
1

Transactions -- 1

X. Database Transactions

Database Transactions
ACID Properties and Anomalies

Schedules and Serializability
View- and Conflict Serializability

Two-Phase Locking
Deadlocks

Transactions -- 2

Database Transactions

� Databases are a global resource within an
organization.

� Organizations could not afford to have this
resource serve its users on a one-at-a-time basis!

� Accordingly, concurrent access of a database by
multiple (possibly a large number of) users has
been a requirement since the early days of
database technology.

� Database transaction mechanisms were
developed in response to this requirement.

2

Transactions -- 3

What is a Transaction?
� An atomic unit of work performed by an application,

with specific constraints with respect to correctness,
robustness and isolation

� Each transaction is delimited by the commands
9begin transaction (bot)

9end transaction (eot)

� Within a transaction, exactly one the commands
com mit work (commit), rollback work (abort)

� A transactional system is a system which offers
facilities for defining and executing transactions on
behalf of multiple, concurrent applications.

Transactions -- 4

(Simple) Example

� A transaction is well-formed if it starts with bot, ends
with eot, and executes exactly once com mit or
abort.No database operations can execute after the
execution of com mit or abort.

� Here is an example
bot
x := x- 10

y := y + 10

com mit
eot

3

Transactions -- 5

ACID Properties

� In order to cope with the concurrent execution,
transactions need to have four properties.

� ACID is an acronym for:
9Atomicity -- transactions are atomic;
9Consistency -- preserve database constraints
9 Isolation -- transactions execute independently

of each other;
9Durability -- the effects of a transaction are

persistent.

Transactions -- 6

Atomicity

� A transaction is an atomic unit of computation on a
database; can’t leave database in an intermediate state:
9a fault or error prior to commit causes an undo of all

work done earlier by the transaction;
9A fault or error after the commit may require a redo of

the work made earlier, if its effect on the database
state are not guaranteed.

� Possible behaviours for a transaction:
9Commit -- normal behaviour (99.9% of the time)
9Rollback requested by the application -- suicide!
9Rollback requested by the system -- murder!!

4

Transactions -- 7

Consistency

� Consistency amounts to requiring that the transaction
does not violate any integrity constraints.

� Integrity constraint verification can be:
9 Immediate: during the transaction (the operation

causing the violation is rejected)
9Deferred: at the end of the transaction (if some

integrity constraint is violated, the entire
transaction is rejected)

Transactions -- 8

Isolation
� Isolation requires that a transaction executes

independently of the execution of all other concurrent
transactions.

� This means that the concurrent execution of a
collection of transactions yields the same result as an
arbitrary sequential execution of the same
transactions]

Durability (Persistence)
� Durability requires that the effect of a transaction that

has successfully committed will not be lost (i.e., the
effect will “last forever”)

5

Transactions -- 9

Transactions and System Modules

� Atomicity and durability are guaranteed by the
Reliability Control System.

� Isolation is guaranteed by the Concurrency
Control System.

� Consistency is managed during the normal query
execution by the DBMS System (verification
activities are generated by the DDL Compilers and
executed during query processing)

Transactions -- 10

Concurrency Control

� Concurrency is measured in tps (transactions per
second), with values that can go up to 105-106 tps.

� Typical examples of large transaction systems include
banking, airline reservation systems, etc.

� We assume that transactions are input-output
operations on abstract objects x, y, z (tuples,
relations, objects,...)

� Each input-output operation reads secondary memory
blocks into buffer pages or writes buffer pages into
secondary memory blocks.

� For simplicity, we assume that there is a one-to-one
mapping from disk blocks to memory pages.

� The main problem we have to cope with involves
anomalies due to concurrent execution.

6

Transactions -- 11

The Scheduler
� Traditionally, disk blocks are copied into pages as they

are loaded into memory

Transactions -- 12

Anomaly I: Update Loss

� Consider two identical transactions:
t 1 : r(x), x = x + 1, w(x), t 2 : r(x), x = x + 1, w(x),

and assume initially x=2; after serial execution x=4
� Consider the concurrent execution:
9Transaction t1 Transaction t2
bot
r1(x)
x = x + 1

bot
r2(x)
x = x + 1

w1(x)
commit

w2(x)
commit

� One update is lost, final value is x=3 instead of x=4!

7

Transactions -- 13

Anomaly II: Dirty Read

� Consider the same two transactions, and the
following execution (note that the first transaction
fails):
9Transaction t1 Transaction t2
bot
r1(x)
x = x + 1
w1(x)

bot
r2(x)
x = x + 1

abort
w2(x)
commit

� t2 reads from an intermediate state of t1 (dirty read)

Transactions -- 14

Anomaly III: Inconsistent Read

� t1 repeats two reads:
9Transaction t1 Transaction t2
bot
r1(x)

bot
r2(x)
x = x + 1
w2(x)
commit

r1(x)
commit

� t1 reads different values for x

8

Transactions -- 15

Anomaly IV: Ghost Update
� Assume the integrity constraint x + y + z = 1000;
9Transaction t1 Transaction t2
bot
r1(x)

bot
r2(y)

r1(y)
y = y - 100
r2(z)
z = z + 100
w2(y)
w2(z)
commit

r1(z)
s = x + y + z
commit

� s = 1100, because t1 sees a ghost update.

Transactions -- 16

Concurrency Control Theory

�A transaction is a sequence of read or write actions.
�Each transaction has a unique, system-assigned
transaction identifier.
�Each transactions is initiated by the bot command
and terminated by eot, we won’t show these in the
following examples.
�For example,

t 1 : r1(x) r1(y) w1(x) w1(y)
�This model ignores the manipulation operations
performed on the data by the transaction.

9

Transactions -- 17

Schedules

� A schedule represents the sequence of input/output
operations requested by concurrently executing
transactions.

� For example,
S1 : r1(x) r2(z) w1(x) w2(z)

� To keep things simple, we assume that transactions
don’t include abort statements (commit-projection
assumption).

� This assumption is not acceptable in practice,
application-requested aborts are useful.

Transactions -- 18

Concurrency Control

� We want to disallow schedules that cause any of the
anomalies presented earlier.

� A scheduler is a system component that accepts or
rejects the operations requested by transactions

� We are interested in serial schedules, i.e., ones where
the actions to be executed by each transaction appear in
sequence, e.g.,
S2 : r0(x) r0(y) w0(x) r1(y) r1(x) w1(y) r2(x) r2(y) r2(z) w2(z)
S3 : r0(x) r0(y) w0(x) r2(x) r2(y) r2(z) w2(z) r1(y) r1(x) w1(y)
S4 : r1(y) r1(x) w1(y) r0(x) r0(y) w0(x) r2(x) r2(y) r2(z) w2(z)
S5 : r1(y) r1(x) w1(y) r2(x) r2(y) r2(z) w2(z) r0(x) r0(y) w0(x)
S6 : r2(x) r2(y) r2(z) w2(z) r0(x) r0(y) w0(x) r1(y) r1(x) w1(y)
S7 : r2(x) r2(y) r2(z) w2(z) r1(y) r1(x) w1(y) r0(x) r0(y) w0(x)

10

Transactions -- 19

Serializability

� A schedule is serializable if it produces the same
result as some serial schedule Sj of the same
transactions.

� We need to define what “same result” means, i.e., a
notion of equivalence between schedules.

� We are going to define several notions of equivalence:
view-equivalence, conflict-equivalence, two-phase
locking, timestamp-based.

� We want to design schedulers which allow the
identification of a broad class of acceptable schedules
without having to test each schedule for equivalence.

Transactions -- 20

View-Serializability

� Some definitions:
9 ri(x) reads-from wj(x) in a schedule S when wj(x)

precedes ri(x) in S and there is no wk(x) between
ri(x) and wj(x) in S

9wi(x) in a schedule S is a final write if it is the last
write of the object x to appear in S

� Two schedules Si and Sj are view-equivalent (Si ≈V Sj)
if they possess the same sets of reads-from relations
and final writes.

� A schedule is called view-serializable if it is view-
equivalent to some serial schedule.

� The set of view-serializable schedules is called VSR.

11

Transactions -- 21

View-Serializability

� View-serializability is computationally expensive:
9Deciding on the view-equivalence of two given

schedules can be done in polynomial time;
9Deciding on the view serializability of a generic

schedule is an NP-complete problem.
� Makes sense to adopt a more limited definition of

equivalence, which does not cover all cases of view-
equivalence between schedules, but is computationally
more tractable.

Transactions -- 22

Examples of View Serializability
� S3 : w0(x) r2(x) r1(x) w2(x) w2(z)

S4 : w0(x) r1(x) r2(x) w2(x) w2(z)
S5 : w0(x) r1(x) w1(x) r2(x) w1(z)
S6 : w0(x) r1(x) w1(x) w1(z) r2(x)

� S3 is view-equivalent to the serial schedule S4 (and
therefore, it is view-serializable)

� S5 is not view-equivalent to S4, but it is view-equivalent
to the serial schedule S6, and it is therefore also view-
serializable

� S7 : r1(x) r2(x) w2(x) w1(x)
S8 : r1(x) r2(x) w2(x) r1(x)
S9 : r1(x) r1(y) r2(z) r2(y) w2(y) w2(z) r1(z)

� S7 includes an update loss, S8 an inconsistent read, and
S9 a ghost update; they are not view-serializable.

12

Transactions -- 23

Conflict-Serializability

� Two actions ai, aj (i≠ j), are in conflict if both operate on
the same object and at least one of them is a write.

� There can be read-write conflicts (rw or wr), and write-
write conflicts (ww).

� Two schedules are conflict-equivalent (Si ≈C Sj) if they
include the same operations and every pair of
operations in conflict is in the same order in both
schedules.

� A schedule is conflict-serializable if there is a conflict-
equivalent serial schedule.

� The set of conflict-serializable schedules is called CSR.
� CSR is a proper subset of VSR.

Transactions -- 24

Testing Conflict-Serializability

� Can be done in terms of a conflict graph which has;
9a node for each transaction ti;
9an edge from ti to tj if there is at least one conflict

between an action ai and an action aj such that ai
precedes aj;

� A schedule is conflict-serializable if and only if its conflict
graph is acyclic.

� Testing for cyclicity of a graph has a linear complexity with
respect to the size of the graph.

� Conflict serializability is still too laborious in practice,
especially for distributed databases.

This is not a practical alternative either!

13

Transactions -- 25

Example of Conflict-Serializability

� S10 is conflict-equivalent to the serial schedule S11

Transactions -- 26

Two-Phase Locking
� Used by almost all commercial DBMSs
� Basic idea: Every read is preceded by r_lock (shared

lock) and followed by an unlock; Every write operation
is preceded by w_lock (exclusive lock), followed by
unlock.

� A transaction execution following these rules is well
formed wrt locking.

� When a transaction first reads and then writes an object
it can either use a write lock, or move from a shared
lock to an exclusive one (lock escalation.)

� The lock manager receives lock/unlock requests and
grants resources according to a conflict table:
9When the lock is granted, the resource is acquired;
9At unlock, the resource is released.

14

Transactions -- 27

The Lock manager
Conflict table

� A counter keeps track of the number of readers for
each resource and release it when counter = 0.

� If a lock request is not granted, requesting transaction
is put in a waiting state; waiting ends when the resource
is unlocked and becomes available.

� The locks already granted are stored in a lock table,
managed by the lock manager

Transactions -- 28

The Two-Phase Locking Protocol

� The two-phase locking (2PL) protocol does not
allow a transaction to acquire new locks after it has
released a lock.

� The two phases refer to the fact that the set of locks
of a transaction grows, then shrinks monotonically.

� If a scheduler uses well-formed transactions, conflict-
based lock granting, and 2PL, then it produces the
class of 2PL schedules.

� 2PL schedules are serializable and strictly included in
CSR

� Example of a schedule that is in CSR and not in 2PL:
S12 : r1(x) w1(x) r2(x) w2(x) r3(y) w1(y)

15

Transactions -- 29

Strict 2PL

� Strict 2PL imposes an additional constraint: The
locks on a transaction can be released only after
the transaction has committed/aborted.

� This version is used by commercial DBMSs. It
obviously has the disadvantage that some locks may
be maintained longer that they are needed, but it
does eliminate the dirty read anomaly.

Transactions -- 30

Concurrency Control
Based on Timestamps

� A timestamp is an identifier which defines a total
ordering of temporal events within a system.

� Every transaction is assigned a timestamp ts that
represents the time at which the transaction begins

� A schedule is accepted only if it reflects the serial
ordering of the transactions based on the value of the
timestamp of each transaction.

16

Transactions -- 31

Basic Timestamp Mechanism

� The scheduler maintains a counter RTM(x) and WTM(x)
for each object, and receives timestamped read and
write requests for objects:
9 read(x,ts): if ts < WTM(x) then the request is rejected

and the transaction is aborted, otherwise the request
is accepted and RTM(x) is set equal to the greater of
RTM(x) and ts

9write(x,ts): if ts < WTM(x) or ts < RTM(x) then the
request is rejected and the transaction is killed,
otherwise the request is accepted and WTM(x) is set
equal to ts

� This method causes the forced abort of a large number
of transactions.

Transactions -- 32

Example

Request Response New value
read(x,6) ok
read(x,8) ok RTM(x) = 8
read(x,9) ok RTM(x) = 9
write(x,8) no t8 killed
write(x,11) ok WTM(x) = 11
read(x,10) no t10 killed

17

Transactions -- 33

Multiversion Concurrency Control

� Writes generate new copies each with a WTM. At any
time, N �1 copies of each object x are active, with
WTMN(x). There is only one global RTM(x).

� Rules that make this method work:
9 read(x,ts) is always accepted -- select copy xk such

that if ts > WTMN(x), then k = N, otherwise select k
such that WTMk(x) < ts < WTMk+1(x)

9write(x,ts) -- if ts < RTM(x), request is refused, else
a new version of the item is added (N increased by
one) with WTMN(x) = ts

� Old copies are discarded when there are no read
transactions interested in their values.

Transactions -- 34

Taxonomy of
VSR, CSR, 2PL and TS

18

Transactions -- 35

2PL vs TS

� In 2PL, transactions that want an object used by
another transaction are put in waiting; in TS they are
killed and then restarted.

� The serialization order in 2PL is imposed by conflicts,
while in TS it is imposed by the timestamps

� The necessity of waiting for the commit of the
transaction causes strict 2PL and buffering of writes
in TS

� 2PL can give rise to deadlocks (discussed next.)
� Restarting costs higher than waiting ones: 2PL wins!

Transactions -- 36

Lock Management

� Lock manager supports three operations:
9r_lock(T,x,errcode,timeout)

9w_lock(T,x,errcode,timeout)

9unlock(T,x)

T: transaction identifier
X: data element
timeout: max wait in queue

� If timeout expires, errcode signals an error, typically
the transaction rolls back and restarts.

19

Transactions -- 37

Hierarchical Locking

� In many real systems, locks can be specified at
different levels of granularity, e.g. tables, fragments,
tuples, fields. These are organized in a hierarchy,
possibly a directed acyclic graph.

� There are five locking modes in hierarchical locking:
9 ˚ Two are shared and exclusive, renamed as XL, SL;
9Three modes are new:
9ISL: intention-shared lock;
9IXL: intention-exclusive lock;
9SIXL: shared-intention-exclusive lock.

� The choice of lock granularity is left to application
designers; coarse granularity means that many
resources are blocked, fine means that many locks are
requested.

Transactions -- 38

Hierarchical
Locking
Example

If we wish to place a write lock on a tuple of the table, then
we must first request an IXL on the database level. When
the request is satisfied, we can request an IXL for the
relation and fragment in which the desired tuple lies. When
these locks are granted, we can request an XL for the
particular tuple. Then when the transaction is ended, it will
have to release the locks in reverse order to that in which
they were granted, ascending the hierarchy one step at a
time.

20

Transactions -- 39

Hierarchical Locking Protocol

1. Locks are requested from the root to descendents in
a hierarchy

2. Locks are released starting at the node locked and
moving up the tree

3. In order to request an SL or ISL on a node, a
transaction must already hold an ISL or IXL lock on
the parent node.

4. In order to request an IXL, XL, or SIXL on a node, a
transaction must already hold an SIXL or IXL lock on
the parent node.

Transactions -- 40

Conflicts in Hierarchical Locking

The new conflict table has as follows:

Resource state
Request ISL IXL SL SIXL XL

ISL OK OK OK OK No
IXL OK OK No No No
SL OK No OK No No
SIXL OK No No No No
XL No No No No No

21

Transactions -- 41

Lock Options in SQL2

� Some transactions are defined as read-only (they
can’t request exclusive locks)

� The level of isolation can be set for each transaction.
� Serializable guarantees max isolation: keeps

predicate locks so as not to change the content even
of aggregate functions evaluated on data sets

� Repeatable read is equal to strict 2PL (note:
repeated reading of values are the same, but
repeated readings of aggregates over data are not)

� Committed read excludes the reading of
intermediate states (uncommitted data)

� Uncommitted read does no concurrency control at
all on read

Transactions -- 42

Deadlocks

� Deadlocks are created by concurrent transactions,
each of which holds and waits for resources held by
others

� Example:
9 t1: read(x), write(y), t2: read(y), write(x)
9Schedule: r_lock1(x), r_lock2(y), read1(x), read2(y)

w_lock1(y), w_lock2(x)
� This is a deadlock! t1 is waiting for y which is blocked

by t2, and t2 is waiting for x which is blocked by t1.
� Deadlock probability grows linearly with number of

transactions and quadratically with the number of
lock requests by each transaction (under suitable
uniformity assumptions)

22

Transactions -- 43

Deadlock Resolution Techniques

� A deadlock is a cycle in the wait-for graph which
indicates wait conditions between transactions
(where nodes represent transactions, arcs wait
conditions).

� There are three techniques for deadlock detection:
9Timeout -- abort transactions that waited too long;
9Deadlock detection -- performs the search for

cycles in the wait-for graph;
9Deadlock prevention -- kill the transactions that

could cause a cycle (an overkill!).

