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Abstract

Lyme disease and Tick-Borne Encephalitis (TBE) are two emergent tick-borne diseases transmitted by the widely distributed

European tick Ixodes ricinus. The life cycle of the vector and the number of hosts involved requires the development of complex

models which consider different routes of pathogen transmission including those occurring between ticks that co-feed on the same

host. Hence, we consider here a general model for tick-borne infections. We assumed ticks feed on two types of host species, one

competent for viraemic transmission of infection, the second incompetent but included a third transmission route through non-

viraemic transmission between ticks co-feeding on the same host. Since a blood meal lasts for several days these routes could lead to

interesting nonlinearities in transmission rates, which may have important effects.

We derive an explicit formula for the threshold for disease persistence in the case of viraemic transmission, also for the case of

viraemic and non-viraemic transmission. From this formula, the effect of parameters on the persistence of infection can be

determined. When only viraemic transmission occurs, we confirm that, while the density of the competent host has always a positive

effect on infection persistence, the density of the incompetent host may have either a positive effect, by amplifying tick population,

or a negative (‘‘dilution’’) effect, by wasting tick bites on an incompetent host. With non-viraemic transmission, the ‘‘dilution’’ effect

becomes less relevant. On the other hand, if the nonlinearity due to extended feeding is included, the dilution effect always occurs,

but often at unrealistically high host densities. Finally, we incorporated the effects of tick aggregation on the hosts and correlation of

tick stages and found that both had an important effect on infection persistence, if non-viraemic transmission occurred.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Tick-borne diseases, such as Lyme disease and Tick-Borne Encephalitis (TBE), have become a significant problem to
human populations inhabiting woodland areas in many parts of Europe, the former USSR and North America. The
increase in prevalence of these diseases, not recorded more than 30 years ago, is probably associated with the
abandonment of fields and pastures coupled with the expansion of woodland which have favoured the spread and
the increase in the densities of both deer and rodents. Hence, tick populations have increased and with them their
potential for disease transmission. This increased tick population coupled with people having more leisure time has
lead to an increase in the exposure of people to infection.
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Concern over tick-borne diseases has stimulated the development of several mathematical models for either tick-
borne infections, or tick population dynamics. The important first step was to develop mathematical models for tick
population dynamics (e.g. Sandberg et al., 1992; Kitron and Mannelli, 1994; Randolph and Rogers, 1997). The second
to develop models for tick-borne infections and these have often been set, for ease of analysis, in continuous time: see,
for instance, Hudson et al. (1995) and O’Callaghan et al. (1997). Norman et al. (1999) and more recently Gilbert et al.
(2001) proposed a model where ticks are subdivided into the three stages (larvae, nymphs and adults) with stage
progression only through a blood meal on a vertebrate host and transmission is only viraemic (i.e. from infected tick to
susceptible host, and vice versa). They computed the value of the basic reproduction number, R0; and showed the
so-called dilution effect: when two alternative hosts exist for ticks, only one of which is competent for transmission
(e.g. mice and deer for Lyme diseases) an increase in the density of the incompetent host (deer in this example) may
shift R0 from above to below 1, and thus cause pathogen extinction. A similar model has been applied by Caraco et al.
(1998) to the deer, tick Borrellia system in the USA, while qualitatively similar results have been obtained by Van
Buskirk and Ostfeld (1995) and Mannelli (in press) in computer-based models.
It has been demonstrated in a number of tick-borne systems that certain tick hosts, which do not produce a viraemic

response, will permit non-viraemic transmission between co-feeding ticks (Labuda et al., 1993, Jones et al., 1987;
Ogden et al., 1997). Moreover, Randolph et al. (1996, 1999, 2002) have shown the importance of co-feeding
(transmission between ticks feeding together on an incompetent host) and temporal coincidence of different tick stages
in the maintenance of TBE.
In this paper we build on the model by Norman et al. (1999). We introduce general rules for the encounter rates

between hosts and ticks, that take into account the duration of feeding. More importantly, we consider specifically the
possibility of non-viraemic transmission which is thought to be crucial in the maintenance of several infections such as
TBE. We also consider the distribution of tick stages among hosts, which will have extremely important effects on
transmission via co-feeding. In fact, in certain parts of the vector’s range, patterns of tick infestation on hosts (e.g.
rodents) are such that they facilitate co-feeding transmission. Specifically, both immature tick stages show highly
aggregated distribution on their host and these aggregated distributions are coincident rather than independent
(Perkins et al. in MS); those hosts which were feeding larvae were simultaneously feeding the greatest number of
nymphs. As a result, about 20% of hosts feed about three-quarters of both larvae and nymphs and the number of
susceptible larvae feeding alongside potentially infected nymphs is twice as many as it would be if the distribution were
independent (Randolph et al., 2002; Perkins et al. in MS).
For these different models we compute, using matrix theory, the threshold quantity for infection persistence. Thus,

we may understand the effect of different parameters on disease persistence.

2. The model

Following Norman et al. (1999), ticks were classified according to their stage as larvae (L), nymphs (N), and adults
(A). Each immature stage (larvae and nymphs) requires a blood meal from a suitable vertebrate host. The adult female
requires a meal before producing eggs. The model considers two types of hosts: viraemic hosts (H1) that acquire and
transmit the disease, and non-viraemic hosts (H2) that simply sustain the tick population without amplifying the
pathogen. Here, H2 is assumed to be at constant density while H1 hosts are classified as being either susceptible (H1s),
infected (H1i) or immune (H1r), and their density may vary as a consequence of infection. We assume no trans-ovarial
transmission of infection in ticks (reported as negligible in TBE but cannot recall reference), while the pathogen is
transmitted inter-stadially, so once an immature stage is infected the subsequent stages can transmit the pathogen to a
susceptible host. Then, nymphs and adults are classified as either susceptible (Ns and As) or infected (Ni and Ai). In the
model, the principal route of infection is viraemic transmission, we also consider non-viraemic transmission since there
is growing evidence that this is crucial in several tick-borne diseases (Randolph et al., 2002).

2.1. Tick–hosts interactions

Ticks change stage by feeding on a host, hence, a key factor in the dynamics is the encounter rate between hosts and
ticks (in the different stages). We assume throughout a mass-action law, that is, the encounter rate between hosts
(whose density will be denoted by H) and, for instance, nymphs will be proportional to the product HNQ; where NQ;
denotes the density of questing nymphs.
In a complete model, we may include NF (the density of feeding nymphs) and NQ as variables, as done by Mwambi

et al. (2000) which consider only tick population dynamics. In the simplest approximation, it has instead often been
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assumed (Caraco et al., 1998; Norman et al., 1999) that both are proportional to the density N of ticks. As an
intermediate step, we use here a quasi-steady-state assumption (see, for instance, Segel and Slemrod, 1989).
Assuming that questing nymphs become feeding nymphs by encountering hosts (at rate bN ), and that feeding

nymphs drop off hosts at rate sN (so the average duration of a blood meal is 1=sN ). Then we have the two equations:

’NFj
¼ bN

j HjNQ � sN
j NFj

¼ bN
j HjðN � NF1 � NF2 Þ � sN

j NFj
; ð1Þ

where NFj
represents the density of nymphs which are feeding on host Hj with j ¼ 1; 2 (definition of all the parameters

are shown in Table 1). We assume now that the feeding process is faster than all other processes (deaths, births, stage
progression), so that we set ’NFj

¼ 0 and from Eq. (1) we obtain

NFj
¼

cN
j HjN

1þ cN
1 H1 þ cN

2 H2

and NQ ¼
N

1þ cN
1 H1 þ cN

2 H2

; ð2Þ

where cN
j ¼ bN

j =s
N
j :

From these assumptions, we can write equations for the densities of each stage. For instance, we obtain

dA

dt
¼mNðbN

1 H1 þ bN
2 H2Þ

N

1þ cN
1 H1 þ cN

2 H2

� ðbA
1 H1 þ bA

2H2Þ
A

1þ cA
1H1 þ cA

2 H2

� bT A;

where the first term represents the nymphs becoming adults, the second term the adults that start a blood meal and
therefore exit the compartment (it is assumed here that adults reproduce only once in their life, as is usual in the
Ixodidae ticks) and the third the deaths of questing adults (bT is ticks’ death rate, assumed to be the same in all stages).
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Table 1

Notation used to denote the various variable and parameters included in the model

Variable or rate Description

L Larval density

N Nymph density

A Adult density

T ¼ ðL þ N þ AÞ Total tick density

H1 Total viraemic host density

H1s Susceptible viraemic host density

H1i Infected viraemic host density

H1r Immune viraemic host density

H2 Non-viraemic host density

aT Birth rate of larvae per adult tick

bT Natural death rate of ticks (the same for all stages)

a1 Birth rate for viraemic host

b1 Natural death rate for viraemic host

a Rate at which viraemic hosts die from the disease

g Rate at which viraemic hosts recover to immunity

bz
j Encounter rate between questing ticks in stage zðz ¼ L;N;AÞ and hosts Hjðj ¼ 1; 2Þ

sz
j Dropping rate of ticks in the stage zðz ¼ L;N;AÞ feeding on host Hjðj ¼ 1; 2Þ

cz
j ¼ bN

j =s
N
j for z ¼ L;N;A and j ¼ 1; 2

cz ¼ 1=ð1þ cz
1H1 þ cz

2H2Þ for z ¼ L;N;A
gz ¼ czðbz

1H1 þ bz
2H2Þ for z ¼ L;N;A

mz Moulting success probability for ticks in stage z (z ¼ L;N)

pN Probability of becoming infected for a nymph feeding on an infectious host

pA Probability of becoming infected for an adult feeding on an infectious host

qN Probability of becoming infected for a viraemic host bitten by an infectious nymph

qA Probability of becoming infected for a viraemic host bitten by an infectious adult

yNL Non-viraemic transmission coefficient for infected nymphs and larvae

yAL Non-viraemic transmission coefficient for infected adults and larvae

yNN Non-viraemic transmission coefficient for infected nymphs and susceptible nymphs

yAN Non-viraemic transmission coefficient for infected adults and susceptible nymphs

kL Aggregation parameter of the negative binomial distribution for larvae

kN Aggregation parameter of the negative binomial distribution for nymphs

kA Aggregation parameter of the negative binomial distribution for adults

rNL Correlation coefficient for nymphs and larvae

rAL Correlation coefficient for adults and larvae

rAN Correlation coefficient for adults and nymphs
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The parameters mN represent the probability of moulting success for nymphs after feeding. In practise, mN may depend
on the host species (Humair et al., 1999) so to be accurate we should use mN

1 and mN
2 : However, when we do, the

formulae become awkward, and so in this presentation we stick to the case of a single mN :
For ease of notation, it will be convenient to introduce the following functions:

czðH1;H2Þ ¼
1

1þ cz
1H1 þ cz

2H2
and gzðH1;H2Þ ¼

bz
1H1 þ bz

2H2

1þ cz
1H1 þ cz

2H2
;

where z ¼ L;N or A: Note that if bz
j Hj5sz

j (as it appears likely) the functions c
z are very close to 1, so that gz are

practically linear over most of the reasonable range of H1 and H2:

2.1.1. Density dependence in ticks and hosts

Detecting density dependence in the demographic parameters of ticks is rather complex because of the complexity of
their life cycle (Hudson et al., 2002). However, without introducing any density-dependent factor, the tick population
would grow (or decrease) exponentially unrealistically making it difficult to identify any meaningful persistence threshold.
Randolph and Rogers (1997) present a model where the mortalities of the larval-to-nymph and nymphal-to-adult

stages are a function of the initial densities of larvae and nymphs, respectively.
Here, for the sake of simplicity, we assume, like Norman et al. (1999), that only the production of larvae per feeding

adult tick aT ðTÞ is density dependent, where aT ðTÞ is a decreasing function of the total number of ticks present in the
system. Furthermore, to simulate logistic growth of the viraemic host H1 (the non-viraemic host is assumed to be at a
constant sizeH2) we assumed that the birth rate a1ðH1Þ is a decreasing function of the total density, while the death rate
b1 is assumed to be constant. The effect of these assumptions is examined in the Discussion.

2.2. Infection

2.2.1. Viraemic transmission

Initially, we model viraemic transmission as in Norman et al. (1999). In particular, we assume that viraemic
transmission can occur only on one species of host, usually H1:
We assume that a proportion qz of the hosts being bitten by infected ticks become infected; here z may be equal to N

or A; since questing larvae cannot pass on virus until they become nymphs.
Hence, the rate at which susceptible hosts become infected will be equal to

qNbN
1 H1sNic

N ðH1;H2Þ þ qAbA
1H1sAic

AðH1;H2Þ;

where H1s is the density of susceptible hosts, Ni and Ai those of infected nymphs and adults.
Analogously, we assume that a proportion pz of ticks (here z may be equal to L or N) become infected while feeding

on hosts and then switching from larvae to infected nymphs or from susceptible nymphs to infected adults. Hence, the
rate at which larvae become infected will be equal to

mLpLbL
1H1iLc

LðH1;H2Þ

and the rate at which susceptible nymphs become infected will be equal to

mNpNbN
1 H1iNsc

NðH1;H2Þ;

where H1i is the density of infected hosts, L and Ns those of larvae and susceptible nymphs respectively, while mz is the
probability of moulting success for ticks in stage z (z ¼ L;N).

2.2.2. Non-viraemic transmission

Modelling the rate of non-viraemic transmission adds another level of complexity, but a level we suspect is
important. It is reasonable to assume that, once an infected nymph (for instance) arrives on a host, it will infect a
certain proportion of the other ticks feeding on the same host over the whole duration of the blood meal. Assuming
that this quantity is proportional to the mean number of ticks present on the same host of a given feeding tick, it
implies that the rate at which new infections are produced by infected nymphs (for instance) through the co-feeding
route is proportional to the product of two quantities: first the encounter rate of infected nymphs, and second the mean
number of other ticks present on the same host of a given feeding nymph.
We have already considered the first term. As for the second, it is easy to see that the mean number of nymphs

present on a random host will be equal to the number of feeding nymphs, given by expression (2), over the number of
hosts. However, the mean number of other nymphs present on the same host of a given feeding tick may be different
from the mean number of nymphs present on a given host. To understand that from a statistical point of view, let pi be
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the proportion of hosts carrying i nymphs; then, the probability that, on the same host of a randomly selected feeding
nymph, there are i nymphs (including the one from which we started) is qi ¼ ipi=

P
l lpl ; in fact, we select a nymph at

random and so it will be more likely to find a host that carries many nymphs. The average number of nymphs on that
host is therefore

X
i

iqi ¼
P

i i2piP
l lpl

¼
EðN2Þ
EðNÞ

¼ EðNÞ þ
V ðNÞ
EðNÞ

;

where EðNÞ ¼
P

i ipi represents the mean number of nymphs on a randomly selected host, V ðNÞ is the variance of that
number. In order to get the mean number of other nymphs present on the same host of a given feeding nymph, we must
subtract 1 (the nymph we started with) obtaining

EðNÞ þ
V ðNÞ
EðNÞ

� 1: ð3Þ

Note that, if the distribution of the nymphs is Poisson, the variance is equal to the mean, and the mean number of
other ticks present on the same host of a random feeding nymph is equal to the mean number of nymphs present on a
random host. On the other hand, if the distribution were aggregated (for instance, a negative binomial distribution that
is described by the mean and the parameter k), then the variance is equal to V ðNÞ ¼ EðNÞð1þ EðNÞ=kÞ; so that the
mean number of other ticks present on the same host of a given feeding nymph is equal to EðNÞð1þ 1=kÞ: We will
follow this latter assumption, which is used in models for macroparasites (Anderson and May, 1978), hence the
distribution of each stage will be assumed to be a negative binomial with a given k:
Putting all the ingredients together, the encounter rate of infected nymphs with hosts of species 2 is

bN
2 H2Nic

NðH1;H2Þ; the mean number of susceptible nymphs on a host of species 2 is, using Eq. (2),
cN
2 Nsc

NðH1;H2Þ so that the rate at which nymphs get infected by other nymphs through co-feeding is

mNyNNNiNsH2½c
N ðH1;H2Þ�2 1þ

1

kN

� �
; ð4Þ

where yNN is a proportionality constant that includes the probability for a nymph of being in a co-feeding group, the
probability of being infected in that case, the probability of the infection being maintained trans-stadially and the
constants b and c:
Clearly, one could also include the last factor in yNN but we preferred to keep it apart , to explore the role of

aggregation.
When we consider inter-stadial (for instance, nymphs to larvae) transmission by co-feeding, we need to know the

mean number of larvae on the same host of a given feeding nymph. Let pij be the proportion of hosts carrying i larvae
and j nymphs; then the probability that the host on which a given nymph is feeding will carry i larvae and j nymphs is
equal to jpij=

P
k;l lpkl : Hence, the average number of larvae on that host is equal toP

i;j ijpijP
k;l lpkl

¼
EðLNÞ
EðNÞ

¼ EðLÞ þ
CovðL;NÞ

EðNÞ
: ð5Þ

As expected, the mean number of larvae on the same host of a given feeding nymphs is influenced by the covariance
between larvae and nymphs. To proceed, we assume that the association between stages are fixed constants; although
the assumption that each stage is distributed in a negative binomial with fixed parameter means

V ðtÞ ¼ EðtÞ þ
ðEðtÞÞ2

k
D

ðEðtÞÞ2

k
;

so, from Eq. (5) we obtain

EðLÞ þ
CovðL;NÞ

EðNÞ
¼EðLÞ þ

rLN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ðNÞV ðLÞ

p
EðNÞ

DEðLÞ þ
rLNEðLÞffiffiffiffiffiffiffiffiffiffiffi

kLkN
p :

We can then say that the rate at which larvae get infected by nymphs through co-feeding is

mLyNLNiLH2c
NðH1;H2Þc

LðH1;H2Þ 1þ
rLNffiffiffiffiffiffiffiffiffiffiffi
kLkN

p
 !

; ð6Þ

where yNL has the same interpretation as yNN : Note that, formally, Eq. (4) is a special case of Eq. (6) with rNN ¼ 1:
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2.3. The equations

From the previous assumptions, we obtain the following equations:

dL

dt
¼ gAðH1;H2ÞaT ðTÞðAi þ AsÞ � bT L � gLðH1;H2ÞL;

dNs

dt
¼mLgLðH1;H2ÞL � mLbL

1 pLH1ic
LðH1;H2ÞL � bT Ns � gN ðH1;H2ÞNs

�mLyNLNiLH2c
NðH1;H2Þc

LðH1;H2Þ 1þ
rNLffiffiffiffiffiffiffiffiffiffiffi
kNkL

p
 !

� mLyALAiLH2c
AðH1;H2Þc

LðH1;H2Þ 1þ
rALffiffiffiffiffiffiffiffiffiffiffi
kAkL

p
 !

;

dAs

dt
¼mNgN ðH1;H2ÞNs � mNbN

1 pNH1ic
NðH1;H2ÞNs � bT As � gAðH1;H2ÞAs

� mNyNNNiNsH2½c
N ðH1;H2Þ�2 1þ

1

kN

� �
� mNyANAiNsH2c

AðH1;H2Þc
NðH1;H2Þ 1þ

rANffiffiffiffiffiffiffiffiffiffiffiffi
kAkN

p
 !

;

dNi

dt
¼mLpLbL

1H1ic
LðH1;H2ÞL � bT Ni � gNðH1;H2ÞNi þ mLyNLNiLH2c

NðH1;H2Þc
LðH1;H2Þ 1þ

rNLffiffiffiffiffiffiffiffiffiffiffi
kNkL

p
 !

þ mLyALAiLH2c
AðH1;H2Þc

LðH1;H2Þ 1þ
rALffiffiffiffiffiffiffiffiffiffiffi
kAkL

p
 !

;

dAi

dt
¼mNpNbN

1 H1ic
NðH1;H2ÞNs þ mNgNðH1;H2ÞNi � bT Ai � gAðH1;H2ÞAi

þ mNyNNNiNsH2½c
N ðH1;H2Þ�2 1þ

1

kN

� �
þ mNyANAiNsH2c

AðH1;H2Þc
NðH1;H2Þ 1þ

rANffiffiffiffiffiffiffiffiffiffiffiffi
kAkN

p
 !

;

dH1i

dt
¼ qNbN

1 H1sc
N ðH1;H2ÞNi þ qAbA

1H1sc
AðH1;H2ÞAi � ðb1 þ gþ aÞH1i;

dH1r

dt
¼ gH1i � b1H1r;

dH1s

dt
¼ a1ðH1ÞH1 � b1H1s � qNbN

1 H1sc
N ðH1;H2ÞNi � qAbA

1H1sc
AðH1;H2ÞAi: ð7Þ

Most of the assumptions that lead to these equations have already been discussed. In addition, it has been assumed
that ticks have no impact on the demography of either H1 or H2 (whose density is assumed to be constant), while
infected hosts have an additional death rate a: It should also be noted that infected nymphs (and adults) that become
infected through co-feeding must be subtracted from susceptible nymphs (or adults) since they correspond to feeding
susceptible larvae (nymphs) that do not develop into susceptible nymphs (adults). The model without non-viraemic
transmission analysed by Norman et al. (1999) is a special case of the model presented here: one needs only set all
parameters y equal to 0 and cðH1;H2Þ equal to 1.

3. Basic reproduction numbers (R0)

R0 is a measure of the maximum reproductive potential of a parasite between one generation and the next for a
susceptible host population in a given environment. R0 is one of the most important and useful concepts in
epidemiology since it determines whether or not a parasite has the potential to spread in a host population, the
difficulty of eradication and also produces an estimate of parasite fitness. For microparasites (virus and bacteria), R0 is
defined as the average number of secondary cases which one case can produce in a population consisting only of
susceptible individuals. If R0 > 1 a chain reaction of new cases will result leading to an epidemic outbreak, but if R0o1
the number of infected hosts will fall and eventually be lost from population.
For macroparasites, and in particular for ticks, the idea of R0 is the same, but the definition is subtly different. In this

instance, R0 is defined as the number of new female parasites produced by a female parasite when there are no density-
dependent constraints acting anywhere in the life cycle of the parasites (Hudson et al., 2002).

ARTICLE IN PRESS
R. Ros "a et al. / Journal of Theoretical Biology 224 (2003) 359–376364



Mathematically, R0 works as a threshold quantity for the stability of the disease-free equilibrium. In fact, it makes
the disease-free equilibrium (for microparasites) or the parasite-free equilibrium (for macroparasites) stable when
R0o1 or unstable when R0 > 1:
A very useful tool in the computation of the thresholds for disease persistence in epidemic models is the Perron–

Frobenius theory (see the application to epidemic models in Diekmann and Heesterbeek, 2000). Using this theory, we
derive, in the following sections, the thresholds for the persistence of both ticks and the disease distinguishing the cases
with and without non-viraemic transmission. We will write these in the form R0 > 1 where the R0 are explicit quantities
related to the transmission of the infection. We remark that, although we used the symbol R0 for these threshold
quantities, they are not always exactly equal to the basic reproduction number defined in Diekmann and Heesterbeek
(2000) as the spectral radius of the ‘‘next-generation matrix’’. The spectral radius cannot be computed explicitly, and
we believe that our quantity has a useful interpretation. In either case, the conditions for persistence are the same with
both methods.

3.1. The case with only viraemic transmission

Here we consider only the viraemic route of the infection. This means that a susceptible tick can only become
infected when feeding on an infected viraemic hosts (H1i). At the same time the transmission could pass from infected
ticks to susceptible hosts (H1s) while non-vireamic hosts (H2) do not take part in the infection process. Thus, in this
case we set all of the parameters concerned with non-viraemic transmission to zero (yNL ¼ yAL ¼ yNN ¼ yAN ¼ 0). The
special case with all the quantities czðH1;H2Þ ¼ 1 has been already analysed by Norman et al. (1999) and Gilbert et al.
(2001).

3.1.1. Tick-free equilibrium

Through the study of the local stability of the tick-free equilibrium (see Appendix A) we derived the following basic
reproduction number for the tick population:

Rticks
0 ¼ aT ð0Þ

mLgLðH1;H2Þ
bT þ gLðH1;H2Þ

mNgNðH1;H2Þ
bT þ gNðH1;H2Þ

gAðH1;H2Þ
bT þ gAðH1;H2Þ

: ð8Þ

This quantity represents the threshold condition for the persistence of ticks in the system. When Rticks
0 > 1 the ticks will

persist and, from numerical simulation, it appears that tick and host populations will settle to a positive coexistence
equilibrium. The quantity Rticks

0 has a rather obvious biological interpretation in that if the product of the losses from
each tick stage is greater than the product of the gains to each stage, then the ticks will die out, if not, they will persist.
In particular, the expression of Rticks

0 in Eq. (8) is the result of three multiplicative factors whose biological
interpretations are the following:

(i) mLgLðH1;H2Þ=ðbT þ gLðH1;H2ÞÞ is the probability of a larva becoming a nymph,
(ii) mNgN ðH1;H2Þ=ðbT þ gNðH1;H2ÞÞ is the probability of a nymph becoming an adult and
(iii) aT ð0Þ ðgAðH1;H2Þ=ðbT þ gAðH1;H2ÞÞ is the number of larvae produced per adult.

3.1.2. Disease-free equilibrium

Through the study of the local stability of the disease-free equilibrium in the case with only viraemic transmission
(see Appendix B) we found that the disease-free equilibrium is stable if and only if the following condition is satisfied:

Rvir
0 ¼

mLpLbL
1c

LðH1;H2ÞL
ðb1 þ gþ aÞ

qNbN
1 H1c

N ðH1;H2Þ
ðbT þ gNðH1;H2ÞÞ

þ
mLpLbL

1c
LðH1;H2ÞL

ðb1 þ gþ aÞ
mNgNðH1;H2Þ

ðbT þ gN ðH1;H2ÞÞ

�
qAbA

1H1c
AðH1;H2Þ

ðbT þ gAðH1;H2ÞÞ
þ

mNpNbN
1 c

NðH1;H2ÞN
ðb1 þ gþ aÞ

qAbA
1H1c

AðH1;H2Þ
ðbT þ gAðH1;H2ÞÞ

o1: ð9Þ

If we follow an infected host we see that it produces on average mLpLbL
1c

LL=ðb1 þ gþ aÞ infected nymphs. Each
nymph will infect a host with probability qNbN

1 H1c
N=ðbT þ gNÞ; and can also develop to infected adult with

probability mNgN=ðbT þ gN Þ and then infect a host as adult with probability qAbA
1 H1c

A=ðbT þ gAÞ: Finally, an infected
host produces also mNpNbN

1 c
NN=ðb1 þ gþ aÞ infected adults that infect a host with probability qAbA

1 H1c
A=ðbT þ gAÞ:

3.2. The case with non-viraemic transmission

Here, we consider horizontal transmission between ticks. This means that a susceptible tick can become infected not
only by feeding on an infected viraemic host but also when co-feeding with other infected ticks present on the same
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non-viraemic host. In our model the parameters measuring non-viraemic transmission are yNL; yAL; yNN and yAN

depending on the different tick stages that are co-feeding (Table 1).
Through the study of the local stability of the disease-free equilibrium in the case with non-viraemic transmission

(see Appendix C) we obtained a joint condition for the stability of the disease-free equilibrium that means disease
extinction.
The disease-free equilibrium is stable if the following three condition are satisfied:

Rnon�vir
0;ad ¼

mNyANNH2c
AcNð1þ rAN=

ffiffiffiffiffiffiffiffiffiffiffiffi
kAkN

p
Þ

bT þ gA
o1; ð10Þ

Rnon�vir
0;nym ¼

mLyNLLH2c
NcLð1þ rNL=

ffiffiffiffiffiffiffiffiffiffiffi
kNkL

p
Þ

bT þ gN
o1; ð11Þ

Rall
0 ¼

mLpLbL
1c

LL

b1 þ gþ a
1

1� Rnon�vir
0;nym

qNbN
1 H1c

N

bT þ gN
þ

mLpLbL
1c

LL

b1 þ gþ a
mNgN þ mNyNNNH2½c

N �2ð1þ ð1=kN ÞÞ
ðbT þ gN Þð1� Rnon�vir

0;nym Þ

�
qAbA

1H1c
A

ðbT þ gAÞð1� Rnon�vir
0;nym Þ

þ
mNpNbN

1 c
NN

b1 þ gþ a
1

1�Rnon-vir
0;ad

qAbA
1 H1c

A

bT þ gA
þ

mNpNbN
1 c

NN

b1 þ gþ a

�
mLyALLH2c

AcLð1þ ðrAL=
ffiffiffiffiffiffiffiffiffiffiffi
kAkL

p
ÞÞ

ðbT þ gAÞð1�Rnon-vir
0;ad Þ

qNbN
1 H1c

N

ðbT þ gN Þð1�Rnon-vir
0;nym Þ

þ Rnon�vir
0 o1; ð12Þ

where

Rnon�vir
0 ¼

mLyALLH2c
AcLð1þ rAL=

ffiffiffiffiffiffiffiffiffiffiffi
kAkL

p
Þ

bT þ gA

mNyNNNH2½c
N �2ð1þ 1=kNÞ

bT þ gN

1

1� Rnon�vir
0;nym

1

1� Rnon�vir
0;ad

: ð13Þ

Conditions (10) and (11) are threshold conditions for horizontal transmission between ticks. Eq. (10) means that each
infected adult tick produces less than 1 infected adult tick, by infecting nymphs through co-feeding. Eq. (11)
analogously means that each infected nymph produces less than 1 infected nymph, by infecting larvae through
co-feeding.
The expression of Rall

0 ; shown in Eq. (12), is more complex but the terms all have a biological interpretation. The first
three terms correspond to those in the reproduction number with only viraemic transmission (see Eq. (9)), but they are
changed due to non-viraemic transmission. In fact, we must consider that each nymph infected by a host will on
average produce Rnon�vir

0;nym infected nymphs by infecting co-feeding larvae that, after moulting, will become infected
nymphs; all of these will produce through co-feeding ðRnon�vir

0;nym Þ2 other infected nymphs; summing over all generations
of infections, the ‘‘progeny’’ via co-feeding of an infected nymphs is equal to 1=ð1� Rnon�vir

0;nym Þ infected nymphs
(remember that we are under conditions (10) and (11)). Hence, when we count how many infected hosts an infected
host produces through infected nymphs and back, we must multiply the average number of infected nymphs produced
by an infected host, that is mLpLbL

1c
LL=ðb1 þ gþ aÞ; by the ‘‘co-feeding nymph progeny’’ of each infected nymph, that

is 1=ð1� Rnon�vir
0;nym Þ; by the average number of hosts infected by each nymph, that is qNbN

1 H1c
N=ðbT þ gNÞ; obtaining

thus the first term in Eq. (12). The changes in the second and third terms are analogous, noting that now the number of
infected adults produced by an infected nymph is not given simply by its probability of getting to the adult stage, but
we must also add the number of adults produced from nymphs by co-feeding. The fourth term is the reciprocal of the
second and describes transmission from a host to an adult, then transmission from adults to nymphs by co-feeding,
and finally viraemic transmission from nymphs to hosts. The last term, denoted by Rnon�vir

0 ; computes the total
transmission potential (between and within nymphs and adults) of the non-viraemic route. It should be noted that
several terms can disappear in the special cases considered below.

3.3. Special cases

An interesting special case, based on the transmission dynamics of Borrelia or of louping ill, occurs when adult ticks
do not feed on H1 (e.g. mice for Borrelia), and larvae do not feed on H2 (e.g. deer). In this case we have b

A
1 ¼ bL

2 ¼ 0
and, as there are no larvae on the non-viraemic host, non-viraemic transmission cannot occur through larvae and
consequently yNL and yAL will be 0.
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Under this assumption the threshold for disease persistence assumes the following form, which is identical to the
case with only viraemic transmission:

Rvir
0 ¼

mLpLbL
1c

LL

b1 þ gþ a
qNbN

1 H1c
N

bT þ gN
: ð14Þ

However, note that we also have the extra condition for stability (see Eqs. (10) and (11)). In this case we have two
separate epidemic processes. The first is through the viraemic (or spirochaetaemic for Borrelia) route: infected nymphs
biting susceptible hosts which are then bitten by larvae: the threshold condition for this process is Rvir

0 > 1 with Rvir
0

given in Eq. (14). The second epidemic is purely non-viraemic: infected adults infecting susceptible nymphs via co-
feeding; the threshold condition for this process is in Eq. (10). The second epidemic has no effect on the first, since
infected adults do not participate in viraemic transmission as they do not feed on H1 (b

A
1 ¼ 0). Hence, the two

threshold conditions can be considered independently. Note, that if R0 in Eq. (14) is less than 1 but Eq. (10) is violated,
only adult ticks will be infected, while nymphs and hosts will not be infected
Another interesting special case occurs with only non-viraemic transmission in the system. This means that there are

no competent hosts in the system and the reservoir of the diseases are exclusively the ticks. In this case all the
parameters concerning the viraemic transmission have to be set to 0. Now, Rall

0 of Eq. (12) reduces to Rnon�vir
0 shown in

Eq. (13). In this case the disease-free equilibrium is unstable (the pathogen persists in the system) when at least one
among Rnon�vir

0;nym ; Rnon�vir
0;ad or Rnon�vir

0 shown respectively in Eqs. (10), (11) and (13) is larger than 1. From these expressions
it can be seen that a high value of the correlation coefficients r; or a low value of the aggregation parameters k; make
pathogen persistence more likely. As a consequence, non-viraemic transmission among highly aggregated ticks could
be sufficient to make the pathogen persist in the system even without hosts that sustain the infection.

4. Results and discussion

4.1. Persistence–extinction boundary with only viraemic transmission

If we set Rvir
0 to 1 in Eq. (9) and plot H1 against H2 for a chosen set of parameter values we can determine the

densities of viraemic and non-viraemic host that must be present for the pathogen to persist (Figs. 1A and B). Both
figures show that a minimum density of viraemic host (H1) is needed in order to make the pathogen persist in the
system.
The effect of the density of non-viraemic hosts H2 is more complex; in fact, it has already been observed (Norman

et al., 1999) that their density may have either a positive effect on infection transmission, by amplifying tick
population, or a negative (‘‘dilution’’) effect, by wasting tick bites on incompetent hosts. Indeed, the shape of the
persistence–extinction boundary may differ with only slightly changes in the parameter values (see Figs. 1A and B,
which differ only in the value of the encounter rate between questing nymphs and viraemic hosts, bN

1 ). In the case
of Fig. 1A, only the dilution effect of H2 occurs: starting from a point (H1; 0) where Rvir

0 > 1; an increase of the
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Fig. 1. The effect of hosts densities on Rvir
0 in the case without non-viraemic transmission. In (A) bN

1 ¼ 10�5; while in (B) bN
1 ¼ 10�6: The other

parameters are: bL
1 ¼ 10�5; bA

1 ¼ 10�5; bN
2 ¼ 10�3; bA

2 ¼ 10�3; L ¼ 108;N ¼ 106; g ¼ 0:5775; a ¼ 2:31; b1 ¼ 0:087; bT ¼ 0:0277; qA ¼ qN ¼ 1; pL ¼
pN ¼ 1;cL ¼ cN ¼ 1;mL ¼ mN ¼ 1; yNL ¼ yAL ¼ yNN ¼ yAN ¼ 0: The parameter values are purely illustrative, though elaborated from Hudson

et al. (1995) and Norman et al. (1999), measuring time in months and densities in km�2.
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non-viraemic hosts makes the Rvir
0 decrease till it becomes lower than 1 and the disease dies out; furthermore, if we start

from a point (H1; 0) with Rvir
0 o1; Rvir

0 will remain lower than 1 for any density H2 of the non-viraemic hosts.
In Fig. 1B, if we start from a point (H1; 0) with H1 in an intermediate region (between 30 and 60), an initial increase

ofH2 makes the pathogen persist (R
vir
0 moves from below 1 to above 1) but a further increase ofH2 causes a decrease of

Rvir
0 and again the dilution effect of H2 is observed.
We then see that the net effect of H2 on Rvir

0 depends on the quantitative strength of the two effects, and it is difficult
to predict the outcome a priori. One may note that the decrease of bN

1 of an order of magnitude from Fig. 1A to Fig. 1B
makes the ticks more dependent on H2 for amplification; thus, it is not surprising the positive effect of H2 on Rvir

0 is
more apparent in Fig. 1B.

4.2. Effect of non-viraemic transmission

From the expression of Rall
0 in Eq. (12) with non-viraemic transmission we see that the effect of non-viraemic

transmission terms is to increase the basic reproduction number of the disease.
In terms of host densities, the boundary between the persistence and extinction regions in the ðH1;H2Þ-plane shifts

upwards and to the left with increasing non-viraemic terms (see Fig. 2, where the effect of yAN ; the parameter of non-
viraemic transmission between nymphs and adults, is shown; the other parameters have a similar effect). For high
enough values of the non-viraemic terms, the dilution effect completely disappears and the disease can persist in the
absence of the viraemic host. The effect of all the non-viraemic terms on Rall

0 are explored in Fig. 3. Rall
0 increases

particularly when terms involving the larval stage (yAL and yNL) are included in the model. This is quite
understandable, since a tick which is infected as a larva will have two opportunities to transmit the infection, while a
tick infected as a nymph will have just one opportunity.
In Figs. 2 and 3 we assumed that all cz

j are equal to 0 for all the tick stages (z ¼ L;N;A) and for both host species,
j ¼ 1; 2: We mentioned that this assumption is a good approximation for the cases in which the transmission rate is
much less than the detachment rate of ticks bz

j Hj5sz
j ; which seems likely in many systems. If cz

j > 0 but small, still the
functions cz are very close to 1 and gz are practically linear over most of the reasonable range of H1 and H2: However,
as shown in Fig. 4, if cL

2 > 0; R0 always drops below 1 when the density of the non-viraemic host becomes very high
(note the logarithmic scale of H2 axis). This is because with a very high density of non-viraemic hosts, almost all ticks
will feed on H2 hosts, but each individual host will be carrying very few ticks, so that the probability of finding co-
feeding ticks will be relatively low; hence, non-viraemic transmission will become insignificant while viraemic
transmission on H2 hosts is, by assumption, impossible. Probably, the host densities at which this effect occurs are
unrealistically high for most reasonable parameter values, so that this effect, whilst interesting mathematically, is
practically irrelevant.

4.3. Effect of aggregation on R0

We have not yet considered either the aggregation of the tick distribution among hosts or the correlation between
different stages of ticks feeding on the same host in the figures presented in the previous sections. However, it is well
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Fig. 2. Effect of non-viraemic terms yAN on Rall
0 : The other non-viraemic terms are set to 0 and the rest of parameters are: bL

1 ¼ 10�5; bN
1 ¼ 10�5;

bA
1 ¼ 10�5; bN

2 ¼ 10�3; bA
2 ¼ 10�3; L ¼ 108; N ¼ 106; g ¼ 0:5775; a ¼ 2:31; b1 ¼ 0:087; bT ¼ 0:0277; qA ¼ qN ¼ 1; pL ¼ pN ¼ 1; cL ¼ cN ¼ 1;mL ¼

mN ¼ 1; kN ¼ N;rNL ¼ rAN ¼ rAL ¼ 0:
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known in the literature (see, for instance, Randolph et al., 2002) that each tick stage shows highly aggregated
distributions on their host population; moreover, these aggregated distributions are coincident rather than
independent: those hosts feeding large number of larvae were simultaneously feeding the greatest number of nymphs.
It has been surmised that this pattern of tick infestation facilitates transmission via co-feeding and thus significantly
increases the basic reproductive number R0 of the pathogen (Randolph et al., 1999).
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Fig. 3. Effect of different non-viraemic terms on Rall
0 : The effect of yAN is shown in (A), yNN in (B), yAL in (C) and yNL in (D). In all the figures the

non-viraemic term takes the values 10�10, while the others are set to 0. The other parameters are: bL
1 ¼ 10�5; bN

1 ¼ 10�5; bA
1 ¼ 10�5; bN

2 ¼ 10�3;
bA
2 ¼ 10�3; L ¼ 108;N ¼ 106; g ¼ 0:5775; a ¼ 2:31; b1 ¼ 0:087; bT ¼ 0:0277; qA ¼ qN ¼ 1; pL ¼ pN ¼ 1;cL ¼ cN ¼ 1;mL ¼ mN ¼ 1; kN ¼ N; rNL ¼
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1 ¼ 10�5; bA
1 ¼ 10�5; bN

2 ¼ 10�3; bA
2 ¼ 10�3; L ¼ 108;N ¼ 106; g ¼

0:5775; a ¼ 2:31; b1 ¼ 0:087; bT ¼ 0:0277; qA ¼ qN ¼ 1; pL ¼ pN ¼ 1;cL ¼ cN ¼ 1;mL ¼ mN ¼ 1; yAL ¼ 10�10; yAN ¼ yNN ¼ yNL ¼ 0; rAL ¼ 0; cL
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10�3: We remark that the lower boundary line is indistinguishable by the corresponding boundary in the case with cL
2 ¼ 0 (Fig. 3C).
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In Figs. 5 and 6 we show the quantitative effect of tick distribution on Rall
0 for the parameter values used in Fig. 3.

Fig. 5 corresponds to Fig. 3B with H1 fixed at 10; hence, we are in the region where the dilution effect holds: increasing
the density of H2 would make Rall

0 drop below 1; as can be seen in Fig. 5, a strong aggregation in nymph distribution
(kN

51) increases significantly Rall
0 and may double the density of H2 at which the dilution effect occurs.

Fig. 6 corresponds to Fig. 3C with H1 ¼ 5; where, on the other hand, increasing the density of H2 makes Rall
0 grow

above 1. In this case, a strong correlation between adults and larvae (rALE1) causes a big increase in Rall
0 :

On the whole, the expressions shown in this paper for the threshold for disease persistence of tick-borne infections
clarify the possible role of the different pathways in sustaining the infection, as well as the importance of tick
distributions in the case of non-viraemic transmission, and the possible relevance of the encounter rates in the case of
multiple hosts. This understanding may help in identifying possible strategies for disease control, and assessing their
possible results. Finally, the assumptions made on the density-dependence factors have no real consequence on the
threshold quantities computed in the text (although they may affect the overall dynamics of the system). In fact, if aT

were constant, one would only need to substitute this constant for the quantity computed at the relevant equilibrium.
Conversely, if some quantity, for instance the moulting success mz; were a function of the density of all ticks, or some
stage of, one would use its value at the relevant equilibrium. In the future, we plan to use models of this structure to
complement observational and experimental work on tick-borne infections in the region of Trentino, Italy. Certainly,
many parameters of this model have not yet been measured experimentally, so that mainly qualitative trends can be
gained by this modelling effort. One of the factors missing in this model, which has instead a profound effect on
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infection transmission is seasonality (see, for instance, Randolph et al., 1999); we shall introduce seasonality in the
model, although probably explicit expressions will no longer be computable.
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Appendix A. Stability of tick-free equilibrium

System (7) has a tick-free equilibrium L ¼ Ni ¼ Ns ¼ Ai ¼ As ¼ H1i ¼ H1r ¼ 0; H1s ¼ H1 > 0: In the linearization
of Eq. (7) at the tick-free equilibrium, the equations for tick dynamics decouple from those for infection transmission,
so that the linearized equations essentially become:

dL

dt
¼ gAðH1;H2ÞaT ð0ÞA � bT L � gLðH1;H2ÞL;

dN

dt
¼ mLgLðH1;H2ÞL � bT N � gNðH1;H2ÞN;

dA

dt
¼ mNgN ðH1;H2ÞN � bT A � gAðH1;H2ÞA: ðA:1Þ

Which can be written, using matrix notation, as

d

dt

L

N

A

0
B@

1
CA ¼ A11

L

N

A

0
B@

1
CA;

where

A11 ¼

�bT � gLðH1;H2Þ 0 aT ð0ÞgAðH1;H2Þ

mLgLðH1;H2Þ �bT � gNðH1;H2Þ 0

0 mNgN ðH1;H2Þ �bT � gAðH1;H2Þ

0
B@

1
CA:

Formally, this follows from the fact that the Jacobian of Eq. (7) at the tick-free equilibrium can be written in the
following form:

J ¼
A3�311 A3�512

05�3 A5�522

 !
; ðA:2Þ

where

A22 ¼

�bT � gN 0 0 0 0

mNgN �bT � gA 0 0 0

qNbN
1 H	

1c
N qAbA

1 H	
1c

A �ðgþ b1 þ aÞ 0 0

0 0 g �b1 0

�qNbN
1 H	

1c
N �qAbA

1 H	
1c

A a0
1ðH

	
1 Þ þ a1ðH	

1 Þ a0
1ðH

	
1 Þ þ a1ðH	

1 Þ a0
1ðH

	
1 Þ þ a1ðH	

1 Þ � b1

0
BBBBBBB@

1
CCCCCCCA
:

From Eq. (A.2), we see that the eigenvalues of J are the eigenvalues of A11 and of A22: Since A22 is triangular, its
eigenvalues are the terms on the diagonal, which are all negative, since at equilibrium a1ðH	

1 Þ ¼ b1 and a1ðH1Þ is a
decreasing function. Then the study of the local stability of the tick-free equilibrium reduces to the study of Eq. (A.1).
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In order to see whether all the eigenvalues of a matrix have a negative real part, we apply here (and in the other
cases) the following theorem, that is a special case of Theorem 6.13 in Diekmann and Heesterbeek (2000).

Theorem A.1. Let T be a non-negative matrix and D a positive diagonal matrix. Let r denote the spectral bound of the

matrix T2D and let R0 the dominant eigenvalue of the positive matrix K ¼ TD�1. Then ro03R0o1:

We split the matrix A11 in the form A11 ¼ T � D with T and D; respectively:

T ¼

0 0 aT ð0ÞgAðH1;H2Þ

mLgLðH1;H2Þ 0 0

0 mNgNðH1;H2Þ 0

0
B@

1
CA;

D ¼ diag

bT þ gLðH1;H2Þ

bT þ gN ðH1;H2Þ

bT þ gAðH1;H2Þ

0
B@

1
CA:

Now, we compute the eigenvalues of the matrix TD�1 that assumes the following form:

TD�1 ¼

0 0 aT ð0Þ
gAðH1;H2Þ

bT þ gAðH1;H2Þ
mLgLðH1;H2Þ

bT þ gLðH1;H2Þ
0 0

0
mNgN ðH1;H2Þ

bT þ gNðH1;H2Þ
0

0
BBBBBBB@

1
CCCCCCCA
: ðA:3Þ

As the hypotheses of Theorem A.1 are satisfied, the stability condition for the tick-free equilibrium is that the spectral
radius of TD�1 is less than 1. The solutions of the characteristic equation of (A.3) are the three cubic roots of

Rticks
0 ¼ aT ð0Þ

mLgLðH1;H2Þ
bT þ gLðH1;H2Þ

mNgN ðH1;H2Þ
bT þ gN ðH1;H2Þ

gAðH1;H2Þ
bT þ gAðH1;H2Þ

:

It is clear that they are in module larger than one if and only if Rticks
0 > 1: Note that, using the definition of Diekmann

and Heesterbeek (2000) one would define the basic reproduction number as
ffiffiffiffiffiffiffiffiffiffiffi
Rticks
0

3

q
; which obviously gives the same

threshold; we believe that the condition Rticks
0 > 1 is much easier to interpret.

Appendix B. Stability of disease-free equilibrium with only viraemic transmission

When Rticks
0 > 1 system (7) has a disease-free equilibrium with Ni ¼ Ai ¼ H1i ¼ H1r ¼ 0 and the other components at

some positive value. In this case too, in the linearization of Eq. (7) at the disease-free equilibrium, the equations for tick
dynamics decouple from those for infection transmission; the linearized equations for the infected compartments are:

dNi

dt
¼ mLpLbL

1H1ic
LðH1;H2ÞL � ½bT þ gNðH1;H2Þ�Ni;

dAi

dt
¼ mNpNbN

1 H1ic
NðH1;H2ÞN þ mNgNðH1;H2ÞNi � ½bT þ gAðH1;H2Þ�Ai;

dH1i

dt
¼ qNbN

1 H1c
N ðH1;H2ÞNi þ qAbA

1H1c
AðH1;H2ÞAi � ðgþ b1 þ aÞH1i;

which can be written, using matrix notation, as

d

dt

Ni

Ai

H1i

0
B@

1
CA ¼ A

Ni

Ai

H1i

0
B@

1
CA;
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where

A ¼

�bT � gNðH1;H2Þ 0 mLpLbL
1c

LðH1;H2ÞL

mNgN ðH1;H2Þ �bT � gAðH1;H2Þ mNpNbN
1 c

N ðH1;H2ÞN

qNbN
1 H1c

NðH1;H2Þ qAbA
1H1c

AðH1;H2Þ �ðb1 þ gþ aÞ

0
BB@

1
CCA:

In fact, the Jacobian at the disease-free equilibrium can again be written in the form (A.2) (see Appendix A), so that we
need only to find the sign of the eigenvalues of A11 and A22:
First, we study the sign of the eigenvalues of the block A11 that in this case assumes the following form:

A11 ¼

a0
T ðT

	ÞA	gA � ðbT þ gLÞ a0
T ðT

	ÞA	gA a0
T ðT

	ÞA	gA þ gAaT ðT	Þ

mLgL �bT � gN 0

0 mNgN �bT � gA

0
B@

1
CA:

Using the Routh–Hurwitz criterion we have that the eigenvalues of A11 are negative if the following three conditions
are satisfied:

(i) tr A11o0
(ii) det A11o0
(iii) M 	 tr A11 � det A11o0;

where M	 is the sum of the minors of A11: As aðTÞ is a decreasing function condition ðiÞ is trivially satisfied. Using the
conditions at the equilibrium for L	;N	 and A	 we obtain the following identity:

mLmNgLgNgAaT ðTnÞ ¼ ðbT þ gLÞðbT þ gNÞðbT þ gAÞ;

from which it is easy to see that the determinant of A11 is always negative (condition ðiiÞ). Finally, it is not difficult to
show that also condition ðiiiÞ is always satisfied; thus the eigenvalues of A11 have all negative real part.
As for the matrix A22; it can be written as

A22 ¼
A3x3 03x2

B2x3 C2x2

 !
; ðB:1Þ

where

C ¼
�b1 0

a0
1ðH

	
1 Þ þ a1ðH	

1 Þ a0
1ðH

	
1 Þ þ a1ðH	

1 Þ � b1

 !

is a triangular matrix with both negative eigenvalues, since at equilibrium a1ðH	
1 Þ ¼ b1: Then the study of the local

stability of the disease-free equilibrium reduces to the study of the sign of the eigenvalues of the matrix A.

Also in this case, the hypotheses of the Theorem A.1 (see Appendix A) are satisfied; hence, using the same procedure
as for the tick-free equilibrium (Appendix A), we split the matrix A in the form A ¼ T � D; where TD�1 is

TD�1 ¼

0 0
mLpLbL

1c
LðH1;H2ÞL

ðb1 þ gþ aÞ

mNgNðH1;H2Þ
ðbT þ gN ðH1;H2ÞÞ

0
mNpNbN

1 c
N ðH1;H2ÞN

ðb1 þ gþ aÞ

qNbN
1 H1c

NðH1;H2Þ
ðbT þ gN ðH1;H2ÞÞ

qAbA
1H1c

AðH1;H2Þ
ðbT þ gAðH1;H2ÞÞ

0

0
BBBBBBBB@

1
CCCCCCCCA
: ðB:2Þ

The characteristic equation of Eq. (B.2) is

f ðlÞ ¼ � l3 þ l
mLpLbL

1c
LðH1;H2ÞL

ðb1 þ gþ aÞ

�
qNbN

1 H1c
N ðH1;H2Þ

ðbT þ gNðH1;H2ÞÞ
þ

mNpNbN
1 c

NðH1;H2ÞN
ðb1 þ gþ aÞ

qAbA
1H1c

AðH1;H2Þ
ðbT þ gAðH1;H2ÞÞ

�

þ
mLpLbL

1c
LðH1;H2ÞL

ðb1 þ gþ aÞ
mNgNðH1;H2Þ

ðbT þ gNðH1;H2ÞÞ
qAbA

1H1c
AðH1;H2Þ

ðbT þ gAðH1;H2ÞÞ
¼ 0:

From the signs of the coefficients of the cubic, one easily sees that the dominant eigenvalue of TD�1 is larger than 1 if
and only if f ð1Þ > 0; that is

mLpLbL
1c

LL

b1 þ gþ a
mNgN

bT þ gN

qAbA
1H1c

A

bT þ gA
þ

mLpLbL
1c

LL

b1 þ gþ a
qNbN

1 H1c
N

bT þ gN
þ

mNpNbN
1 c

NN

b1 þ gþ a
qAbA

1 H1c
A

bT þ gA
> 1:
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The LHS of this expression is equal to Rvir
0 as defined in Eq. (9). Hence the stability condition can be stated

as Rvir
0 o1:

Appendix C. Stability of disease-free equilibrium with non-viraemic transmission

In the case with non-viraemic transmission we have that all the blocks of the matrix J are the same of those in the
case with only viraemic transmission (Appendix B) except for A12 and A22 which contain the non-viraemic terms. For
the same reasons as in Appendix B, the study of the stability of the disease-free equilibrium reduces to the study of the
sign of the eigenvalues of the matrix A that in this case assumes the following form:

A ¼

�bT � gN þ mLyNLLH2c
LcN 1þ

rNLffiffiffiffiffiffiffiffiffiffiffi
kLkN

p
 !

mLyALLH2c
AcL 1þ

rALffiffiffiffiffiffiffiffiffiffiffi
kAkL

p
 !

mLpLbL
1c

LL

mNgN þ mNyNNNH2½c
N �2 1þ

1

k

� �
�bT � gA þ mNyANNH2c

AcN 1þ
rANffiffiffiffiffiffiffiffiffiffiffiffi
kAkN

p
 !

mNpNbN
1 c

NN

qNbN
1 H1c

N qAbA
1H1c

A �ðb1 þ gþ aÞ

0
BBBBBBB@

1
CCCCCCCA
:

Splitting the matrix A in the form A ¼ T � D; as in Appendix B, we choose

T ¼

0 mLyALLH2c
AcLð1þ rAL=

ffiffiffiffiffiffiffiffiffiffiffi
kAkL

p
Þ mLpLbL1c

LL

mNgN þ mNyNNNH2½c
N �2ð1þ 1=kN Þ 0 mNpNbN1 c

NN

qNbN
1 H1c

N qAbA
1 H1c

A 0

0
BB@

1
CCA

and

D ¼ diag

bT þ gN � mLyNLLH2c
LcNð1þ rNL=

ffiffiffiffiffiffiffiffiffiffiffi
kLkN

p
Þ

bT þ gA � mNyANNH2c
AcN ð1þ rAN=

ffiffiffiffiffiffiffiffiffiffiffiffi
kAkN

p
Þ

b1 þ gþ a

0
BB@

1
CCA:

In this case the hypothesis of the Theorem A.1 (see Appendix A) are not always satisfied: in fact, the elements of Dmay
not be positive. Therefore, before computing the eigenvalues of the matrix TD�1 as in the case with only viraemic
transmission, we must consider the cases when the elements of D are not positive. Note that it would be possible to
split the matrix A in a form A ¼ T � D in such a way that the diagonal D is strictly positive. Indeed, this is required in
the definition of R0 given by Diekmann and Heesterbeek (2000) who also suggest the use of a transition matrix S;
writing A ¼ T þ S� D; however, the computations appear much simpler using the present form.
Using results of loop analysis (Puccia and Levins, 1985), we study the stability of the disease-free equilibrium when

the diagonal elements of the matrix A are not negative.
To do that, we apply the stability criteria based on the loop model notation (Puccia and Levins, 1985), to the

matrix A:
The following three cases have to be considered:
Case 1: The first two diagonal elements of A are positive (a11; a22 > 0) while the third is negative (�a33o0). In this

case the feedbacks at levels 1 and 2 (Puccia and Levins, 1985) become

F1 ¼ a11 þ a22 � a33;

F2 ¼ a12a21 þ a13a31 þ a23a32 � a11a22 þ a11a33 þ a22a33:

The stability condition at level 1, F1o0 (Puccia and Levins, 1985), implies that a33 > a11 þ a22: Inserting this
inequality in the feedback at level 2 we obtain

F2 > a12a21 þ a13a31 þ a23a32 � a11a22 þ a11ða11 þ a22Þ þ a22a33

¼ a12a21 þ a13a31 þ a23a32 þ ða11Þ
2 þ a22a33 > 0:

Thus, the stability condition at level 2, F2o0 (Puccia and Levins, 1985), is not met and the equilibrium is unstable.
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Case 2: The first diagonal element of A is positive (a11 > 0) while the second and third are negative (�a22;�a33o0).
In this case the feedbacks are

F1 ¼ a11 � a22 � a33;

F2 ¼ a12a21 þ a13a31 þ a23a32 þ a11a22 þ a11a33 � a22a33;

F3 ¼ a12a23a32 þ a21a32a13 � a11a23a32 þ a22a13a31 þ a33a12a21 þ a11a22a33:

The stability condition at level 2, F2o0; implies that a22a33 > a12a21 þ a13a31 þ a23a32 þ a11a22 þ a11a33:
Inserting this inequality in the feedback at level 3 we obtain

F3 > a12a23a32 þ a21a32a13 � a11a23a32 þ a22a13a31 þ a33a12a21 þ a11ða12a21 þ a13a31 þ a23a32 þ a11a22 þ a11a33Þ

¼ a12a23a32 þ a21a32a13 þ a22a13a31 þ a33a12a21 þ a11a12a21 þ a11a13a31 þ ða11Þ
2ða11 þ a22Þ > 0:

Thus the stability condition at level 3, F3o0 (Puccia and Levins, 1985), is not met and the equilibrium is unstable.
Case 3: The second diagonal element of A is positive (a22 > 0) while the first and third are negative (�a11;�a33o0).

In this case feedbacks assume the following form:

F1 ¼ a22 � a11 � a33;

F2 ¼ a12a21 þ a13a31 þ a23a32 þ a11a22 � a11a33 þ a22a33;

F3 ¼ a12a23a32 þ a21a32a13 þ a11a23a32 � a22a13a31 þ a33a12a21 þ a11a22a33:

The stability condition at level 2, F2o0; implies that a11a33 > a12a21 þ a13a31 þ a23a32 þ a11a22 þ a22a33:
Inserting this inequality in the feedback at level 3 we obtain

F3 > a12a23a32 þ a21a32a13 þ a11a23a32 � a22a13a31 þ a33a12a21 þ a22ða12a21 þ a13a31 þ a23a32 þ a11a22 þ a22a33Þ

¼ a12a23a32 þ a21a32a13 þ a11a23a32 þ a22a12a21 þ a22a23a32 þ ða22Þ
2ða11 þ a33Þ > 0:

Thus the stability condition at level 3 is not met and the equilibrium is unstable. We conclude that in all three cases the
disease-free equilibrium is unstable.
We now consider the case where the hypotheses of Theorem A.1 are satisfied; then the matrix TD�1 assume the

following form, where all the denominators are strictly positive:

TD�1

¼

0
mLyALLH2c

AcLð1þ rAL=
ffiffiffiffiffiffiffiffiffiffiffi
kAkL

p
Þ

bT þ gA � mNyANNH2c
AcNð1þ rAN=

ffiffiffiffiffiffiffiffiffiffiffiffi
kAkN

p
Þ

mLpLbL
1c

LL

b1 þ gþ a

mNgN þ mNyNNNH2½c
N �2ð1þ 1=kN Þ

bT þ gN � yNLmLLH2c
NcLð1þ rNL=

ffiffiffiffiffiffiffiffiffiffiffi
kNkL

p
Þ

0
mNpNbN

1 c
NN

b1 þ gþ a

qNbN
1 H1c

N

bT þ gN � mLyNLLH2c
NcLð1þ rNL=

ffiffiffiffiffiffiffiffiffiffiffi
kNkL

p
Þ

qAbA
1 H1c

A

bT þ gA � mNyANNH2c
AcNð1þ rAN=

ffiffiffiffiffiffiffiffiffiffiffiffi
kAkN

p
Þ

0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

From Theorem A.1 (Appendix A) we get that, in the case with non-viraemic transmission, the threshold condition for
disease extinction is, given the positivity of the matrix D; the following:

Rall
0 ¼

mLpLbL
1c

LL

b1 þ gþ a
mNgN þ mNyNN NH2½c

N �2ð1þ ð1=kN ÞÞ

bT þ gN � mLyNLLH2c
NcLð1þ ðrNL=

ffiffiffiffiffiffiffiffiffiffiffi
kNkL

p
ÞÞ

qAbA
1 H1c

A

bT þ gA � mNyANNH2c
AcN ð1þ ðrAN=

ffiffiffiffiffiffiffiffiffiffiffiffi
kAkN

p
ÞÞ

þ
mLpLbL

1c
LL

b1 þ gþ a
qNbN

1 H1c
N

bT þ gN � mLyNLLH2c
NcLð1þ ðrNL=

ffiffiffiffiffiffiffiffiffiffiffi
kNkL

p
ÞÞ

þ
mNpNbN

1 c
NN

b1 þ gþ a
qAbA

1H1c
A

bT þ gA � mNyANNH2c
AcN ð1þ ðrAN=

ffiffiffiffiffiffiffiffiffiffiffiffi
kAkN

p
ÞÞ

þ
mNgN þ mNyNNNH2½c

N �2ð1þ ð1=kN ÞÞ

bT þ gN � mLyNLLH2c
NcLð1þ ðrNL=

ffiffiffiffiffiffiffiffiffiffiffi
kNkL

p
ÞÞ

mLyALLH2c
AcLð1þ ðrAL=

ffiffiffiffiffiffiffiffiffiffiffi
kAkL

p
ÞÞ

bT þ gA � mNyAN NH2c
AcNð1þ ðrAN=

ffiffiffiffiffiffiffiffiffiffiffiffi
kAkN

p
ÞÞ

þ
mNpNbN

1 c
NN

b1 þ gþ a
mLyALLH2c

AcLð1þ ðrAL=
ffiffiffiffiffiffiffiffiffiffiffi
kAkL

p
ÞÞ

bT þ gA � mNyANNH2c
AcN ð1þ ðrAN=

ffiffiffiffiffiffiffiffiffiffiffiffi
kAkN

p
Þ

�
qNbN

1 H1c
N

bT þ gN � mLyNLLH2c
NcLð1þ ðrNL=

ffiffiffiffiffiffiffiffiffiffiffi
kNkL

p
ÞÞ
o1:
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By some very simple algebra, it can be seen that this expression is identical to that shown in Eq. (12) to make the
biological interpretation more transparent.
Conversely, the disease-free equilibrium will be unstable, and the disease will persist, if D is not positive or Rall

0 > 1:
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