]
[order by OrderingAttributeList]

38Giorgini – A.A. 2001-2002 – DB&IS

Set queries

• SQL also provides set operators, similar to those we saw in
relation algebra: union, intersect, except or minus

• Syntax:

SelectSQL { < union | intersect | except > [all] SelectSQL }

• Find the first names and surnames of the employees:
select FirstName as Name
from Employee
union

select Surname
from Employee

• Duplicates are removed (unless the all option is used)

20

39Giorgini – A.A. 2001-2002 – DB&IS

Intersection

• Find the surnames of employees that are also first names:
select FirstName as Name
from Employee
intersect

select Surname
from Employee

• equivalent to:
select E1.FirstName as Name
from Employee E1, Employee E2
where E1.FirstName = E2.Surname

40Giorgini – A.A. 2001-2002 – DB&IS

Difference

• Find the surnames of employees that are not also first names:
select FirstName as Name
from Employee
except

select Surname
from Employee

• Can be represented with a nested query (see later)

21

41Giorgini – A.A. 2001-2002 – DB&IS

Nested queries

• In the where clause may appear predicates that:
– compare an attribute (or attribute expression) with the result

of an SQL query; syntax:
ScalarValue Operator < any | all > SelectSQL
• any: the predicate is true if at least one row returned by

SelectSQL satisfies the comparison
• all: the predicate is true if all the rows returned by

SelectSQL satisfy the comparison
– use the existential quantifier on an SQL query; syntax:

exists SelectSQL
• the predicate is true if SelectSQL returns a non-empty

result
• The query appearing in the where clause is called nested query

42Giorgini – A.A. 2001-2002 – DB&IS

Simple nested queries, 1

• Find the employees who work in departments in London:
select FirstName, Surname
from Employee
where Dept = any (select DeptName

from Department
where City = ‘London’)

• Equivalent to (without nested query):
select FirstName, Surname
from Employee, Department D
where Dept = DeptName and

D.City = ‘London’

22

43Giorgini – A.A. 2001-2002 – DB&IS

Simple nested queries, 2

• Find the employees of the Planning department, having the
same first name as a member of the Production department:
– without nested queries:
select E1.FirstName, E1.Surname
from Employee E1, Employee E2
where E1. FirstName = E2.FirstName and

E2.Dept = ‘Production’ and
E1.Dept = ‘Planning’

– with a nested query:
select FirstName, Surname
from Employee
where Dept = ‘Planning’ and

FirstName = any
(select FirstName
from Employee
where Dept = ‘Production’)

44Giorgini – A.A. 2001-2002 – DB&IS

Negation with nested queries

• Find the departments in which there is no one named Brown:
select DeptName
from Department
where DeptName <> all (select Dept

from Employee
where Surname = ‘Brown’)

• Alternatively:
select DeptName
from Department

except
select Dept
from Employee
where Surname = ‘Brown’

23

45Giorgini – A.A. 2001-2002 – DB&IS

Operators in and not in

• Operator in is a shorthand for = any
select FirstName, Surname
from Employee
where Dept in (select DeptName

from Department
where City = ‘London’)

• Operator not in is a shorthand for <> all
select DeptName
from Department
where DeptName not in (select Dept

from Employee
where Surname = ‘Brown’)

46Giorgini – A.A. 2001-2002 – DB&IS

max and min with a nested query

• Queries using the aggregate operators max and min can be
expressed with nested queries

• Find the department of the employee earning the highest salary
– with max:
select Dept
from Employee
where Salary in (select max(Salary)

from Employee

– with a nested query:
select Dept
from Employee
where Salary >= all (select Salary

from Employee

24

47Giorgini – A.A. 2001-2002 – DB&IS

Complex nested queries, 1
• With regard to the visibility (or scope) of SQL variables, there is a

restriction on the use of a variable: a variable can be used only within
the query where in which it is defined or within a query that recursively
nested in the query where it is defined. The nested query may use
variables of the external query (‘transfer of bindings’)

• Incorrect query:
select *
from Employee
where Dept in

(select DeptName
from Department D1
where DeptName = ‘Production’) or

Dept in (select DeptName
from Department D2
where D2.City = D1.City)

• The query is incorrect because variable D1 is not visible in the second
nested query

48Giorgini – A.A. 2001-2002 – DB&IS

Complex nested queries, 2

• Semantics: the nested query is evaluated for each row of the
external query

• Find all the homonyms, i.e., persons who have the same first
name and surname, but different tax codes:
select *
from Person P
where exists (select *

from Person P1
where P1.FirstName = P.FirstName
and P1.Surname = P.Surname
and P1.TaxCode <> P.TaxCode)

25

49Giorgini – A.A. 2001-2002 – DB&IS

Complex nested queries, 3

• Find all the persons who do not have homonyms:
select *
from Person P
where not exists

(select *
from Person P1
where P1.FirstName = P.FirstName
and P1.Surname = P.Surname
and P1.TaxCode <> P.TaxCode)

50Giorgini – A.A. 2001-2002 – DB&IS

Tuple constructor

• The comparison with the nested query may involve more than
one attribute

• The attributes must be enclosed within a pair of curved brackets
(tuple constructor)

• The previous query can be expressed in this way:
select *
from Person P
where (FirstName,Surname) not in

(select FirstName, Surname
from Person P1
where P1.TaxCode <> P.TaxCode)

26

51Giorgini – A.A. 2001-2002 – DB&IS

Comments on nested queries

• The use of nested queries may produce ‘less declarative’
queries, but they often improve readability

• Complex queries can become very difficult to understand
• The use of variables must respect visibility rules

– a variable can be used only within the query where it is
defined or within a query that is recursively nested in the
query where it is defined

