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Database Transactions

� Databases are a global resource within an 
organization.

� Organizations could not afford to have this 
resource serve its users on a one-at-a-time basis!

� Accordingly, concurrent access of a database by 
multiple (possibly a large number of) users has 
been a requirement since the early days of 
database technology.

� Database transaction mechanisms were 
developed in response to this requirement.
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What is a Transaction?
� An atomic unit of work performed by an application, 

with specific constraints with respect to correctness, 
robustness and isolation 

� Each transaction is delimited by the commands 
9begin transaction (bot)

9end transaction (eot)

� Within a transaction, exactly one the commands 
com mit work (commit), rollback work (abort)

� A transactional system is a system which offers 
facilities for defining and executing transactions on 
behalf of multiple, concurrent applications.
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(Simple) Example

� A transaction is well-formed if it starts with bot, ends 
with eot, and executes exactly once com mit or 
abort.No database operations can execute after the 
execution of com mit or abort.

� Here is an example
bot
x := x- 10

y := y + 10

com mit
eot
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ACID Properties

� In order to cope with the concurrent execution, 
transactions need to have four properties.

� ACID is an acronym for:
9Atomicity -- transactions are atomic; 
9Consistency -- preserve database constraints 
9 Isolation -- transactions execute independently 

of each other;  
9Durability -- the effects of a transaction are 

persistent. 
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Atomicity

� A transaction is an atomic unit of computation on a 
database; can’t leave database in an intermediate state:
9a fault or error prior to commit causes an undo of all 

work done earlier by the transaction; 
9A fault or error after the commit may require a redo of 

the work made earlier, if its effect on the database 
state are not guaranteed. 

� Possible behaviours for a transaction: 
9Commit  -- normal behaviour (99.9% of the time)
9Rollback requested by the application -- suicide!
9Rollback requested by the system -- murder!!
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Consistency

� Consistency amounts to requiring that the transaction 
does not violate any integrity constraints.

� Integrity constraint verification can be:
9 Immediate: during the transaction (the operation 

causing the violation is rejected)
9Deferred: at the end of the transaction (if some 

integrity constraint is violated, the entire 
transaction is rejected)
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Isolation
� Isolation requires that a transaction executes 

independently of the execution of all other concurrent 
transactions.

� This means that the concurrent execution of a 
collection of transactions yields the same result as an 
arbitrary sequential execution of the same 
transactions]

Durability (Persistence)
� Durability requires that the effect of a transaction that 

has successfully committed will not be lost (i.e., the 
effect will “last forever”) 
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Transactions and System Modules

� Atomicity and durability are guaranteed by the 
Reliability Control System.

� Isolation is guaranteed by the Concurrency 
Control System.

� Consistency is managed during the normal query 
execution by the DBMS System (verification 
activities are generated by the DDL Compilers and 
executed during query processing)
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Concurrency Control

� Concurrency is measured in tps (transactions per 
second), with values that can go up to 105-106 tps.

� Typical examples of large transaction systems include 
banking, airline reservation systems, etc. 

� We assume that transactions are input-output 
operations on abstract objects x, y, z (tuples, 
relations, objects,...)

� Each input-output operation reads secondary memory 
blocks into buffer pages or writes buffer pages into 
secondary memory blocks. 

� For simplicity, we assume that there is a one-to-one 
mapping from disk blocks to memory pages.

� The main problem we have to cope with involves 
anomalies due to concurrent execution.
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The Scheduler
� Traditionally, disk blocks are copied into pages as they 

are loaded into memory
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Anomaly I: Update Loss

� Consider two identical transactions: 
t 1 : r(x), x = x + 1, w(x), t 2 : r(x), x = x + 1, w(x), 

and assume initially x=2; after serial execution x=4
� Consider the concurrent execution:
9Transaction t1 Transaction t2
bot
r1(x)
x = x + 1

bot
r2(x)
x = x + 1

w1(x)
commit

w2(x)
commit

� One update is lost, final value is x=3 instead of x=4!
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Anomaly II: Dirty Read

� Consider the same two transactions, and the 
following execution (note that the first transaction 
fails):
9Transaction t1 Transaction t2
bot
r1(x)
x = x + 1
w1(x)

bot
r2(x)
x = x + 1

abort
w2(x)
commit

� t2 reads from an intermediate state of t1 (dirty read)
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Anomaly III: Inconsistent Read

� t1 repeats two reads:
9Transaction t1 Transaction t2
bot
r1(x)

bot
r2(x)
x = x + 1
w2(x)
commit

r1(x)
commit

� t1 reads different values for x
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Anomaly IV: Ghost Update
� Assume the integrity constraint x + y + z = 1000; 
9Transaction t1 Transaction t2
bot
r1(x)

bot
r2(y)

r1(y)
y = y - 100
r2(z)
z = z + 100
w2(y)
w2(z)
commit

r1(z)
s = x + y + z
commit

� s = 1100, because t1 sees a ghost update.
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Concurrency Control Theory

�A transaction is a sequence of read or write actions.
�Each transaction has a unique, system-assigned 
transaction identifier.
�Each transactions is initiated by the bot command 
and terminated by eot, we won’t show these in the 
following examples.
�For example, 

t 1 : r1(x) r1(y) w1(x) w1(y)
�This model ignores the manipulation operations
performed on the data by the transaction.
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Schedules

� A schedule represents the sequence of input/output 
operations requested by concurrently executing 
transactions. 

� For example, 
S1 : r1(x) r2(z) w1(x) w2(z)

� To keep things simple, we assume that transactions 
don’t include abort statements (commit-projection
assumption). 

� This assumption is not acceptable in practice, 
application-requested aborts are useful.
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Concurrency Control

� We want to disallow schedules that cause any of the 
anomalies presented earlier.

� A scheduler is a system component that accepts or 
rejects the operations requested by transactions

� We are interested in serial schedules, i.e., ones where 
the actions to be executed by each transaction appear in 
sequence, e.g.,
S2 : r0(x) r0(y) w0(x) r1(y) r1(x) w1(y) r2(x) r2(y) r2(z) w2(z)
S3 : r0(x) r0(y) w0(x) r2(x) r2(y) r2(z) w2(z) r1(y) r1(x) w1(y)
S4 : r1(y) r1(x) w1(y) r0(x) r0(y) w0(x) r2(x) r2(y) r2(z) w2(z)
S5 : r1(y) r1(x) w1(y) r2(x) r2(y) r2(z) w2(z) r0(x) r0(y) w0(x)
S6 : r2(x) r2(y) r2(z) w2(z) r0(x) r0(y) w0(x) r1(y) r1(x) w1(y)
S7 : r2(x) r2(y) r2(z) w2(z) r1(y) r1(x) w1(y) r0(x) r0(y) w0(x)
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Serializability

� A schedule is serializable if it produces the same 
result as some serial schedule Sj of the same 
transactions. 

� We need to define what “same result” means, i.e., a 
notion of equivalence between schedules.

� We are going to define several notions of equivalence:
view-equivalence, conflict-equivalence, two-phase 
locking, timestamp-based.

� We want to design schedulers which  allow the 
identification of a broad class of acceptable schedules 
without having to test each schedule for equivalence.
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View-Serializability

� Some definitions:
9 ri(x) reads-from wj(x) in a schedule S when wj(x) 

precedes ri(x) in S and there is no wk(x) between  
ri(x) and wj(x) in S

9wi(x) in a schedule S is a final write if it is the last 
write of the object x to appear in S

� Two schedules Si and Sj are view-equivalent (Si ≈V Sj) 
if they possess the same sets of reads-from relations 
and final writes.

� A schedule is called view-serializable if it is view-
equivalent to some serial schedule.  

� The set of view-serializable schedules is called VSR.
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View-Serializability

� View-serializability is computationally expensive:
9Deciding on the view-equivalence of two given 

schedules can be done in polynomial time;
9Deciding on the view serializability of a generic 

schedule is an NP-complete problem.  
� Makes sense to adopt a more limited definition of 

equivalence, which does not cover all cases of view-
equivalence between schedules, but is computationally 
more tractable.
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Examples of View Serializability
� S3 : w0(x) r2(x) r1(x) w2(x) w2(z)

S4 : w0(x) r1(x) r2(x) w2(x) w2(z)
S5 : w0(x) r1(x) w1(x) r2(x) w1(z)
S6 : w0(x) r1(x) w1(x) w1(z) r2(x)

� S3 is view-equivalent to the serial schedule S4 (and 
therefore, it is view-serializable) 

� S5 is not view-equivalent to S4, but it is view-equivalent 
to the serial schedule S6, and it is therefore also view-
serializable

� S7 : r1(x) r2(x) w2(x) w1(x)
S8 : r1(x) r2(x) w2(x) r1(x)
S9 : r1(x) r1(y) r2(z) r2(y) w2(y) w2(z) r1(z)

� S7 includes an update loss, S8 an inconsistent read, and 
S9 a ghost update; they are not view-serializable.



12

Transactions  -- 23

Conflict-Serializability

� Two actions ai, aj (i≠ j), are in conflict if both operate on 
the same object and at least one of them is a write. 

� There can be read-write conflicts (rw or wr), and write-
write conflicts (ww).

� Two schedules are conflict-equivalent (Si ≈C Sj) if they 
include the same operations and every pair of 
operations in conflict is in the same order in both 
schedules. 

� A schedule is conflict-serializable if there is a conflict-
equivalent serial schedule. 

� The set of conflict-serializable schedules is called CSR.
� CSR is a proper subset of VSR.
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Testing Conflict-Serializability

� Can be done in terms of a conflict graph which has;
9a node for each transaction ti;
9an edge from ti to tj if there is at least one conflict 

between an action ai and an action aj such that ai
precedes aj;

� A schedule is conflict-serializable if and only if its conflict 
graph is acyclic. 

� Testing for cyclicity of a graph has a linear complexity with 
respect to the size of the graph.

� Conflict serializability is still too laborious in practice, 
especially for distributed databases.

This is not a practical alternative either!
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Example of Conflict-Serializability

� S10 is conflict-equivalent to the serial schedule S11
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Two-Phase Locking
� Used by almost all commercial DBMSs
� Basic idea: Every read is preceded by r_lock (shared 

lock) and followed by an unlock; Every write operation 
is preceded by w_lock (exclusive lock), followed by 
unlock.

� A transaction execution following these rules is well 
formed wrt locking.

� When a transaction first reads and then writes an object 
it can either use a write lock, or move from a shared 
lock to an exclusive one (lock escalation.)

� The lock manager receives lock/unlock requests and 
grants resources according to a conflict table:
9When the lock is granted, the resource is acquired;
9At unlock, the resource is released.
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The Lock manager
Conflict table

� A counter keeps track of the number of readers for 
each resource and release it when  counter = 0.

� If a lock request is not granted, requesting transaction 
is put in a waiting state; waiting ends when the resource 
is unlocked and becomes available.

� The locks already granted are stored in a lock table, 
managed by the lock manager
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The Two-Phase Locking Protocol

� The two-phase locking (2PL) protocol does not 
allow a transaction to acquire new locks after it has 
released a lock. 

� The two phases refer to the fact that the set of locks 
of a transaction grows, then shrinks monotonically.

� If a scheduler uses well-formed transactions, conflict-
based lock granting, and 2PL, then it produces the 
class of 2PL schedules.

� 2PL schedules are serializable and strictly included in 
CSR

� Example of a schedule that is in CSR and not in 2PL: 
S12 : r1(x) w1(x) r2(x) w2(x) r3(y) w1(y)
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Strict 2PL

� Strict 2PL imposes an additional constraint: The 
locks on a transaction can be released only after 
the transaction has committed/aborted.

� This version is used by commercial DBMSs. It 
obviously has the disadvantage that some locks may 
be maintained longer that they are needed, but it 
does eliminate the dirty read anomaly.

Transactions  -- 30

Concurrency Control 
Based on Timestamps

� A timestamp is an identifier which defines a total 
ordering of temporal events within a system.

� Every transaction is assigned a timestamp ts that 
represents the time at which the transaction begins

� A schedule is accepted only if it reflects the serial 
ordering of the transactions based on the value of the 
timestamp of each transaction.
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Basic Timestamp Mechanism

� The scheduler maintains a counter RTM(x) and WTM(x) 
for each object, and receives timestamped read and 
write requests for objects:
9 read(x,ts): if ts < WTM(x) then the request is rejected 

and the transaction is aborted, otherwise the request 
is accepted and RTM(x) is set equal to the greater of 
RTM(x) and ts

9write(x,ts): if ts < WTM(x) or ts < RTM(x) then the 
request is rejected and the transaction is killed, 
otherwise the request is accepted and WTM(x) is set 
equal to ts

� This method causes the forced abort of a large number 
of transactions.
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Example

Request Response New value
read(x,6) ok
read(x,8) ok RTM(x) = 8
read(x,9) ok RTM(x) = 9
write(x,8) no t8 killed
write(x,11) ok WTM(x) = 11
read(x,10) no t10 killed
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Multiversion Concurrency Control

� Writes generate new copies each with a WTM. At any 
time, N �1 copies of each object x are active, with 
WTMN(x). There is only one global RTM(x). 

� Rules that make this method work: 
9 read(x,ts) is always accepted -- select copy xk such 

that if ts > WTMN(x), then k = N, otherwise select k
such that WTMk(x) < ts < WTMk+1(x)

9write(x,ts) -- if ts < RTM(x), request is refused, else 
a new version of the item is added (N increased by 
one) with WTMN(x) = ts

� Old copies are discarded when there are no read 
transactions interested in their values.
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Taxonomy of 
VSR, CSR, 2PL and TS
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2PL vs TS

� In 2PL, transactions that want an object used by 
another transaction are put in waiting; in TS they are 
killed and then restarted. 

� The serialization order in 2PL is imposed by conflicts, 
while in TS it is imposed by the timestamps

� The necessity of waiting for the commit of the 
transaction causes strict 2PL and buffering of writes 
in TS

� 2PL can give rise to deadlocks (discussed next.)
� Restarting costs higher than waiting ones: 2PL wins!
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Lock Management

� Lock manager supports three operations:
9r_lock(T,x,errcode,timeout)

9w_lock(T,x,errcode,timeout)

9unlock(T,x)

T: transaction identifier
X: data element
timeout: max wait in queue

� If timeout expires, errcode signals an error, typically 
the transaction rolls back and restarts.
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Hierarchical Locking

� In many real systems, locks can be specified at 
different levels of granularity, e.g. tables, fragments, 
tuples, fields. These are organized in a hierarchy, 
possibly a directed acyclic graph. 

� There are five locking modes in hierarchical locking:
9 ˚ Two are shared and exclusive, renamed as XL, SL;
9Three modes are new:
9ISL: intention-shared lock; 
9IXL: intention-exclusive lock; 
9SIXL: shared-intention-exclusive lock. 

� The choice of lock granularity is left to application 
designers; coarse granularity means that many 
resources are blocked, fine means that many locks are 
requested.
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Hierarchical 
Locking 
Example

If we wish to place a write lock on a tuple of the table, then 
we must first request an IXL on the database level. When 
the request is satisfied, we can request an IXL for the 
relation and fragment in which the desired tuple lies. When 
these locks are granted, we can request an XL for the 
particular tuple. Then when the transaction is ended, it will 
have to release the locks in reverse order to that in which 
they were granted, ascending the hierarchy one step at a 
time. 
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Hierarchical Locking Protocol

1. Locks are requested from the root to descendents in 
a hierarchy

2. Locks are released starting at the node locked and 
moving up the tree

3. In order to request an SL or ISL on a node, a 
transaction must already hold an ISL or IXL lock on 
the parent node.

4. In order to request an IXL, XL, or SIXL on a node, a 
transaction must already hold an SIXL or IXL lock on 
the parent node.
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Conflicts in Hierarchical Locking

The new conflict table has as follows:

Resource state
Request ISL IXL SL SIXL XL

ISL OK OK OK OK No
IXL OK OK No No No
SL OK No OK No No
SIXL OK No No No No
XL No No No No No
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Lock Options in SQL2

� Some transactions are defined as read-only (they 
can’t request exclusive locks)

� The level of isolation can be set for each transaction.
� Serializable guarantees max isolation: keeps 

predicate locks so as not to change the content even 
of aggregate functions evaluated on data sets

� Repeatable read is equal to strict 2PL (note: 
repeated reading of values are the same, but 
repeated readings of aggregates over data are not)

� Committed read excludes the reading of 
intermediate states (uncommitted data)

� Uncommitted read does no concurrency control at 
all on read
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Deadlocks

� Deadlocks are created by concurrent transactions, 
each of which holds and waits for resources held by 
others

� Example: 
9 t1: read(x), write(y), t2: read(y), write(x)
9Schedule: r_lock1(x), r_lock2(y), read1(x), read2(y) 

w_lock1(y), w_lock2(x)
� This is a deadlock! t1 is waiting for y which is blocked

by t2, and t2 is waiting for x which is blocked by t1. 
� Deadlock probability grows linearly with number of 

transactions and quadratically with the number of 
lock requests by each transaction (under suitable 
uniformity assumptions)
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Deadlock Resolution Techniques

� A deadlock is a cycle in the wait-for graph which 
indicates wait conditions between transactions 
(where nodes represent transactions, arcs wait 
conditions).

� There are three techniques for deadlock detection:
9Timeout -- abort transactions that waited too long;
9Deadlock detection -- performs the search for 

cycles in the wait-for graph;
9Deadlock prevention -- kill the transactions that 

could cause a cycle (an overkill!).


