Geography on 3-folds of General Type

Meng Chen
Fudan University, Shanghai

September 9, 2010
• Let \(V \) be a nonsingular projective variety. Consider the canonical line bundle \(\omega_V = \mathcal{O}_V(K_V) \). One task of birational geometry is to study the geometry induced from linear system \(|mK_V| \) or \(|-mK_V| \), \(\forall m \in \mathbb{Z}^+ \).
• Let V be a nonsingular projective variety. Consider the canonical line bundle $\omega_V = \mathcal{O}_V(K_V)$. One task of birational geometry is to study the geometry induced from linear system $|mK_V|$ or $|-mK_V|$, $\forall m \in \mathbb{Z}^+$.

• Assume that V is of general type, i.e. $\kappa(V) = \dim(V)$. Set

$$\mathcal{V}_n := \{n\text{-dimensional variety of general type}\}.$$
A Classical Problem

- Let V be a nonsingular projective variety. Consider the canonical line bundle $\omega_V = \mathcal{O}_V(K_V)$. One task of birational geometry is to study the geometry induced from linear system $|mK_V|$ or $|-mK_V|$, $\forall m \in \mathbb{Z}^+$.

- Assume that V is of general type, i.e. $\kappa(V) = \dim(V)$. Set

$$\mathcal{V}_n := \{\text{n-dimensional variety of general type}\}.$$

- Post-MMP Problem: how to classify \mathcal{V}_n?
• In 2006, Hacon-McKernan, Takayama $\Rightarrow \exists \ r_n$ such that φ_m is birational $\forall \ m \geq r_n$ and $\forall \ V \in \mathcal{V}_n$.
• In 2006, Hacon-McKernan, Takayama $\Rightarrow \exists r_n$ such that φ_m is birational $\forall m \geq r_n$ and $\forall V \in \mathcal{V}_n$.

• Chen-Chen \Rightarrow

 (1) $r_3 \leq 73$;
 (2) $\text{Vol}(V) \geq 1/2660$ $\forall V \in \mathcal{V}_3$.
• In 2006, Hacon-McKernan, Takayama ⇒ ∃ \(r_n \) such that \(\varphi_m \) is birational \(\forall \ m \geq r_n \) and \(\forall \ V \in \mathcal{V}_n \).

• Chen-Chen ⇒

 (1) \(r_3 \leq 73 \);

 (2) \(\text{Vol}(V) \geq 1/2660 \ \forall \ V \in \mathcal{V}_3 \).

• The aim of this talk—geography ⇒ to improve the above results.
Let X be a (\mathbb{Q}FT) minimal projective 3-fold of general type. Reid $\Rightarrow \exists!$ weighted basket $\mathbb{B}_X := \{B_X, P_2, O_X\}$ such that all the birational invariants of X are uniquely determined by \mathbb{B}_X, where $B_X = \{\frac{1}{r_i}(1, -1, b_i)|i = 1, \ldots, t\}$.

Open problem: to find exact relations between $V_3 \leftrightarrow \{\text{weighted baskets}\}$.

Meng Chen Fudan University, Shanghai

Geography on 3-folds of General Type
• Let X be a (QFT) minimal projective 3-fold of general type. Reid $\Rightarrow \exists!$ weighted basket $\mathbb{B}_X := \{B_X, P_2, O_X\}$ such that all the birational invariants of X are uniquely determined by \mathbb{B}_X, where $B_X = \{\frac{1}{r_i}(1, -1, b_i) \, | \, i = 1, \ldots, t\}$.

• Open problem: to find exact relations between the sets

\[\mathcal{V}_3 \leftrightarrow \{\text{weighted baskets}\} \]
Two geographical inequalities

- Miyaoka-Reid inequality:

\[K_X^3 \leq 72\chi(\omega_X) + 3 \sum_i (r_i - \frac{1}{r_i}). \]

- Inequalities of Noether type (Chen-Chen):

\[K_X^3 \geq a_m P_m(X) - b_m \]

where \(a_m, b_m \in \mathbb{Q}^+ \), and \(m \geq 1 \).
Two geographical inequalities

- Miyaoka-Reid inequality:

\[K_X^3 \leq 72 \chi(\omega_X) + 3 \sum (r_i - \frac{1}{r_i}) \]

- Inequalities of Noether type (Chen-Chen):

\[K_X^3 \geq a_m P_m(X) - b_m \]

where \(a_m, b_m \in \mathbb{Q}^+, m \geq 1 \).
• The fact: general type 3-folds with $p_g \leq 1$
form an infinite family.
Numerical genus

- The fact: general type 3-folds with $p_g \leq 1$ form an infinite family.
- When $p_g(X) \leq 1$, $n_0(X) := \min\{m|P_m(X) \geq 2\}$. Chen-Chen \(\Rightarrow \) $2 \leq n_0(X) \leq 18$.

Definition

The numerical genus of X is defined as:

$$g(X) := \begin{cases} p_g(X); & p_g(X) \geq 2 \\ \frac{1}{n_0(X)}; & \text{otherwise.} \end{cases}$$
The Noether function $\mathcal{N}(g)$

- Chen-Chen $\Rightarrow g(X) \geq \frac{1}{18}$.

For all minimal 3-fold X of general type, Noether inequality $K^3 X \geq \mathcal{N}(g(X))$.

What is the Noether function $\mathcal{N}(g)$?
The Noether function $N(g)$

- Chen-Chen $\Rightarrow g(X) \geq \frac{1}{18}$.
- The Noether function

 $N(g) := \inf\{K_X^3|g(X) = g\}.$
The Noether function $\mathcal{N}(g)$

- Chen-Chen $\implies g(X) \geq \frac{1}{18}$.
- The Noether function
 \[\mathcal{N}(g) := \inf \{ K_X^3 | g(X) = g \}. \]
- For all minimal 3-fold X of general type, Noether inequality
 \[K_X^3 \geq \mathcal{N}(g(X)). \]
The Noether function $\mathcal{N}(g)$

- Chen-Chen $\Rightarrow g(X) \geq \frac{1}{18}$.
- The Noether function
 $\mathcal{N}(g) := \inf \{ K_X^3 | g(X) = g \}$.
- For all minimal 3-fold X of general type, Noether inequality
 $$K_X^3 \geq \mathcal{N}(g(X)).$$
- What is the Noether function $\mathcal{N}(g)$?
• In 1992, Kobayashi constructed a family of canonically polarized 3-folds satisfying:
\[K_X^3 = \frac{4}{3} p_g(X) - \frac{10}{3}. \]
Noether inequalities in narrow sense

• In 1992, Kobayashi constructed a family of canonically polarized 3-folds satisfying:
 \[K_X^3 = \frac{4}{3} p_g(X) - \frac{10}{3}. \]

• In 2004, Chen \[K_X^3 \geq \frac{4}{3} p_g(X) - \frac{10}{3} \] for canonically polarized 3-folds.

• In 2006, Catanese-Chen-Zhang \[K_X^3 \geq \frac{4}{3} p_g(X) - \frac{10}{3} \] for nonsingular minimal 3-folds of general type.

• Conjecture: \[K_X^3 \geq \frac{4}{3} p_g(X) - \frac{10}{3} \] holds for Gorenstein minimal 3-folds of general type.
• In 1992, Kobayashi constructed a family of canonically polarized 3-folds satisfying:
\[K_X^3 = \frac{4}{3} p_g(X) - \frac{10}{3}. \]

• In 2004, Chen \(\Rightarrow K_X^3 \geq \frac{4}{3} p_g(X) - \frac{10}{3} \) for canonically polarized 3-folds.

• In 2006, Catanese-Chen-Zhang \(\Rightarrow K_X^3 \geq \frac{4}{3} p_g(X) - \frac{10}{3} \) for nonsingular minimal 3-folds of general type.
• In 1992, Kobayashi constructed a family of canonically polarized 3-folds satisfying:
 \[K_X^3 = \frac{4}{3} p_g(X) - \frac{10}{3}. \]
• In 2004, Chen \(\Rightarrow \) \(K_X^3 \geq \frac{4}{3} p_g(X) - \frac{10}{3} \) for canonically polarized 3-folds.
• In 2006, Catanese-Chen-Zhang \(\Rightarrow \)
 \(K_X^3 \geq \frac{4}{3} p_g(X) - \frac{10}{3} \) for nonsingular minimal 3-folds of general type.
• Conjecture: \(K_X^3 \geq \frac{4}{3} p_g(X) - \frac{10}{3} \) holds for Gorenstein minimal 3-folds of general type.
Known value of $\mathcal{N}(g)$

- In 2007, Chen $\Rightarrow K_X^3 \geq \frac{1}{3}$ when $g = p_g(X) \geq 2$.
Known value of $\mathcal{N}(g)$

- In 2007, Chen $\Rightarrow K_X^3 \geq \frac{1}{3}$ when $g = p_g(X) \geq 2$.
- Chen \Rightarrow

 \[
 \mathcal{N}(2) = \frac{1}{3};
 \]

 \[
 \mathcal{N}(3) = 1;
 \]

 \[
 \mathcal{N}(4) = 2;
 \]

 \[
 \mathcal{N}(g) \geq g - 2 \text{ for } g \geq 5.
 \]

 due to supporting examples of Fletcher-Reid.
The strategy to get the lower bound of K_X^3

- Fletcher-Reid’s example:
 $X_{46} \subset \mathbb{P}(4, 5, 6, 7, 23)$, $K^3 = \frac{1}{420}$.
• Fletcher-Reid’s example:
\(X_{46} \subset \mathbb{P}(4, 5, 6, 7, 23), \ K^3 = \frac{1}{420}. \)

• When \(p_g(X) \leq 1, \ \frac{1}{18} \leq g \leq \frac{1}{2}. \)
The strategy to get the lower bound of K_X^3

- Fletcher-Reid’s example:
 $X_{46} \subset \mathbb{P}(4, 5, 6, 7, 23)$, $K^3 = \frac{1}{420}$.

- When $p_g(X) \leq 1$, $\frac{1}{18} \leq g \leq \frac{1}{2}$.

- When $K_X^3 < \frac{1}{420}$, Reid’s weighted baskets can be completely listed, but the list is too big!
The strategy to get the lower bound of K_X^3

- Fletcher-Reid’s example:
 $X_{46} \subset \mathbb{P}(4, 5, 6, 7, 23)$, $K^3 = \frac{1}{420}$.

- When $p_g(X) \leq 1$, $\frac{1}{18} \leq g \leq \frac{1}{2}$.

- When $K_X^3 < \frac{1}{420}$, Reid’s weighted baskets can be completely listed, but the list is too big!

- To find a function $c(g)$ such that $K_X^3 \geq c(g)$ with $g(X) = g$.

Meng Chen Fudan University, Shanghai
Geography on 3-folds of General Type
• Chen-Chen $\Rightarrow \exists$ a very effective function $v(g)$ ($g < 2$) satisfying $K_X^3 \geq v(g(X))$.
The main statements

- Chen-Chen ⇒ ∃ a very effective function \(v(g) \) (\(g < 2 \)) satisfying \(K_X^3 \geq v(g(X)) \).

- Set \(g = 1/n_0 \), here is part of the description:

<table>
<thead>
<tr>
<th>(n_0)</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v(n_0))</td>
<td>1/420</td>
<td>1/450</td>
<td>1/630</td>
<td>1/825</td>
<td>1/1089</td>
<td>1/1404</td>
</tr>
<tr>
<td>(n_0)</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>(v(n_0))</td>
<td>1/1728</td>
<td>1/2152.5</td>
<td>1/2640</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
• Chen-Chen \implies \exists \text{ a very effective function } \nu(g) (g < 2) \text{ satisfying } K_X^3 \geq \nu(g(X)).

• Set \(g = 1/n_0 \), here is part of the description:

<table>
<thead>
<tr>
<th>(n_0)</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu(n_0))</td>
<td>(\frac{1}{420})</td>
<td>(\frac{1}{450})</td>
<td>(\frac{1}{630})</td>
<td>(\frac{1}{825})</td>
<td>(\frac{1}{1089})</td>
<td>(\frac{1}{1404})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(n_0)</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu(n_0))</td>
<td>(\frac{1}{1728})</td>
<td>(\frac{1}{2152})</td>
<td>(\frac{1}{2640})</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

• \(\mathcal{N}(\frac{1}{2}) = \nu(\frac{1}{2}) = \frac{1}{12} \). (optimal)
Conclusions

- Fletcher-Reid examples with $g = 1/2$ and $K^3 = 1/12$:
 \[X_{22} \subset \mathbb{P}(1, 2, 3, 4, 11) \]
 \[X_{6,18} \subset \mathbb{P}(2, 2, 3, 3, 4, 9) \]
 \[X_{10,14} \subset \mathbb{P}(2, 2, 3, 4, 5, 7) \]
Conclusions

• Fletcher-Reid examples with $g = 1/2$ and $K^3 = 1/12$:

\[X_{22} \subset \mathbb{P}(1, 2, 3, 4, 11) \]
\[X_{6,18} \subset \mathbb{P}(2, 2, 3, 3, 4, 9) \]
\[X_{10,14} \subset \mathbb{P}(2, 2, 3, 4, 5, 7) \]

Theorem

Let X be a minimal projective 3-fold of general type. Then

1. $K_X^3 \geq \frac{17}{30030} > \frac{1}{1767}$. Furthermore, $K_X^3 = \frac{17}{30030}$ if and only if $\mathbb{B}(X) = \{B_{3a}, 0, 3\}$.
2. (announcement) φ_m is birational for $m \geq 65$.
The method

- We study the m_0-canonical map of X:

$$\varphi_{m_0} : X \dashrightarrow \mathbb{P}^{P_{m_0}-1}.$$

By Hironaka’s big theorem, we can take successive blow-ups $\pi : X' \rightarrow X$ such that:

1. X' is smooth;
2. the movable part of $|m_0K_{X'}|$ is base point free;
3. the support of the union of $\pi^*(K_{m_0})$ and the exceptional divisors is of simple normal crossings.

Meng Chen Fudan University, Shanghai

Geography on 3-folds of General Type
• Set $g_m^0 := \varphi_m^0 \circ \pi$. Then g_m^0 is a morphism by assumption. Let $X' \xrightarrow{f} \Gamma \xrightarrow{s} W'$ be the Stein factorization of g_m^0 with W' the image of X' through g_m^0.

\[
\begin{array}{ccc}
X' & \xrightarrow{f} & \Gamma \\
\downarrow \pi & & \downarrow s \\
X & \xrightarrow{\varphi_m^0} & W'
\end{array}
\]
The method

- Denote by M_{m_0} the movable part of $|m_0K_{X'}|$. One has

$$m_0\pi^*(K_X) = M_{m_0} + E_{m_0}'$$

for an effective \mathbb{Q}-divisor E_{m_0}'. In total, since

$$h^0(X', \lceil m_0\pi^*(K_X) \rceil) = h^0(X', \lceil m_0\pi^*(K_X) \rceil) = P_{m_0}(X') = P_{m_0}(X),$$

one has:

$$m_0K_{X'} = M_{m_0} + Z_{m_0}$$

where Z_{m_0} is the fixed part of $|m_0K_{X'}|$.
The method

- If $\dim(\Gamma) \geq 2$, a general member S of $|M_{m_0}|$ is a nonsingular projective surface of general type. Set $p = 1$.
• If \(\dim(\Gamma) \geq 2 \), a general member \(S \) of \(|M_{m_0}| \) is a nonsingular projective surface of general type. Set \(p = 1 \).

• If \(\dim(\Gamma) = 1 \), a general fiber \(S \) of \(f \) is an irreducible smooth projective surface of general type. We may write

\[
M_{m_0} = \sum_{i=1}^{a_{m_0}} S_i \equiv a_{m_0} S
\]

where \(S_i \) are smooth fibers of \(f \) for all \(i \) and \(a_{m_0} \geq \min\{2P_{m_0} - 2, P_{m_0} + g(\Gamma) - 1\} \). Set \(p = a_{m_0} \).
The method

- Let S be a generic irreducible element of $|m_0 K_{X'}|$. Let $|G|$ be a base point free linear system on S. Let C be a generic irreducible element of $|G|$. Kodaira Lemma $\Rightarrow \exists \beta > 0$ such that $\pi^*(K_X)|_S \geq \beta C$.

Inequality (1): $K^3_X \geq p \beta m_0 \xi$ (1) where $\xi = \pi^*(K_X) \cdot C$.

Meng Chen Fudan University, Shanghai Geography on 3-folds of General Type
• Let S be a generic irreducible element of $|m_0K_{X'}|$. Let $|G|$ be a base point free linear system on S. Let C be a generic irreducible element of $|G|$. Kodaira Lemma $\Rightarrow \exists \beta > 0$ such that $\pi^*(K_X)|_S \geq \beta C$.

• Inequality (1):

\[K_X^3 \geq \frac{p\beta}{m_0} \xi \] \hspace{1cm} (1)

where $\xi = \pi^*(K_X) \cdot C$.
• Inequality (2):

\[\xi \geq \frac{\text{deg}(K_C)}{1 + \frac{m_0}{p} + \frac{1}{\beta}}. \]

(2)
• Inequality (2):

\[\xi \geq \frac{\deg(K_C)}{1 + \frac{m_0}{p} + \frac{1}{\beta}}. \]

\[(2) \]

• Inequality (3): For any positive integer \(m \) such that \(\alpha_m := (m - 1 - \frac{m_0}{p} - \frac{1}{\beta})\xi > 1 \), one has

\[\xi \geq \frac{\deg(K_C) + \lceil \alpha_m \rceil}{m}. \]

\[(3) \]
• When $\dim \Gamma > 1$, take $|G| := |S_s|$. Thus $\beta = \frac{1}{m_0}$.
• When $\dim \Gamma > 1$, take $|G| := |S|_S$. Thus $\beta = \frac{1}{m_0}$.

• When $\dim \Gamma = 1$, take $G = q\sigma^*(K_{S_0})$ for $q \geq 1$ where $\sigma : S \to S_0$ is the contraction onto the minima model. Here is a key inequality:

$$\pi^*(K_X)|_S \geq \frac{p}{m_0 + p} \sigma^*(K_{S_0}).$$
Technical applications

• When \(\text{dim } \Gamma > 1 \), take \(|G| := |S|_S \). Thus \(\beta = \frac{1}{m_0} \).

• When \(\text{dim } \Gamma = 1 \), take \(G = q \sigma^*(K_{S_0}) \) for \(q \geq 1 \) where \(\sigma : S \to S_0 \) is the contraction onto the minima model. Here is a key inequality:

\[
\pi^*(K_X)|_S \geq \frac{p}{m_0 + p} \sigma^*(K_{S_0}).
\]

• Here is the complete list for 3-folds with small invariants:
<table>
<thead>
<tr>
<th>No.</th>
<th>((P_3, \ldots, P_{11}))</th>
<th>(P_{18})</th>
<th>(P_{24})</th>
<th>(\mu_1)</th>
<th>(x)</th>
<th>(B^{(12)} = (n_{1,2}, n_{5,11}, \ldots, n_{1,5})) or (B_{min})</th>
<th>(K^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(0, 0, 0, 0, 0, 0, 0, 1, 0)</td>
<td>4</td>
<td>8</td>
<td>14</td>
<td>2</td>
<td>(5, 0, 0, 1, 0, 3, 0, 0, 0, 1, 0, 0, 0)</td>
<td>(17)</td>
</tr>
<tr>
<td>2</td>
<td>(0, 0, 0, 0, 0, 1, 0, 0, 0)</td>
<td>3</td>
<td>7</td>
<td>15</td>
<td>2</td>
<td>(4, 0, 1, 0, 0, 2, 1, 0, 3, 0, 0, 2, 0, 0)</td>
<td>(360)</td>
</tr>
<tr>
<td>2a</td>
<td></td>
<td>2</td>
<td>3</td>
<td>18</td>
<td>({(2, 5), (3, 8), \ast}) (\succ) ({(5, 13), \ast})</td>
<td>(147)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(0, 0, 0, 0, 0, 1, 0, 1, 0)</td>
<td>3</td>
<td>7</td>
<td>15</td>
<td>3</td>
<td>(6, 1, 0, 0, 4, 1, 0, 4, 0, 1, 0, 2, 0, 0)</td>
<td>(9240)</td>
</tr>
<tr>
<td>3a</td>
<td></td>
<td>2</td>
<td>3</td>
<td>18</td>
<td>({(2, 5), (3, 8), \ast}) (\succ) ({(5, 13), \ast})</td>
<td>(30030)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(0, 0, 0, 0, 0, 1, 0, 1, 0)</td>
<td>4</td>
<td>9</td>
<td>14</td>
<td>3</td>
<td>(7, 0, 1, 0, 0, 4, 0, 1, 3, 0, 1, 0, 2, 0, 0)</td>
<td>(3605)</td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td>1</td>
<td>2</td>
<td>14</td>
<td>({(4, 11), (1, 3), \ast}) (\succ) ({(5, 14), \ast})</td>
<td>(2630)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(0, 0, 0, 0, 0, 1, 0, 1, 0)</td>
<td>5</td>
<td>10</td>
<td>14</td>
<td>3</td>
<td>(7, 0, 1, 0, 0, 4, 1, 0, 4, 0, 1, 0, 1, 0)</td>
<td>(3960)</td>
</tr>
<tr>
<td>5a</td>
<td></td>
<td>4</td>
<td>3</td>
<td>15</td>
<td>({(8, 20), (3, 8), \ast}) (\succ) ({(11, 28), \ast})</td>
<td>(1386)</td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td></td>
<td>3</td>
<td>3</td>
<td>15</td>
<td>({(5, 13), (4, 15), \ast})</td>
<td>(1170)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(0, 0, 0, 1, 0, 0, 0, 1, 0)</td>
<td>3</td>
<td>6</td>
<td>14</td>
<td>3</td>
<td>(9, 0, 0, 2, 0, 1, 0, 1, 4, 0, 2, 0, 0, 1)</td>
<td>(462)</td>
</tr>
<tr>
<td>7</td>
<td>(0, 0, 0, 1, 0, 0, 1, 0, 0)</td>
<td>3</td>
<td>5</td>
<td>14</td>
<td>2</td>
<td>(5, 0, 1, 1, 0, 0, 0, 0, 5, 0, 1, 0, 0, 1)</td>
<td>(630)</td>
</tr>
<tr>
<td>7a</td>
<td></td>
<td>2</td>
<td>3</td>
<td>14</td>
<td>({(4, 9), (3, 7), \ast}) (\succ) ({(7, 16), \ast})</td>
<td>(1680)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(0, 0, 0, 1, 0, 0, 1, 1, 0)</td>
<td>3</td>
<td>5</td>
<td>14</td>
<td>3</td>
<td>(7, 1, 0, 1, 0, 2, 0, 0, 6, 0, 2, 0, 0, 1)</td>
<td>(70)</td>
</tr>
<tr>
<td>10</td>
<td>(0, 0, 0, 1, 0, 1, 0, 0, 0)</td>
<td>3</td>
<td>6</td>
<td>14</td>
<td>3</td>
<td>(8, 0, 1, 1, 0, 2, 0, 5, 0, 1, 0, 1, 0)</td>
<td>(630)</td>
</tr>
<tr>
<td>10a</td>
<td></td>
<td>2</td>
<td>4</td>
<td>14</td>
<td>({(4, 9), (3, 7), \ast}) (\succ) ({(7, 16), \ast})</td>
<td>(1680)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>(0, 0, 0, 1, 0, 1, 0, 1, 0)</td>
<td>2</td>
<td>4</td>
<td>14</td>
<td>3</td>
<td>(9, 0, 0, 2, 0, 0, 1, 1, 3, 1, 0, 0, 1, 0)</td>
<td>(3080)</td>
</tr>
<tr>
<td>12</td>
<td>(0, 0, 0, 1, 0, 1, 0, 1, 0)</td>
<td>5</td>
<td>11</td>
<td>14</td>
<td>3</td>
<td>(9, 0, 1, 0, 0, 1, 2, 0, 4, 0, 2, 0, 0, 1)</td>
<td>(252)</td>
</tr>
<tr>
<td>12a</td>
<td></td>
<td>4</td>
<td>6</td>
<td>14</td>
<td>({(2, 5), (6, 16), \ast}) (\succ) ({(8, 21), \ast})</td>
<td>(620)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>(0, 0, 0, 1, 0, 1, 0, 1, 0)</td>
<td>3</td>
<td>4</td>
<td>14</td>
<td>4</td>
<td>(12, 0, 0, 2, 0, 2, 0, 2, 4, 0, 2, 0, 1, 0)</td>
<td>(3465)</td>
</tr>
<tr>
<td>14</td>
<td>(0, 0, 0, 1, 0, 1, 0, 1, 0)</td>
<td>3</td>
<td>6</td>
<td>14</td>
<td>4</td>
<td>(10, 1, 0, 1, 0, 2, 0, 6, 0, 2, 0, 1, 0, 1)</td>
<td>(770)</td>
</tr>
<tr>
<td>15</td>
<td>(0, 0, 0, 1, 0, 1, 0, 1, 0)</td>
<td>4</td>
<td>8</td>
<td>14</td>
<td>4</td>
<td>(11, 0, 1, 1, 0, 2, 1, 1, 5, 0, 2, 0, 0, 1)</td>
<td>(27220)</td>
</tr>
<tr>
<td>15b</td>
<td></td>
<td>3</td>
<td>4</td>
<td>14</td>
<td>({(2, 5), (3, 8), \ast}) (\succ) ({(5, 13), \ast})</td>
<td>(36036)</td>
<td></td>
</tr>
<tr>
<td>15c</td>
<td></td>
<td>3</td>
<td>5</td>
<td>14</td>
<td>({(7, 16), (7, 19), \ast})</td>
<td>(31920)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>(0, 0, 0, 1, 0, 1, 0, 1, 0)</td>
<td>5</td>
<td>9</td>
<td>14</td>
<td>4</td>
<td>(11, 0, 1, 1, 0, 2, 2, 0, 6, 0, 1, 1, 0, 1)</td>
<td>(13860)</td>
</tr>
<tr>
<td>16.5</td>
<td></td>
<td>4</td>
<td>3</td>
<td>14</td>
<td>({(2, 5), (3, 8), \ast}) (\succ) ({(5, 13), \ast})</td>
<td>(72072)</td>
<td></td>
</tr>
<tr>
<td>16b</td>
<td>4</td>
<td>4</td>
<td>14</td>
<td>{(2, 5), (6, 16), *} \succ {(8, 21), *}</td>
<td>\frac{1386}{13}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>-----</td>
<td>---</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.6</td>
<td>3</td>
<td>3</td>
<td>14</td>
<td>{(4, 9), (3, 7), *} \succ {(7, 16), *}</td>
<td>\frac{1386}{13}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>6</td>
<td>14</td>
<td>3</td>
<td>{(9, 0, 0, 2, 0, 0, 0, 2, 3, 0, 1, 0, 1, 0)</td>
<td>\frac{240}{23}</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>4</td>
<td>7</td>
<td>14</td>
<td>3</td>
<td>{(9, 0, 0, 2, 0, 0, 1, 1, 4, 0, 0, 1, 0, 1, 0)</td>
<td>\frac{9240}{83}</td>
<td></td>
</tr>
<tr>
<td>18b</td>
<td>4</td>
<td>6</td>
<td>14</td>
<td>{(3, 8), (4, 11), *} \succ {(7, 19), *}</td>
<td>\frac{43290}{19}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td>3</td>
<td>14</td>
<td>3</td>
<td>{(8, 0, 1, 1, 0, 1, 0, 1, 5, 0, 1, 0, 1, 0)</td>
<td>\frac{3465}{504}</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>7</td>
<td>14</td>
<td>3</td>
<td>{(7, 0, 2, 0, 0, 1, 1, 0, 6, 0, 1, 0, 1, 0)</td>
<td>\frac{13860}{47}</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4</td>
<td>8</td>
<td>14</td>
<td>2</td>
<td>{(6, 0, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 1)</td>
<td>\frac{360}{19}</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3</td>
<td>5</td>
<td>14</td>
<td>3</td>
<td>{(8, 0, 1, 1, 0, 1, 0, 1, 4, 1, 0, 1, 0, 1)</td>
<td>\frac{13860}{47}</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>4</td>
<td>7</td>
<td>14</td>
<td>4</td>
<td>{(9, 1, 1, 0, 0, 3, 0, 1, 0, 7, 0, 2, 0, 1, 0, 1)</td>
<td>\frac{27720}{41}</td>
<td></td>
</tr>
<tr>
<td>25a</td>
<td>4</td>
<td>6</td>
<td>14</td>
<td>{(5, 11), (4, 9), *} \succ {(9, 20), *}</td>
<td>\frac{840}{41}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>5</td>
<td>9</td>
<td>14</td>
<td>4</td>
<td>{(10, 0, 2, 0, 0, 3, 0, 1, 6, 0, 2, 0, 1, 0, 1)</td>
<td>\frac{13860}{47}</td>
<td></td>
</tr>
<tr>
<td>26a</td>
<td>3</td>
<td>5</td>
<td>14</td>
<td>{(4, 11), (1, 3), *} \succ {(5, 14), *}</td>
<td>\frac{13860}{47}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>4</td>
<td>{(10, 0, 2, 0, 0, 3, 1, 0, 7, 0, 1, 1, 0, 1)</td>
<td>\frac{27720}{41}</td>
<td></td>
</tr>
<tr>
<td>27.5</td>
<td>5</td>
<td>3</td>
<td>14</td>
<td>{(4, 10), (3, 8), *} \succ {(7, 18), *}</td>
<td>\frac{13860}{47}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27b</td>
<td>5</td>
<td>5</td>
<td>14</td>
<td>{(5, 13), (5, 18), *}</td>
<td>\frac{1170}{23}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>4</td>
<td>8</td>
<td>14</td>
<td>2</td>
<td>{(5, 1, 0, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 1, 0)</td>
<td>\frac{9240}{13}</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>5</td>
<td>10</td>
<td>14</td>
<td>2</td>
<td>{(6, 0, 1, 0, 0, 0, 1, 3, 0, 1, 0, 0, 1, 0)</td>
<td>\frac{3465}{630}</td>
<td></td>
</tr>
<tr>
<td>29.5</td>
<td>3</td>
<td>4</td>
<td>14</td>
<td>{(4, 11), (1, 3), *} \succ {(5, 14), *}</td>
<td>\frac{630}{1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td>5</td>
<td>14</td>
<td>3</td>
<td>{(7, 1, 0, 1, 0, 1, 0, 5, 0, 1, 0, 1, 0, 1)</td>
<td>\frac{924}{6}</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>4</td>
<td>6</td>
<td>14</td>
<td>3</td>
<td>{(7, 1, 0, 1, 0, 1, 0, 6, 0, 0, 1, 0, 0, 1)</td>
<td>\frac{615}{2}</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>5</td>
<td>8</td>
<td>14</td>
<td>3</td>
<td>{(8, 0, 1, 1, 0, 1, 0, 1, 5, 0, 0, 1, 0, 1)</td>
<td>\frac{693}{7}</td>
<td></td>
</tr>
<tr>
<td>32a</td>
<td>4</td>
<td>6</td>
<td>14</td>
<td>{(4, 9), (3, 7), *} \succ {(7, 16), *}</td>
<td>\frac{278}{528}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32b</td>
<td>2</td>
<td>2</td>
<td>14</td>
<td>{(4, 11), (1, 3), *} \succ {(5, 14), *}</td>
<td>\frac{1386}{13}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>2</td>
<td>4</td>
<td>14</td>
<td>2</td>
<td>{(5, 0, 0, 2, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0)</td>
<td>\frac{840}{360}</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>4</td>
<td>8</td>
<td>14</td>
<td>3</td>
<td>{(7, 0, 1, 1, 0, 2, 1, 0, 3, 0, 3, 0, 0, 0, 0)</td>
<td>\frac{1386}{13}</td>
<td></td>
</tr>
<tr>
<td>34a</td>
<td>3</td>
<td>6</td>
<td>14</td>
<td>{(4, 9), (3, 7), *} \succ {(7, 16), *}</td>
<td>\frac{560}{1170}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34b</td>
<td>3</td>
<td>4</td>
<td>14</td>
<td>{(2, 5), (3, 8), *} \succ {(5, 13), *}</td>
<td>\frac{1170}{1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>((P_3, \ldots, P_{11}))</td>
<td>(P_{18})</td>
<td>(P_{24})</td>
<td>(\mu_1)</td>
<td>(\chi)</td>
<td>((n_{1,2}, n_{4,9}, \ldots, n_{1,5})) or (B_{\min})</td>
<td>(K^3)</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>---------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>35</td>
<td>((0, 0, 1, 1, 0, 0, 1, 1))</td>
<td>3</td>
<td>6</td>
<td>14</td>
<td>2</td>
<td>((5, 0, 0, 2, 0, 0, 1, 1, 0, 2, 0, 0, 0, 0))</td>
<td>(\frac{1}{462})</td>
</tr>
<tr>
<td>36</td>
<td>((0, 0, 1, 1, 0, 1, 1, 1))</td>
<td>3</td>
<td>5</td>
<td>14</td>
<td>2</td>
<td>((4, 0, 1, 0, 1, 0, 2, 1, 1, 0, 0, 0, 0))</td>
<td>(\frac{1}{630})</td>
</tr>
<tr>
<td>36(a)</td>
<td>2</td>
<td>3</td>
<td>14</td>
<td>{((4, 9), (3, 7), *} \succ {(7, 16), *}}</td>
<td>(\frac{1}{1680})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36(b)</td>
<td>2</td>
<td>4</td>
<td>14</td>
<td>{((3, 10), (2, 7), *} \succ {(5, 17), *}}</td>
<td>(\frac{5355}{4})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>((0, 0, 1, 1, 0, 1, 1, 0))</td>
<td>5</td>
<td>9</td>
<td>14</td>
<td>3</td>
<td>((6, 0, 2, 0, 0, 3, 0, 0, 4, 0, 3, 0, 0, 0))</td>
<td>(\frac{1}{315})</td>
</tr>
<tr>
<td>38</td>
<td>((0, 0, 1, 1, 0, 1, 1, 1))</td>
<td>3</td>
<td>5</td>
<td>14</td>
<td>2</td>
<td>((3, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0))</td>
<td>(\frac{1}{770})</td>
</tr>
<tr>
<td>39</td>
<td>((0, 0, 1, 1, 0, 1, 0, 1))</td>
<td>3</td>
<td>6</td>
<td>14</td>
<td>3</td>
<td>((7, 0, 1, 1, 0, 1, 2, 0, 1, 1, 0, 0, 0))</td>
<td>(\frac{1}{630})</td>
</tr>
<tr>
<td>39(a)</td>
<td>2</td>
<td>4</td>
<td>14</td>
<td>{((4, 9), (3, 7), *} \succ {(7, 16), *}}</td>
<td>(\frac{1680}{3})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39(b)</td>
<td>2</td>
<td>5</td>
<td>14</td>
<td>{((3, 10), (2, 7), *} \succ {(5, 17), *}}</td>
<td>(\frac{5355}{4})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>((0, 0, 1, 1, 1, 0, 1, 0))</td>
<td>5</td>
<td>10</td>
<td>14</td>
<td>4</td>
<td>((9, 0, 2, 0, 3, 2, 0, 4, 0, 3, 0, 1, 0, 0))</td>
<td>(\frac{1}{315})</td>
</tr>
<tr>
<td>40.5</td>
<td>4</td>
<td>4</td>
<td>14</td>
<td>{((2, 5), (3, 8), *} \succ {(5, 13), *}}</td>
<td>(\frac{1}{780})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40(b)</td>
<td>4</td>
<td>5</td>
<td>14</td>
<td>{((2, 5), (6, 16), *} \succ {(8, 21), *}}</td>
<td>(\frac{1260}{3})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>((0, 0, 1, 1, 1, 0, 1, 1))</td>
<td>5</td>
<td>11</td>
<td>13</td>
<td>2</td>
<td>((5, 0, 1, 0, 0, 0, 2, 0, 1, 0, 2, 0, 0, 0))</td>
<td>(\frac{1}{255})</td>
</tr>
<tr>
<td>42</td>
<td>((0, 0, 1, 1, 1, 0, 1, 1))</td>
<td>3</td>
<td>6</td>
<td>14</td>
<td>3</td>
<td>((6, 1, 0, 1, 0, 1, 2, 0, 3, 0, 2, 0, 1, 0, 0))</td>
<td>(\frac{1}{770})</td>
</tr>
<tr>
<td>43</td>
<td>((0, 0, 1, 1, 1, 0, 1, 1))</td>
<td>4</td>
<td>8</td>
<td>14</td>
<td>3</td>
<td>((7, 0, 1, 1, 0, 1, 1, 2, 0, 2, 0, 1, 0, 0))</td>
<td>(\frac{27720}{23})</td>
</tr>
<tr>
<td>43(b)</td>
<td>3</td>
<td>4</td>
<td>14</td>
<td>{((2, 5), (3, 8), *} \succ {(5, 13), *}}</td>
<td>(\frac{36036}{31})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43(c)</td>
<td>3</td>
<td>5</td>
<td>14</td>
<td>{(7, 16), (17, 19), *}</td>
<td>(\frac{31920}{43})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>((0, 0, 1, 1, 1, 1, 0, 1, 1))</td>
<td>5</td>
<td>9</td>
<td>14</td>
<td>3</td>
<td>((7, 0, 1, 1, 0, 1, 2, 0, 3, 0, 1, 1, 0, 0, 0))</td>
<td>(\frac{1}{13860})</td>
</tr>
<tr>
<td>44(a)</td>
<td>4</td>
<td>4</td>
<td>14</td>
<td>{((2, 5), (6, 16), *} \succ {(8, 21), *}}</td>
<td>(\frac{1}{1386})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44(c)</td>
<td>4</td>
<td>6</td>
<td>14</td>
<td>{(7, 16), (5, 18), *}</td>
<td>(\frac{3720}{49})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.5</td>
<td>4</td>
<td>4</td>
<td>14</td>
<td>{(5, 13), *}</td>
<td>(\frac{1}{548})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>((0, 0, 1, 1, 1, 1, 0, 1))</td>
<td>4</td>
<td>7</td>
<td>14</td>
<td>2</td>
<td>((3, 0, 2, 0, 0, 0, 1, 0, 3, 0, 1, 0, 0, 0))</td>
<td>(\frac{1}{504})</td>
</tr>
<tr>
<td>46</td>
<td>((0, 0, 1, 1, 1, 1, 0, 1))</td>
<td>4</td>
<td>7</td>
<td>14</td>
<td>3</td>
<td>((6, 0, 2, 0, 0, 2, 1, 0, 3, 1, 0, 1, 0, 0))</td>
<td>(\frac{1}{504})</td>
</tr>
<tr>
<td>46(b)</td>
<td>3</td>
<td>6</td>
<td>14</td>
<td>{((3, 10), (2, 7), *} \succ {(5, 17), *}}</td>
<td>(\frac{5355}{7})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>((0, 0, 1, 1, 1, 1, 1, 1))</td>
<td>3</td>
<td>5</td>
<td>14</td>
<td>2</td>
<td>((4, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0))</td>
<td>(\frac{1}{619})</td>
</tr>
<tr>
<td>49</td>
<td>((0, 0, 1, 1, 1, 1, 1, 1))</td>
<td>4</td>
<td>7</td>
<td>14</td>
<td>3</td>
<td>((5, 1, 1, 0, 0, 2, 1, 0, 4, 0, 2, 0, 1, 0, 0))</td>
<td>(\frac{1}{27720})</td>
</tr>
<tr>
<td>49a</td>
<td>(0, 0, 0, 1, 1, 1, 1, 1)</td>
<td>5</td>
<td>9</td>
<td>14</td>
<td>(6, 0, 2, 0, 0, 2, 0, 1, 3, 0, 2, 0, 1, 0, 0)</td>
<td>13860</td>
<td></td>
</tr>
<tr>
<td>50a</td>
<td>(0, 0, 0, 1, 1, 1, 1, 1)</td>
<td>3</td>
<td>5</td>
<td>14</td>
<td>(4, 11), (1, 3), *] (\leadsto) [(5, 14), *]</td>
<td>1260</td>
<td></td>
</tr>
<tr>
<td>51a</td>
<td>(0, 0, 0, 1, 1, 1, 1, 1)</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>(6, 0, 2, 0, 0, 2, 1, 0, 4, 0, 1, 1, 0, 0)</td>
<td>27720</td>
<td></td>
</tr>
<tr>
<td>51b</td>
<td>(0, 0, 0, 1, 1, 1, 1, 1)</td>
<td>5</td>
<td>4</td>
<td>14</td>
<td>(4, 10), (3, 8), *] (\leadsto) [(7, 18), *]</td>
<td>1386</td>
<td></td>
</tr>
<tr>
<td>52a</td>
<td>(0, 0, 1, 0, 0, 1, 0, 1, 0)</td>
<td>3</td>
<td>7</td>
<td>14</td>
<td>(4, 0, 1, 0, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 1)</td>
<td>1170</td>
<td></td>
</tr>
<tr>
<td>53a</td>
<td>(0, 0, 1, 0, 1, 1, 1, 1)</td>
<td>4</td>
<td>8</td>
<td>14</td>
<td>(3, 0, 1, 0, 0, 3, 1, 0, 3, 0, 0, 0, 0, 0, 1)</td>
<td>1260</td>
<td></td>
</tr>
<tr>
<td>54a</td>
<td>(0, 0, 1, 0, 1, 0, 0, 1, 0)</td>
<td>3</td>
<td>4</td>
<td>15</td>
<td>(2, 5), (3, 8), *] (\leadsto) [(5, 13), *]</td>
<td>1170</td>
<td></td>
</tr>
<tr>
<td>56a</td>
<td>(0, 0, 1, 0, 1, 1, 0, 1, 0)</td>
<td>3</td>
<td>5</td>
<td>14</td>
<td>(1, 0, 1, 1, 0, 4, 0, 0, 2, 0, 1, 0, 0, 0)</td>
<td>1260</td>
<td></td>
</tr>
<tr>
<td>57a</td>
<td>(0, 0, 1, 0, 0, 1, 1, 1, 1)</td>
<td>3</td>
<td>3</td>
<td>14</td>
<td>(3, 0, 1, 2, 0, 5, 0, 0, 4, 0, 0, 1, 0, 0)</td>
<td>1386</td>
<td></td>
</tr>
<tr>
<td>58a</td>
<td>(0, 0, 1, 0, 1, 1, 0, 1, 0)</td>
<td>3</td>
<td>6</td>
<td>14</td>
<td>(4, 0, 1, 1, 0, 4, 2, 0, 2, 0, 1, 0, 1, 0)</td>
<td>1680</td>
<td></td>
</tr>
<tr>
<td>58b</td>
<td>(0, 0, 1, 0, 1, 1, 0, 1, 1)</td>
<td>2</td>
<td>4</td>
<td>14</td>
<td>(4, 9), (3, 7), *] (\leadsto) [(7, 16), *]</td>
<td>1680</td>
<td></td>
</tr>
<tr>
<td>59a</td>
<td>(0, 0, 1, 0, 1, 1, 0, 1, 1)</td>
<td>2</td>
<td>4</td>
<td>14</td>
<td>(2, 0, 0, 2, 0, 2, 1, 1, 0, 0, 0, 0, 1, 0, 0)</td>
<td>3080</td>
<td></td>
</tr>
<tr>
<td>60a</td>
<td>(0, 0, 1, 0, 1, 1, 1, 1, 0)</td>
<td>4</td>
<td>7</td>
<td>14</td>
<td>(3, 0, 2, 0, 0, 5, 1, 0, 3, 0, 1, 0, 1, 0)</td>
<td>504</td>
<td></td>
</tr>
<tr>
<td>62a</td>
<td>(0, 0, 1, 0, 1, 1, 1, 1, 1)</td>
<td>3</td>
<td>5</td>
<td>14</td>
<td>(1, 0, 1, 1, 0, 3, 0, 1, 1, 0, 0, 0, 1, 0, 0)</td>
<td>13860</td>
<td></td>
</tr>
</tbody>
</table>
Let X be a nonsingular projective 3-fold of general type. When the geometric genus $p_g \geq 2$, the canonical map $\varphi_1 := \Phi|_{K_X}$ is usually a key tool for birational classification.
• Let X be a nonsingular projective 3-fold of general type. When the geometric genus $p_g \geq 2$, the canonical map $\varphi_1 := \Phi_{|K_X|}$ is usually a key tool for birational classification.

• If φ_1 is of fiber type (i.e. $\dim \varphi_1(X) < 3$), it is interesting to see if the birational invariants of the generic irreducible component in the general fiber of φ_1 is bounded from above.

Chen-Hacon

When X is Gorenstein minimal and φ_1 is of fiber type, then X is canonically fibred by surfaces or curves with bounded invariants.

Meng Chen Fudan University, Shanghai

Geography on 3-folds of General Type
• Let X be a nonsingular projective 3-fold of general type. When the geometric genus $p_g \geq 2$, the canonical map $\varphi_1 := \Phi|_{K_X}$ is usually a key tool for birational classification.

• If φ_1 is of fiber type (i.e. $\dim \varphi_1(X) < 3$), it is interesting to see if the birational invariants of the generic irreducible component in the general fiber of φ_1 is bounded from above.

• Chen-Hacon \Rightarrow When X is Gorenstein minimal and φ_1 is of fiber type, then X is canonically fibred by surfaces or curves with bounded invariants.
Theorem

Let X be a Gorenstein minimal projective 3-fold of general type. Assume that X is canonically of fiber type. Let F be a smooth model of the generic irreducible component in the general fiber of φ_1. Then

(i) $g(F) \leq 91$ when F is a curve and $p_g(X) \geq 183$;
(ii) $p_g(F) \leq 37$ when F is a surface and $p_g(X) \gg 0$, say $p_g(X) \geq 3890$.
New examples

Standard construction. Let \(S \) be a minimal surface of general type with \(p_g(S) = 0 \). Assume there exists a divisor \(H \) on \(S \) such that \(|K_S + H|\) is composed with a pencil of curves and that \(2H \) is linearly equivalent to a smooth divisor \(R \). Let \(\hat{C} \) be a generic irreducible element of the movable part of \(|K_S + H|\). Assume \(\hat{C} \) is smooth. Set \(d := \hat{C} \cdot H \) and \(D := \hat{C} \cap H \). Let \(C_0 \) be a fixed smooth projective curve of genus 2. Let \(\theta \) be a 2-torsion divisor on \(C_0 \). Set \(Y := S \times C_0 \). Take \(\delta := p_1^*(H) + p_2^*(\theta) \) and pick a smooth divisor \(\Delta \sim p_1^*(2H) \). Then the pair \((\delta, \Delta)\) determines a smooth double covering \(\pi : X \to Y \) and \(K_X = \pi^*(K_Y + \delta) \).
Since $K_Y + \delta = p_1^*(K_S + H) + p_2^*(K_{C_0} + \theta)$, $p_g(Y) = 0$ and $h^0(K_{C_0} + \theta) = 1$, one sees that $|K_X| = \pi^*|K_Y + \delta|$ and that $\Phi|_{K_X}$ factors through π, p_1 and $\Phi|_{K_S + H}$. Since $|K_S + H|$ is composed with a pencil of curves \hat{C}, X is canonically fibred by surfaces F and F is a double covering over $T := \hat{C} \times C_0$ corresponding to the data $(q_1^*(D) + q_2^*(\theta), q_1^*(2D))$ where q_1 and q_2 are projections. Denote by $\sigma : F \to T$ the double covering. Then $K_F = \sigma^*(K_T + q_1^*(D) + q_2^*(\theta))$. By calculation, one has $p_g(F) = 3g(\hat{C})$ when $d = 0$ and $p_g(F) = 3g(\hat{C}) + d - 1$ whenever $d > 0$.
Let S be any smooth minimal projective surface of general type with $p_g(S) = 0$. Assume $\mu : S \to \mathbb{P}^1$ is a genus 2 fibration. Let H be a general fiber of μ. Then $|K_S + H|$ is composed with a pencil of curves \hat{C} of genus $g(\hat{C})$ and $\hat{C}.H = 2$.

We take a pair (S, H) which was found by Xiao, where S is a numerical Compadelli surface with $K^2_S = 2$, $p_g(S) = q(S) = 0$ and $\text{Tor}(S) = (\mathbb{Z}/2)^3$.

Meng Chen Fudan University, Shanghai

Geography on 3-folds of General Type
New examples

 Lemma

Let S be any smooth minimal projective surface of general type with $p_g(S) = 0$. Assume $\mu : S \to \mathbb{P}^1$ is a genus 2 fibration. Let H be a general fiber of μ. Then $|K_S + H|$ is composed with a pencil of curves \hat{C} of genus $g(\hat{C})$ and $\hat{C} \cdot H = 2$.

- We take a pair (S, H) which was found by Xiao, where S is a numerical Compedelli surface with $K_S^2 = 2$, $p_g(S) = q(S) = 0$ and $\text{Tor}(S) = (\mathbb{Z}_2)^3$.
Let $P = \mathbb{P}^1 \times \mathbb{P}^1$. Take four curves C_1, C_2, C_3 and C_4 defined by the following equations, respectively:

\begin{align*}
C_1 : \quad & x = y; \\
C_2 : \quad & x = -y; \\
C_3 : \quad & xy = 1; \\
C_4 : \quad & xy = -1.
\end{align*}

These four curves intersect mutually at 12 ordinary double points:

\begin{align*}
(0, 0), \quad & (\infty, \infty), \quad (0, \infty), \quad (\infty, 0) \\
(\pm 1, \pm 1), \quad & (\pm \sqrt{-1}, \pm \sqrt{-1}).
\end{align*}
Meng Chen Fudan University, Shanghai

Geography on 3-folds of General Type
Xiao \implies \text{There exists a divisor } R_1 \text{ of bidegree } (14, 6) \text{ which has exactly 12 simple singularities of multiplicity 4. Then the data } (\delta_1, R_1) \text{ determines a singular double covering onto } P.

\[S \xleftarrow{\sigma} \tilde{S} \xrightarrow{\theta} \tilde{P} \]

\[f \downarrow \quad \tilde{f} \downarrow \quad \tau \]

\[\mathbb{P}^1 \quad \mathbb{P}^1 \quad \mathbb{P}^1 \xleftarrow{\varphi} P \]

\[K^2_S = 2 \text{ and } p_g(S) = q(S) = 0. \]
Let H be a general fiber of f. Calculations imply that $|K_S + H|$ has exactly 6 base points, but no fixed parts. Clearly a general member $\hat{C} \in |K_S + H|$ is a smooth curve of genus 6.
Let H be a general fiber of f. Calculations imply $|K_S + H|$ has exactly 6 base points, but no fixed parts. Clearly a general member $\hat{C} \in |K_S + H|$ is a smooth curve of genus 6.

Now we take the triple (S, H, \hat{C}) and run standard construction. What we get is the 3-fold $X_{S,19}$ which is canonically fibred by surfaces F with $p_g(F) = 19$.
Let H be a general fiber of f. Calculations \Rightarrow |
$K_S + H|$ has exactly 6 base points, but no fixed parts. Clearly a general member $\hat{C} \in |K_S + H|$ is a smooth curve of genus 6.

Now we take the triple (S, H, \hat{C}) and run standard construction. What we get is the 3-fold $X_{S,19}$ which is canonically fibred by surfaces F with $p_g(F) = 19$.

Thanks very much!